

CS283: Robotics Spring 2024: EKF & Particle Filter & Planning

Sören Schwertfeger / 师泽仁

ShanghaiTech University

EXTENDED KALMAN FILTER (EKF)

Following Material:

• Cyrill Stachniss, University of Bonn

EKF: Non-linear Dynamic Systems

 Most realistic problems (in robotics) involve nonlinear functions

• Extended Kalman filter relaxes linearity assumption

Linearity Assumption Revisited

Courtesy: Thrun, Burgard, Fox

Non-linear system

Other Error Prop. Techniques

Second-Order Error Propagation

Rarely used (complex expressions)

Monte-Carlo

Non-parametric representation of uncertainties

- 1. Sampling from *p*(*X*)
- 2. Propagation of samples
- 3. Histogramming
- 4. Normalization

Extended Kalman Filter: EKF

EKF Linearization: First Order Taylor Expansion

Jacobian Matrix

- It's a **non-square matrix** $n \times m$ in general
- Suppose you have a vector-valued function $f(\mathbf{x}) = \begin{vmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \end{vmatrix}$
- Let the gradient operator be the vector of (first-order) partial derivatives

$$\nabla_{\mathbf{x}} = \begin{bmatrix} \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \dots & \frac{\partial}{\partial x_n} \end{bmatrix}^T$$

• Then, the **Jacobian matrix** is defined as

$$\mathbf{F}_{\mathbf{x}} = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial}{\partial x_1} & \dots & \frac{\partial}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \dots & \frac{\partial f_2}{\partial x_n} \end{bmatrix}$$

Jacobian Matrix

 It's the orientation of the tangent plane to the vectorvalued function at a given point

- Generalizes the gradient of a scalar valued function
- Heavily used for **first-order error propagation...**

EKF Linearization: First Order Taylor Expansion

Linearity Assumption Revisited

Courtesy: Thrun, Burgard, Fox

Non-Linear Function

Courtesy: Thrun, Burgard, Fox

EKF Linearization (1)

Courtesy: Thrun, Burgard, Fox

EKF Linearization (2)

Courtesy: Thrun, Burgard, Fox

EKF Linearization (3)

Courtesy: Thrun, Burgard, Fox

Extended Kalman Filter Algorithm

1: Extended_Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):
2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$
3: $\bar{\Sigma}_t = \bar{G}_t \Sigma_{t-1} \bar{G}_t^T + R_t$
4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$
5: $\mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$
6: $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$
7: return μ_t, Σ_t
KF vs. EKF

EKF Localization: Basic Cycle

State Prediction (Odometry)

 $\hat{\mathbf{x}}_k = f(\mathbf{x}_{k-1}, \mathbf{u}_k)$ $\hat{C}_k = F_x C_k F_x^T + F_u U_k F_u^T$

Control \mathbf{u}_k : wheel displacements s_l , s_r

$$\mathbf{u}_k = (s_l \ s_r)^T \qquad U_k = \left[egin{array}{cc} \sigma_l^2 & 0 \ 0 & \sigma_r^2 \end{array}
ight]$$

Error model: linear growth

 $egin{array}{rcl} \sigma_l &=& k_l \left| s_l
ight| \ \sigma_r &=& k_r \left| s_r
ight| \end{array}$

 $x_{k-1}^{}$, $y_{k-1}^{}$, $\theta_{k-1}^{}$

Nonlinear process model f:

$$\mathbf{x}_{k} = \begin{bmatrix} x_{k-1} \\ y_{k-1} \\ \theta_{k-1} \end{bmatrix} + \begin{bmatrix} \frac{b}{2} \frac{s_{l}+s_{r}}{s_{r}-s_{l}} \left(-\sin \theta_{k-1} + \sin(\theta_{k-1} + \frac{s_{r}-s_{l}}{b})\right) \\ \frac{b}{2} \frac{s_{l}+s_{r}}{s_{r}-s_{l}} \left(\cos \theta_{k-1} - \cos(\theta_{k-1} + \frac{s_{r}-s_{l}}{b})\right) \\ \frac{s_{r}-s_{l}}{b} \end{bmatrix}$$

State Prediction (Odometry)

 $\hat{\mathbf{x}}_k = f(\mathbf{x}_{k-1}, \mathbf{u}_k)$ $\hat{C}_k = F_x C_k F_x^T + F_u U_k F_u^T$

Control \mathbf{u}_k : wheel displacements s_l , s_r

$$\mathbf{u}_k = (s_l \ s_r)^T \qquad U_k = \begin{bmatrix} \sigma_l^2 & 0\\ 0 & \sigma_r^2 \end{bmatrix}$$

Error model: linear growth

 $egin{array}{rcl} \sigma_l &=& k_l \left| s_l
ight| \ \sigma_r &=& k_r \left| s_r
ight| \end{array}$

Nonlinear process model f:

$$\mathbf{x}_{k} = \begin{bmatrix} x_{k-1} \\ y_{k-1} \\ \theta_{k-1} \end{bmatrix} + \begin{bmatrix} \frac{b}{2} \frac{s_{l}+s_{r}}{s_{r}-s_{l}} \left(-\sin \theta_{k-1} + \sin(\theta_{k-1} + \frac{s_{r}-s_{l}}{b})\right) \\ \frac{b}{2} \frac{s_{l}+s_{r}}{s_{r}-s_{l}} \left(\cos \theta_{k-1} - \cos(\theta_{k-1} + \frac{s_{r}-s_{l}}{b})\right) \\ \frac{s_{r}-s_{l}}{b} \end{bmatrix}$$

Landmark Extraction (Observation)

Robotics

Landmark-based Localization

Measurement Prediction

• ... is a coordinate frame transform world-to-sensor

 r_i

• Given the predicted state (robot pose), predicts the location $\hat{\mathbf{z}}_k$ and location uncertainty $H \hat{C}_k H^T$ of expected observations in sensor coordinates

$$\mathbf{\hat{z}}_k = h(\mathbf{\hat{x}}_k, \mathbf{m})$$

Map m

 $\{W\}$

Data Association (Matching)

Update

• Kalman gain

 $K_k = \hat{C}_k H^T S_k^{-1}$

• State update (robot pose)

 $\mathbf{x}_k = \mathbf{\hat{x}}_k + K_k \, \nu_k$

• State covariance update

 $C_k = (I - K_k H) \, \hat{C}_k$

Red: posterior estimate

ADMIN

Project

- 2nd meeting of project done for most groups
 - Sophia group & Robot dog group & mission planning LLM: meet after the lecture?

Midterm; April 23; during class hours

- Midterm: "test-run" for the final...
- Content:
 - Everything till (including) April 9 lecture.
 - Take a look at facts, algorithms, concepts
 - Take a look at the homeworks again
 - Sample exam: https://robotics.shanghaitech.edu.cn/sites/default/files/files/final_Example.pdf
- You are allowed to bring <u>3</u> A4 sheets (so 6 pages) of info to the exams (including Final so for midterm maybe use 1.5 or 2 A4 sheets). You can write/ print anything on those sheets. On top of <u>every page</u> (so 6 times) there needs to be your <u>name (pinyin), student ID and</u>
 <u>ShanghaiTech email</u> address. We will check every cheat sheet before the exam and <u>confiscate</u> every sheet without name or with a name that is not yours.

No electronics/ calculator/ smartwatch allowed

Presentation

- Upload your pdf/ ppt to your HW git latest tomorrow 22:00!
- If you want to use your own pdf/ ppt later you'll loose 30% of that score.
- Be present at all 3 presentation slots listen carefully everybody needs to ask in total at least 3 questions (for 3 different presentations)

r24hw_xuteng r24hw wangyzh2023 r24hw zhoutt2023 r24hw taoheng2023 r24hw renwq2023 r24hw luoxr2023 r24hw liuxzh2023 r24hw majx2023 r24hw zhangjj2023 r24hw_guojing2023 r24hw wushx2023 r24hw zhangyq2023 r24hw duanxin2023 r24hw maxu2023 r24hw zhangit12023 r24hw zhangsa2023 r24hw linyx2023 r24hw yushb2023 r24hw xiefj r24hw lipc r24hw_guszh2023 r24hw hanzht2022 r24hw shiyd2023

PARTICLE FILTER

Following Material:

• Wolfram Burgard, University of Freiburg

Particle Filter SLAM: FastSLAM

FastSLAM approach

- Using particle filters.
- Particle filters: mathematical models that represent probability distribution as a set of discrete particles that occupy the state space.

probability distribution (ellipse) as particle set (red dots)

- Particle filter update
 - Generate new particle distribution using motion model and controls
 - a) For each particle:
 - 1. Compare particle's prediction of measurements with actual measurements
 - 2. Particles whose predictions match the measurements are given a high weight
 - b) Filter resample:
 - Resample particles based on weight
 - Filter resample
 - Assign each particle a weight depending on how well its estimate of the state agrees with the measurements and randomly draw particles from previous distribution based on weights creating a new distribution.

32

Motivation

- Particle filters are a way to efficiently represent non-Gaussian distribution
- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest

Function Approximation

• Particle sets can be used to approximate functions

- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples from a function/distribution?

Rejection Sampling

- Let us assume that f(x) < a for all x
- Sample *x* from a uniform distribution
- Sample c from [0, a]
- if f(x) > c keep the sample
- otherwise reject the sample

Х

Importance Sampling Principle

- We can even use a different distribution g to generate samples from f
- By introducing an importance weight *w*, we can account for the "differences between *g* and *f* "

•
$$w = f/g$$

- f is called target
- g is called proposal
- Pre-condition:

• $f(x) > 0 \rightarrow g(x) > 0$

Importance Sampling with Resampling

Weighted Samples

After Resampling

Particle Filter Algorithm

- Sample the next generation for particles using the proposal distribution
- Compute the importance weights :

weight = target distribution / proposal distribution

Resampling: "Replace unlikely samples by more likely ones"

Particle Filter Algorithm

- 1. Algorithm particle_filter(S_{t-1}, u_t, z_t):
- 2. $S_t = \emptyset, \eta = 0$
- 3. For i = 1, ..., n

Generate new samples

- 4. Sample index j(i) from the discrete distribution given by w_{t-1}
- 5. Sample x_t^i from $p(x_t|x_{t-1}, u_t)$ using $x_{t-1}^{j(i)}$ and u_t
- $6. w_t^i = p(z_t | x_t^i)$
- 7. $\eta = \eta + w_t^i$
- 8. $S_t = S_t \cup \{ < x_t^i, w_t^i > \}$
- 9. For i = 1, ..., n
- 10. $w_t^i = w_t^i / \eta$

Compute importance weight Update normalization factor Add to new particle set

Normalize weights

Mobile Robot Localization

- Each particle is a potential pose of the robot
- Proposal distribution is the motion model of the robot (prediction step)
- The observation model is used to compute the importance weight (correction step)

Motion Model Reminder

Start Pose

According to the estimated motion

Motion Model Reminder

• End rotation

Motion Model Reminder

- Uncertainty in the translation of the robot: Gaussian over the traveled distance
- Uncertainty in the rotation of the robot: Gaussians over start and end rotation
- For each particle, draw a new pose by sampling from these three individual normal distributions

Mobile Robot Localization Using Particle Filters (1)

- Each particle is a potential pose of the robot
- The set of weighted particles approximates the posterior belief about the robot's pose (target distribution)

Mobile Robot Localization Using Particle Filters (2)

- Particles are drawn from the motion model (proposal distribution)
- Particles are weighted according to the observation model (sensor model)
- Particles are resampled according to the particle weights

Mobile Robot Localization Using Particle Filters (3)

- •Why is resampling needed?
 - We only have a finite number of particles
 - Without resampling: The filter is likely to loose track of the "good" hypotheses
 - Resampling ensures that particles stay in the meaningful area of the state space

Robotics

SLAM Using Particle Filters – Grid-based SLAM

- Can we solve the SLAM problem if no pre- defined landmarks are available?
- Can we use the ideas of FastSLAM to build grid maps?
- As with landmarks, the map depends on the poses of the robot during data acquisition
- If the poses are known, grid-based mapping is easy ("mapping with known poses")

Rao-Blackwellization

Rao-Blackwellization

Mapping with Rao- Blackwellized Particle Filters

- Each particle represents a possible trajectory of the robot
- Each particle
 - maintains its own map and
 - updates it upon "mapping with known poses"
- Each particle survives with a probability proportional to the likelihood of the observations relative to its own map

Particle Filter Example

Problem

- Each map is quite big in case of grid maps
- Each particle maintains its own map, therefore, one needs to keep the number of particles small

• Solution:

Compute better proposal distributions!

• Idea:

Improve the pose estimate before applying the particle filter

FastSLAM with Improved Odometry

- Scan-matching provides a locally consistent pose correction
- Pre-correct short odometry sequences using scanmatching and use them as input to FastSLAM
- Fewer particles are needed, since the error in the input is smaller

0----

Raw Odometry

 Famous Intel Research Lab dataset (Seattle) by Dirk Hähnel

Courtesy of S. Thrun

http://robots.stanford.edu/videos.html

0

Scan Matching: compare to sensor data from previous scan

Courtesy of S. Thrun

FastSLAM: Particle-Filter SLAM

Courtesy of S. Thrun

0-

PLANNING

General Control Scheme for Mobile Robot Systems

The Planning Problem

- The problem: find a path in the work space (physical space) from the initial position to the goal position avoiding all collisions with the obstacles
- Assumption: there exists a good enough map of the environment for navigation.

The Planning Problem

- We can generally distinguish between
 - (global) path planning and
 - (local) obstacle avoidance.
- First step:
 - Transformation of the map into a representation useful for planning
 - This step is planner-dependent
- Second step:
 - Plan a path on the transformed map
- Third step:
 - Send motion commands to controller
 - This step is planner-dependent (e.g. Model based feed forward, path following)

Work Space (Map) → Configuration Space

• State or configuration q can be described with k values q_i

Work Space

• What is the configuration space of a mobile robot?

Configuration Space:

the dimension of this space is equal to the Degrees of Freedom (DoF) of the robot

Configuration Space for a Mobile Robot

- Mobile robots operating on a flat ground (2D) have 3 DoF: (x, y, θ)
- Differential Drive: only two motors => only 2 degrees of freedom directly controlled (forward/ backward + turn) => non-holonomic
- Simplification: assume robot is holonomic and it is a point => configuration space is reduced to 2D (x,y)
- => inflate obstacle by size of the robot radius to avoid crashes => obstacle growing

Typical Configuration Space: Occupancy grid

• Fixed cell decomposition: occupancy grid example: STAR Center

Path Planning: Overview of Algorithms

1. Optimal Control

- Solves truly optimal solution
- Becomes intractable for even moderately complex as well as nonconvex problems

Source: http://mitocw.udsm.ac.tz

2. Potential Field

- Imposes a mathematical function over the state/configuration space
- Many physical metaphors exist
- Often employed due to its simplicity and similarity to optimal control solutions

3. Graph Search

Identify a set edges between nodes within the free space

• Where to put the nodes?

Potential Field Path Planning Strategies

- Robot is treated as a *point under the influence* of an artificial potential field.
- Operates in the continuum
 - Generated robot movement is similar to a ball rolling down the hill
 - Goal generates attractive force
 - Obstacle are repulsive forces

Robot Path Planning and Obstacle Avoidance using Harmonic Potential Fields

 $\left[\partial U \right]$

Potential Field Path Planning: Potential Field Generation

- Generation of potential field function U(q)
 - attracting (goal) and repulsing (obstacle) fields
 - summing up the fields
 - functions must be differentiable
- Generate artificial force field F(q)

$$F(q) = -\nabla U(q) = -\nabla U_{att}(q) - \nabla U_{rep}(q) = \begin{bmatrix} \frac{\partial U}{\partial x} \\ \frac{\partial U}{\partial y} \end{bmatrix}$$

- Set robot speed (v_x, v_y) proportional to the force F(q) generated by the field
 - the force field drives the robot to the goal
 - if robot is assumed to be a point mass
 - Method produces both a plan and the corresponding control

Potential Field Path Planning: Attractive Potential Field

• Parabolic function representing the Euclidean distance $\rho_{goal} = ||q - q_{goal}||$ to the goal

$$U_{att}(q) = \frac{1}{2}k_{att} \cdot \rho_{goal}^{2}(q)$$
$$= \frac{1}{2}k_{att} \cdot (q - q_{goal})^{2}$$

Attracting force converges linearly towards 0 (goal)

$$F_{att}(q) = -\nabla U_{att}(q)$$
$$= k_{att} \cdot (q - q_{goal})$$

Potential Field Path Planning: Repulsing Potential Field

- Should generate a barrier around all the obstacle
 - strong if close to the obstacle
 - not influence if far from the obstacle

$$U_{rep}(q) = \begin{cases} \frac{1}{2} k_{rep} \left(\frac{1}{\rho(q)} - \frac{1}{\rho_0} \right)^2 & \text{if } \rho(q) \le \rho_0 \\ 0 & \text{if } \rho(q) \ge \rho_0 \end{cases}$$

- $\rho(q)$: minimum distance to the object
- Field is positive or zero and *tends to infinity* as q gets closer to the object

ROS Grid Map Package

http://wiki.ros.org/grid_map

Potential Field Path Planning:

• Notes:

- Local minima problem exists
- Problem is getting more complex if the robot is not considered as a point mass
- If objects are non-convex there exists situations where several minimal distances exist \rightarrow can result in oscillations

Example Configuration Space

Potential Field Path Planning: Extended Potential Field Method

 Additionally a rotation potential field and a task potential field is introduced

Rotation potential field

 force is also a function of robots orientation relative to the obstacles. This is done using a gain factor that reduces the repulsive force when obstacles are parallel to robot's direction of travel

Task potential field

 Filters out the obstacles that should not influence the robots movements, i.e. only the obstacles in the sector in front of the robot are considered

Khatib and Chatila