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THREE SLAM PARADIGMS
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The Three SLAM Paradigms

- Most of the SLAM algorithms are based on the following three different
approaches:
- Extended Kalman Filter SLAM: (called EKF SLAM)
- Particle Filter SLAM: (called FAST SLAM)
- Graph-Based SLAM
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EKF SLAM: overview

- Extended state vector y, : robot pose x, + position of all the features m; in the
map:
Ve = [xe, Mg, o, mMpp_1]"

- Example: 2D line-landmarks, size of y, = 3+2n : three variables to represent
the robot pose + 2n variables for the » line-landmarks having vector
components

(:,1)

T
yt :[xt’yt’Ht’a()”/b""’an—l’rn—l]

- As the robot moves and takes measurements, the state vector and covariance
matrix are updated using the standard equations of the extended Kalman filter

- Drawback: EKF SLAM is computationally very expensive.
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Particle Filter SLAM: FastSLAM

- FastSLAM approach

- Using particle filters.

- Particle filters: mathematical models that represent
probability distribution as a set of discrete
particles that occupy the state space.

- Particle filter update probability distribution (ellipse) as particle set (red dots)
- Generate new particle distribution using motion
model and controls

a) For each particle:

1. Compare particle’s prediction of measurements with actual measurements

2. Particles whose predictions match the measurements are given a high weight
b) Filter resample:

- Resample particles based on weight

- Filter resample

+ Assign each particle a weight depending on how well its estimate of the state agrees with the measurements and
randomly draw particles from previous distribution based on weights creating a new distribution.
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Graph-Based SLAM (1/3)

- SLAM problem can be interpreted as a sparse graph of nodes and constraints between nodes.
- The nodes of the graph are the robot locations and the features in the map.

- Constraints: relative position between consecutive robot poses , (given by the odometry input u) and the relative
position between the robot locations and the features observed from those locations.
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Graph-Based SLAM (2/3)

- Constraints are not rigid but soft constraints!

- Relaxation: compute the solution to the full SLAM problem =>
- Compute best estimate of the robot path and the environment map.

- Graph-based SLAM represents robot locations and features as the nodes of an elastic net. The SLAM solution can
then be found by computing the state of minimal energy of this net
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Graph-Based SLAM (3/3)

- Significant advantage of graph-based SLAM techniques over EKF SLAM:

- EKF SLAM: computation and memory for to update and store the covariance matrix is
quadratic with the number of features.

- Graph-based SLAM: update time of the graph is constant and the required memory is linear
in the number of features.

- However, the final graph optimization can become computationally costly if the
robot path is long.

- Libraries for graph-based slam: g2o0, ceres
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SLAM EXAMPLES
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Experiment Lab Run: 29 3D point-clouds; size of each: 541 x 361 = 195,301
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KALMAN FILTER OVERVIEW

15

Following Material:
Michael Williams, Australian National University
Cornelia Fermuller, University of Maryland
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The Problem
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System error . SyStem state cannot be
S"‘;“’e measured directly
—— S - Need to estimate “optimally”

from measurements

System state
(desired but

not known)
Observed Optimal estimate of
Measurmg measurement system state
devices =
Measurement

error sources
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Robotics

What is a Kalman Filter?

- Recursive data processing algorithm

- Generates optimal estimate of desired quantities
given the set of measurements

- Optimal?
- For linear system and white Gaussian errors, Kalman
filter is “best” estimate based on all previous
measurements

- For non-linear system optimality is ‘qualified’

- Recursive?
- Doesn’t need to store all previous measurements and
reprocess all data each time step
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Conceptual Overview

- Lost on the 1-dimensional line
- Position — x(t)
- Assume Gaussian distributed measurements
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Conceptual Overview
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« Sextant Measurement at t;: Mean = z, and Variance = c,,
« Optimal estimate of position is: X(t) = z,

« Variance of error in estimate: ¢, (t1) = 62,4

« Boat in same position at time t, - Predicted position is z,
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Conceptual Overview
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So we have the prediction X (t,)

GPS Measurement at t,: Mean = z, and Variance = c,,

Need to correct the prediction due to measurement to get X(t,)
Closer to more trusted measurement — linear interpolation?
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Conceptual Overview

prediction X (t,)

0.16
0.14L corrected optimal
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« Corrected mean is the new optimal estimate of position
 New variance is smaller than either of the previous two variances
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Conceptual Overview
- Lessons so far:

Make prediction based on previous data: x-, o

v

Take measurement: z,, o,

v

Optimal estimate (X) = Prediction + (Kalman Gain) * (Measurement - Prediction)

Variance of estimate = Variance of prediction * (1 — Kalman Gain)
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Robotics

Conceptual Overview
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« Attime t3, boat moves with velocity dx/dt=u
« Naive approach: Shift probability to the right to predict
« This would work if we knew the velocity exactly (perfect model)
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Robotics

Conceptual Overview

Naive Prediction
n X (t )
O |

H
0.14} / \L/

S

0.11
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« Better to assume imperfect model by adding Gaussian noise

e dx/dt=u+w
 Distribution for prediction moves and spreads out



Robotics ShanghaiTech University - SIST - April 02, 2024

Conceptual Overview

0.16 -

014l Corrected optimal estimate X(t;)

0.12L

o1l Measurement z(t)
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 Now we take a measurement at t;
* Need to once again correct the prediction
« Same as before
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Conceptual Overview

- Lessons learnt from conceptual overview:
- Initial conditions (X,.4 and c,_4)

- Prediction (X7, o7)
- Use initial conditions and model (eg. constant velocity) to make prediction

- Measurement (z,)
- Take measurement

- Correction (X, , o)

- Use measurement to correct prediction by ‘blending’ prediction and residual — always a
case of merging only two Gaussians

- Optimal estimate with smaller variance
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Theoretical Basis

- Process to be estimated:

Xk = AXi.1 + Buy + W4 Process Noise (w) with covariance Q

Zi = Hx + v Measurement Noise (v) with covariance R
« Kalman Filter

Predicted: y is estimate based on measurements at previous time-steps
Xk = AX + Bu

P'k = APk_1AT + Q

Corrected: y has additional information — the measurement at time k

X = X + K(z - H X )
K=PHT(HPHT + R)"

Pk= (l - KH)P'k
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Blending Factor

 If we are sure about measurements:
— Measurement error covariance (R) decreases to zero
— K decreases and weights residual more heavily than prediction

 |If we are sure about prediction
— Prediction error covariance P-, decreases to zero
— Kincreases and weights prediction more heavily than residual
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Theoretical Basis

& @ I

Correction (Measurement Update)

Prediction (Time Update)

(1) Compute the Kalman Gain

1) Project th h
(1) Project the state ahead K = PHT(HP-HT + R)*

Xk =AYk + Bu
(2) Update estimate with measurement z,
(2) Project the error covariance ahead
Xk = Xk + K(z - H X )
P-k = APk_1AT +Q
(3) Update Error Covariance

Pk= (l - KH)P_k

—_— &
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RECURSIVE STATE ESTIMATION

Following Material:
Cyrill Stachniss, University of Bonn
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State Estimation

= Estimate the state L of a system given observations £ and
controls U

= Goal:

p(x | z,u
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State Estimation

= Estimate the state L of a system given observations £ and
controls U

= Goal:

p(xt|21:t7u1:t)
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(reminder)

Tiny Reminder
(Probability Theory)
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(reminder)

Bayes’ Rule

p(z,y) =p(z|y)py)
p(z,y) =p(y | x) p(z)

4

~ ply|z)p(x) likelihood prior

p(x | y) evidence
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Bayes’ Rule with Background Knowledge z

_ p(y | z)p(z)
%
p(m ‘ y,z) o p(y ’ CI?,Z)p(ZE‘ ‘ Z)
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(reminder)

Law of Total Probability and Marginalization

Law of Total Probability
p(0) =0 [9)ply)  p@)= [ ol )iy dy

Marginalization

p(z) =) plz,y) p(x) = / p(x,y) dy
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Markov Property/ Assumption

= “The future is independent from the
past - given the current state.”

= Markov property = the conditional
probability distribution of future states
depends only upon the present state,
not on the sequence of events that
preceded it.

= Such a process has no memory
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State Estimation

= Estimate the state I of a system given observations < and controls U

= Goal:

p(xt|21:t7u1:t)
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Recursive Bayes Filter 1

bel(xt) = p(xt ‘ Zl:ta“l:lﬁ)

definition of the belief
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Recursive Bayes Filter 2

bel(xt) = p(xt ‘ Zl:ta“l:lﬁ)

— Up(Zt | xtazlzt—laulzt) p(fCt \ Zl:t—laulzt)

Bayes’ rule
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Recursive Bayes Filter 3

bel(xt) = p(xt \ Zl:ta“l:t)
— Up(Zt | xtazlzt—laulzt) p(fCt \ Zl:t—laulzt)

= 7 p(zt | ZUt) p(l’t | Zl:t—laulzt)

Markov assumption
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Recursive Bayes Filter 4

bel(xt) = p(xt \ Zl:ta“l:t)
— 7719(275 xtazlzt—laulzt) p(iCt \ Zl:t—laulzt)

— 77]9(2:5 ZUt) p(l’t | Zl:t—laulzt)

— Up(zt 93t) p(xt ’ xt—lazlzt—laulzt)

p(xt_l ’ Zl:t—laulzt) drs_q

Law of total probability
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Recursive Bayes Filter 5

bel(xt) = p(xt \ Zl:ta“l:t)
— 7719(275 xtazlzt—laulzt) p(iCt \ Zl:t—laulzt)

— 77]9(2:5 ZUt) p(l’t | Zl:t—laulzt)

— Up(zt 93t) /p<xt’xt—1721:t—1au1:t)

p(xt_l ’ Zl:t—laulzt) drs_q

N p(Zt | th) /p(a:t ’ xt—laut) p(ifit—l | Zl:t—laul:t) drs_q

Markov assumption
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Recursive Bayes Filter 6

bel(xt) = p(xt \ Zl:ta“l:t)
— 7719(275 xtazlzt—laulzt) p(iCt \ Zl:t—laulzt)

— 77]9(275 ZUt) p(ﬂft | Zl:t—laulzt)

— 77]9(215 93t) /p<xt’xt—1721:t—1au1:t)
p(CUt—l ’ Zl:t—laulzt) drs_q

— Up(zt | ﬂft) /p(a:t ’ xt—laut) p(ib‘t—l | Zl:t—laul:t) drs_q

— 7729(275 | xt) /p(ﬂft \ ZUt—hUt) p(SUt—1 | Zl:t—la“l:t—l) dxi_q

independence assumption



Robotics ShanghaiTech University - SIST - April 02, 2024

Recursive Bayes Filter 7

bel(xt) = p(ﬂft ‘ Zl:ta“l:lﬁ)

— 7719(275 xtazlt 1, UL: t) (CCt \ Zl:t—laulzt)
= 7729(275 (CUt | Z1:t—1,UT: t)
— Up(zt /pxt’xt 1y R1:t— 17“175)

iUt—l ’ Zl:t—laulzt) drs_q

— Zt | 93t /p Lt ’ Lt— 1,Ut) p(ib‘t—l | Zl:t—laul:t) dri—1
= 7 p(Zt / Lt— 1aut) p(SUt—1 | Zl:t—la“l:t—l) dri_1
= npz| / Tr_1,ut) bel(xi—1) doe_q

recursive term
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Complete Derivation of the Recursive Bayes Filter

p(CUt—l ’ zl:t—laulzt) dzs_q

p(CUt ’ xt—laut) P(il?t—l | Zl:t—laulzt) drs_q
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Prediction and Correction Step

= Bayes filter can be written as a two
step process

bel(x) = n p(z¢ | x¢) /p(xt | ug, xi1) bel(xi_1) dxs_

= Prediction step
Bel(aw) = [ po | i) bel(ai) doy

= Correction step
bel(xt) = n p(zt | 1) bel(wy)
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Motion and Observation Model
= Prediction step

bel(xi) = /p(a:t | ug, xp—1) bel(xy_1) drs_q

motion model

= Correction step

bel(xt) =1 p(ze | ) bel(xy)

observation model
(also: measurement or sensor model)
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Different Realizations

= The Bayes filter is a framework for
recursive state estimation

» There are different realizations

= Different properties

= Linear vs. non-linear models for motion and
observation models

= Gaussian distributions only?
= Parametric vs. non-parametric filters
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Popular Filters

» Kalman filter & EKF
= (Gaussians
= Linear or linearized models

= Particle filter
* Non-parametric
= Arbitrary models (sampling required)
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KALMAN FILTER DETAILS

52

Following Material:
Michael Williams, Australian National University
Cornelia Fermuller, University of Maryland
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Recursive Bayes Filter

Bel(x,) =1 P(z, | xt)fP(xt |u,,x, ) Bel(x,_,) dx,_

Algorithm Bayes_filter( Bel(x),d ):
n=0
If d is a perceptual data item z then
For all x do
Bel'(x) = P(z| x)Bel(x)
n=n+Bel'(x)
For all x do
Bel'(x) =n"'Bel'(x)

NI AWNE

\0

Else if d is an action data item u then

10. For all x do
11. Bel'(x) =fP(x|u,x’)Bel(x')dx'

12. Return Bel’(x)
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Kalman Filter

® Bayes filter with Gaussians
® Developed in the late 1950's
® Most relevant Bayes filter variant in practice

® Applications range from economics, wheather forecasting,
satellite navigation to robotics and many more.

® The Kalman filter "algorithm" is a couple of matrix
multiplications!
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(Gaussians
p(x) ~N(u,o0%):

_1 (x—,l,l)2
= F—° 7
P\X) =
27To
Univariate
p(X)~N(pX):
] Lk =7 (x-p)
p(x) = e’
(271’)“”2‘2‘1/2

Multivariate

ShanghaiTech University - SIST - April 02, 2024
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Gaussians

34.199 34.1%

00 01 02 03 04

0.020 0.013
C=

0.013  0.020
7\,1 = 0.007

7»2 = 0.033

p = GXY/GXGY = 0.673
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Properties of Gaussians

* Univariate
X ~N(u,o0?
(n.07) = Y ~N(au+b,a’c?)
Y=aX+b
X, ~N(u,0,) o)’ o’
2 =>p(Xl)p(X2)NN 2 21u1+ 2 2M2,
X, ~N(u,,0,7) O, $+0, o, +0,

e Multivariate

X ~N(u.3

W) 1y N (Ap+ B ASAT)
Y =AX +B
XINN(MDZI) 22 21

Uy, +

2 +2, 2 +2,

Y NN(MZ,Zz)}w(Xl)-p(Xz)~N(

*We stay in the “Gaussian world” as long as we start with
Gaussians and perform only linear transformations

0,

U

|

|
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Introduction to Kalman Filter (1)

f(q)
, P A= ] exp[—ﬁ—”—( - )]
e Two measurements no dynamics -

0, = ith vari :
¢, = ¢, with variance o

’ : ’ 2 o [
4, = ¢, with variance G5 ot N
e Weighted least-square A BT N VI
n 3 ';" 3

n 2
§ =Y wlqg-q,)
i=1
¢ Finding minimum error

aq Zm(q—q) —22\4’(61 q,) =

i=1
e After some calculation and rearrangements

....... o L1
peies L1 1 1 1 [MLETY q

~ (O
q = 4+ 3 (Clz )
01+<52

e Another way to look at it — weighted mean



Robotics

ShanghaiTech University - SIST - April 02, 2024

Discrete Kalman Filter

Estimates the state x of a discrete-time controlled process
that is governed by the linear stochastic difference equation

x, =Ax

- + Btut + g, <— Process dynamics

« with a measurement

zZ, = Ctxt + 51 <—— Observation model

Matrix (nxn) that describes how the state evolves from ¢ -
A \ :
! I to ¢ without controls or noise.
Bt Matrix (nx!l) that describes how the control «, changes

the state from «1 to .

C, Matrix (kxn) that describes how to map the state x, to
an observation z..

) Random variables representing the process and
measurement noise that are assumed to be

independent and normally distributed with covariance
t R, and Q,respectively.
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Kalman Filter Updates in 1D
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.l prediction

correction |

measurement |

It's a weighted mean!
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Kalman Filter Updates in 1D
L gaiﬂ/ innovation

= +K(z - o’
bel(xt) — Iut zlut t(Zt _;ut) Wlth Kt — — Gt_z
Gt =(1_Kt)at Ot +Oob.5',t
=u+K (z,-C.u = =
bel(xt) _ u, = U, t(Zt _nut) with Kt _ th,T(C,ZrCIT +Qt)_1
S =(I-K,C)Z

azs

azr

Q15

QoS -
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Kalman Filter Updates in 1D

— (U =a +b.u
bel(xt)=< fé Z‘Mt—l tzt

2 2
o, = d, Ot + Oact,t

r_tl'_lt =Au,_, +Bu,

bel(x,) =4
!
S =A% A +R
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Kalman Filter Updates

oz

azr

ais
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Q15
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Kalman Filter Algorithm

1. Algorithm Kalman_filter( usi, Zt-1, ut, z¢):

Prediction:
2. u,=Au,_ +Bu,
S =A4%,_ A +R,

1=t-1

W

Correction:

K =xCl(CzC +0)"'
U, =u, +Kt(Zt__ Ctll’tt)
Zt = (I_Ktct)zf

N owu ok

Return Ug 2t
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The Prediction-Correction-Cycle

— AL_t =a, U, btut
bel(x,) =
WG <aol v,
— (u, =Au, ,+Bu,
bel(x,)=1-" -
S = A2, A +R,
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The Prediction-Correction-Cycle

uw=un Kz u) g,
bel(xt)={ 102;(1 th)OztaKt= 2 . =2

=u +K(z,-Cu = = I '
bel(x,)={ut iRz =G K =3C(CczC+0)" |/ _/\

%, =(1-KC)x S —

e 4




Robotics ShanghaiTech University - SIST - April 02, 2024

The Prediction-Correction-Cycle

2 R

| w=u+KI(z-u) o, — =au  +bhu
belx) =4 L K e bel(x) =1 5~
O't _( - t)at (')'I + O'ol)x.f Jl = af Of + O‘;C" !
, / =‘_lr+Kr Z,—C,‘Ll_, N N - 1] u, =4 +8
bel(x,) = s ( - )9Kt = z’crr(sz’C/T +Q/) 1 bel(xt) = 5 ftt M T tut
S, =(1-KC)S) S, =43, AT +R
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Kalman Filter Summary

® Highly efficient: Polynomial in
measurement dimensionality k
and state dimensionality n:

O(k2-376 + n2)
® Optimal for linear Gaussian systems!

® Most robotics systems are nonlinear!



