CS283：Robotics Spring 2023：Localization

Sören Schwertfeger／师泽仁

ShanghaiTech University

Mapping

- Process of building a map
- Basic principle:

1. Initialize the map with unknown or free
2. Take a sensor scan
3. Maybe pre-process it (e.g. plane detection)
4. Localize the robot w.r.t. the map frame (maybe difficult!)
5. Transform the (processed) sensor scan to the global frame
6. "Merge" the new data with the old map data, e.g.:

- Add scanned points to map point cloud
- Update cells in a probabilistic occupancy grid

7. Sometimes: Also do ray-casting to mark all cells from sensor to obstacle as free
8. Repeat for every new sensor scan

- Localization step may need the map (e.g. matching the scan against the map) => both should be done at the same time =>
- Simultaneous Localization and Mapping : SLAM

Cyclic Environments

- Small local error accumulate to arbitrary large global errors!
- This is usually irrelevant for navigation
- However, when closing loops, global error does matter

Raw Odometry

- Famous Intel Research Lab dataset (Seattle) by Dirk Hähnel

Scan Matching: compare to sensor data from previous scan

FastSLAM: Particle-Filter SLAM

LOCALIZATION

Problem: NOISE!

- Exteroceptive Sensor Noise

- Sensor noise is mainly influenced by environment e.g. surface, illumination ...
- and by the measurement principle itself e.g. interference two Kinects
- Sensor noise drastically reduces the useful information of sensor readings.

The solution is:

- to model sensor noise appropriately
- to take multiple readings into account
- employ temporal and/or multi-sensor fusion

Effector Noise: Odometry, Deduced Reckoning

- Odometry and dead reckoning:

Position update is based on proprioceptive sensors

- Odometry: wheel sensors only
- Dead reckoning: also heading sensors
- The movement of the robot, sensed with wheel encoders and/or heading sensors is integrated to the position.
- Pros: Straight forward, easy
- Cons: Errors are integrated -> unbound
- Using additional heading sensors (e.g. gyroscope) might help to reduce the cumulated errors, but the main problems remain the same.

Odometry: Growt of Pose uncertandy for Straight Line Movement

- Note: Errors perpendicular to the direction of movement are growing much faster!

Odonnetry: Growth of Pose uncertainty for Movement on a Circle

- Note: Errors ellipse in does not remain perpendicular to the direction of movement!

Odometry: eampea monocaussonerormodel

- Note: Errors are not shaped like ellipses!

Odometry: Calibration of Errors

- The unidirectional square path experiment

LOCALIZATION METHODS

Localization

- Based on control commands => Open Loop!
- Wheel odometry
- Compass, Accelerometer, Gyro => IMU
- Scan Matching of Range Sensors == Registration (rigid => no scaling or shearing)
- ICP: scan to scan or scan to map
- Needs good initial guess
- NDT registration
- Feature-based registration
- Direct/ optimization based registration
- Grid-based Localization
- Kalman Filter Based Localization
- Monte-Carlo Localization (MCL) == Particle Filter
- Adaptative MCL => AMCL
- Visual Odometry (VO)
- With IMU: Visual Inertial Odometry (VIO)
- SLAM techniques
-3D Reconstruction
- Structure from Motion/ Bundle Adjustment
- Localization is by-product
- Absolute Localization:
- GPS
- Markers (e.g. QR code)
- Landmarks (e.g. ShanghaiTech Tower)

Grid-based Localization - Multi Hypothesis

Probability of robot location saved in grid cells - based on combination of:

1) cell values of previous step; 2) odometry; 2) scan matching

Path of the robot

Belief states at positions 2, 3 and 4

Map based localization

Monte Carlo Localization (MCL)

- Input: Global, known map and laser scan
- Particle filter: set of particles representing a robot state
- Here: robot pose (position \& orientation)
- Particle filter SLAM (e.g. FastSLAM): also map!
- Particles are sampled based on probability distribution
- Assign weights (scores) to particles based on how well the scan matches to the map, given this pose
- Markov property: Current state only depends on previous state
- Algorithm:

1. For all particles:
2. Apply motion update (e.g. odometry)
3. Apply the sensor update (scan match) and calculate new weights
4. Re-Sample particles based on their weights

- Can solve the kidnapped robot problem (also wake-up robot problem)
- Problem: Particle of correct pose might not exist...

Adaptive Monte Carlo Localization (AMCL)

- Sample particles adaptively

Odometry Localization

- Based on error estimate
- Kullback-Leibler divergence (KLD)
- => when particles have converged, have a fewer number of particles

- Sample size is re-calculated each iteration

AMCL Map Localization

- http://wiki.ros.org/amcl
- Used by the ROS Navigation stack

MCL \& Robot Kidnapping

AMCL in ROS

Scan Matching/ Registration

- Take one sensor scan
- Match against:
- Another sensor scan
- Against the map
- Output:
- The Transform (2D: 3DoF; 3D: 6DoF; each maybe with scale)
- Uncertainty about the result (e.g. covariance matrix) and/ or registration error/ fitting error
- Used for Localization
- Most famous algorithm: ICP (Iterative Closest Point)

Registration Methods for Range Data

- ICP
- NDT
- Robust point matching (soft point correspondences)
- Coherent point drift
- Kernel correlation
- Approximations of the squared distance functions to curves and surfaces
- Direct Methods/ Optimization based (also for images)

- Feature extracting methods (also for images)
- Corners in point clouds
- Lines
- Planes
- Feature Descriptors/ also via Deep Learning
- Spectral methods (also for images)

SLAM using corner structures

- 2D LRF Scan
- Detect corners in the scan
- Map corners, localization against corners

ICP: Iterative Closest Points Algorithm

- Align two partiallyoverlapping point sets (2D or 3D)
- Given initial guess for relative transform
- Warning: Using 3D ICP for 2D data may mirror the data (e.g. 180 degree roll)!
- Use 2D ICP!
- ROS: Point Cloud Library (PCL)

Data Types

- Point sets
- Line segment sets (polylines)
- Implicit curves : $f(x, y, z)=0$
- Parametric curves : (x(u),y(u),z(u))
- Triangle sets (meshes)
- Implicit surfaces : $s(x, y, z)=0$
- Parametric surfaces (x(u,v),y(u,v),z(u,v)))

Motivation

- Scan Matching Registration
- Shape inspection
- Motion estimation
- Appearance analysis
- Texture Mapping
- Tracking

Aligning 3D Data

- Continuous lines or a set of points...

Corresponding Point Set Alignment

- Let M be a model point set. (or map or previous scan)
- Let S be a scene point set. (current scan)

We assume :

1. $N_{M}=N_{S}$.
2. Each point S_{i} correspond to M_{i}.

Corresponding Point Set Alignment

The Mean Squared Error (MSE) objective function :

$$
\begin{aligned}
& f(R, T)=\frac{1}{N_{S}} \sum_{i=1}^{N_{S}}\left\|m_{i}-\operatorname{Rot}\left(s_{i}\right)-\operatorname{Trans}\right\|^{2} \\
& f(q)=\frac{1}{N_{S}} \sum_{i=1}^{N_{S}}\left\|m_{i}-R\left(q_{R}\right) s_{i}-q_{T}\right\|^{2}
\end{aligned}
$$

The alignment is :

$$
\left(\text { rot }, \text { trans }, d_{m s e}\right)=\Phi(M, S)
$$

Aligning 3D Data

- If correct correspondences are known, can find correct relative rotation/ translation as closed from solution:
- Horn's quaternion method
- SVD Arun et al.
- Orthonormal matrices Horn et al.
- Dual quaternions Walker et al.

A. Lorusso, D. Eggert, and R. Fisher.

Horn's method

- Input
- Two point sets: X and Y
- Output
- Rotation matrix R
- Translation vector \boldsymbol{t}
- Fitting error

Horn's method: correspondence is known.

1

Horn's method: correspondence is known.

4

5
Compute $1^{\text {st }}$ Eigenvector \boldsymbol{q}
: quaternion q
Convert q to R
$\boldsymbol{t}=\overline{\boldsymbol{x}}-R \overline{\boldsymbol{y}}$

Aligning 3D Data

- How to find correspondences: User input? Feature detection? Signatures?
- Alternative: assume closest points correspond

Aligning 3D Data

- Converges if starting position "close enough"

Closest Point

- Given 2 points r_{1} and r_{2}, the Euclidean distance is:

$$
d\left(r_{1}, r_{2}\right)=\left\|r_{1}-r_{2}\right\|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}
$$

- Given a point r_{1} and set of points A, the Euclidean distance is:

$$
d\left(r_{1}, A\right)=\min _{i \in 1 . . n} d\left(r_{1}, a_{i}\right)
$$

Finding Matches

- The scene shape S is aligned to be in the best alignment with the model shape M.
- The distance of each point s of the scene from the model is :

$$
d(s, M)=\min _{m \in M} d\|m-s\|
$$

