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EXTENDED KALMAN FILTER (EKF)

Following Material:
Cyrill Stachniss, University of Bonn
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Kalman Filter

& @ I

Correction (Measurement Update)

Prediction (Time Update)

(1) Compute the Kalman Gain

1) Project th h
(1) Project the state ahead K = P~ HT(HP-HT + R)*

Xk = Ayiq + Buy
(2) Update estimate with measurement z,
(2) Project the error covariance ahead
Xk = Xk + K(z - H X )
P-k = APk_1AT +Q
(3) Update Error Covariance

Pk= (l - KH)P_k

—_— &




Robotics ShanghaiTech University - SIST - April 9, 2023

EKF: Non-linear Dynamic Systems

« Most realistic problems (in robotics)
involve nonlinear functions

Il 4

Lt — g(ut,flft—l) T € 2t = h(CUt) + 5t

e Extended Kalman filter relaxes linearity assumption
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Linearity Assumption Revisited

6

piy)= N y; ap +h, a?

K Mean of piy)

02)

P

— =3 X+ h
d= Mean p

0.5 1

i) = N(% p, o7
= Mean of p(x)

Courtesy: Thrun, Burgard, Fox
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Non-linear system

6 6
Py — Function g(x)
— Gaussian of p(y) = Meanp
4 x Mean of piy) 4 Q 9w
2
<
0 T 0
-2 21
Y 4 +
0 020406 08 0 0.5 1
i pe)
= Meanp
-4
x
2t
0 s 2
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Other Error Prop. Techniques

e Second-Order Error Propagation

Rarely used (complex expressions)

e Monte-Carlo

Non-parametric

representation of - Extended Kalman Filter: EKF
uncertainties

1. Sampling from p(X)
2. Propagation of samples

3. Histogramming

4. Normalization
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EKF Linearization: First Order Taylor Expansion

= Prediction:
0g(ug, Lhi—
Q(Uuﬂ?t—l) ~ g(utaﬂt—l) + g(at a 1) (CUt—l —,th—l)
_. G,
= Correction: \

Oh(jit) Jacobian matrices

=: H,

h(ze) ~ h(fiy) +
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Jacobian Matrix

e It's a non-square matrix n x m in general

f1(x) ]

* Suppose you have a vector-valued function f(x) = [ Fo(x)
2

* Let the gradient operator be the vector of (first-order)
partial derivatives

T
Vx:[azl 8?:2 %]

* Then, the Jacobian matrix is defined as

gﬁ SL
fl (X) ] 5 5 T1 .. o

FX = - - =
[fQ(X) L D
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Jacobian Matrix

* It’ s the orientation of the tangent plane to the vector-
valued function at a given point

* Generalizes the gradient of a scalar valued function
* Heavily used for first-order error propagation...
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EKF Linearization: First Order Taylor Expansion

= Prediction:
0g(ug, Lhi—
Q(Uuﬂ?t—l) ~ g(utaﬂt—l) + g(at a 1) (CUt—l —,th—l)
_. G,
= Correction: \

Oh(jit) . Jacobian matrices

Oxy y> linear functions!

=: H,

h(ze) ~ h(fiy) +
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Linearity Assumption Revisited

6| 6
ply)= N(y;ap+b,a%e?) — =g X+ b
K Mean of piy) = Meanp
) )
4
. %
3
2
1 - 1 +
0 05 1 15 0 0.5 1
6| |
pix) = N(x; w, o)
&= Mean of p{x)
=4
X
2t
0
n ne 1

Courtesy: Thrun, Burgard, Fox



Robotics ShanghaiTech University - SIST - April 9, 2023

Non-Linear Function

6 6
p(y) — Function gix)
— Gaussian of p{y) = Meanp
41 X Mean of piy) 4 Q o
2 2
0 T 0}
-2 2t
gl 4 + -
0 0204 06 0.8 0 0.5 1
i P
= Meanp
2t
0 2
n ne 1

Courtesy: Thrun, Burgard, Fox
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EKF Linearization (1)

6 6
piy) — Function g{x)
— Gaussian of p{y) — Taylor approx.
4 )| — EFK Gaussian 4 \: Mean p
O s
-
-2t
e — -4 + -
0 0204 06 0.8 0 0.5 1
6 P
= Meanp
x 47
2t
0 +
n nNE 1

Courtesy: Thrun, Burgard, Fox
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EKF Linearization (2)

6 6
piy) — Function gi{x)
— Gaussian of p(y) — Taylor approx.
4 d —— EFK Gaussian 4 4= Meanp
O o
2 -
0 T 0
-2 -2
-4 - - 4 + -
0 0.5 1 0 0.5 1
4 = m?an T
<
0 C
n ne 1

Courtesy: Thrun, Burgard, Fox
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EKF Linearization (3)

6 6
p(y) — Function gix)
— Gaussian of p(y) — Taylor approx.
4 {| — EFK Gaussian 4 ‘ g Mean p
O sw
2 ? 2
0 T 0}
-2 -2t
4l -4 + -
0 05 1 15 0 0.5 1
20 o Ej:)an e
10|
0
n nE 1

Courtesy: Thrun, Burgard, Fox
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Extended Kalman Filter Algorithm

1: Extended_Kalman_filter(u:_1,>¢ 1, us, 2¢):

2: it = g(ug, phg_1

3: Zt — Gt Zt—l G,ir -+ Rt
4: Kt = Z_]t H;(Ht St Hg —+ Qt)_l Cy < Hy
5: e = iy + Kz — h(iy))

0: Zt — (I — Kt Ht) Et

7 return [, 2

KF vs. EKF
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Landmark-based Localization

EKF Localization: Basic Cycle

encoder measurements

: Odometry # e
or IMU State Prediction

predicted
state

landmarks in global

coordinates
> Measurement >
Prediction
predicted

measurements in
“ sensor coordinates

posterior
state

Update

Data

Association

innovation from
matched landmarks

landmarks

Extraction

Feature/Landmark

raw sensory data

Sensors

Uy
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Robotics

Landmark-based Localization

State Prediction (Odometry)
Xt = f(Xk—1,uk)
Cv=F,Cr, FT + F, Uy FT

Control u;: wheel displacements s, s,

2
u, = (s; s,)7 Uk:[%l 002]

Error model: linear growth

(o)) = kl |Sl|

G T L A

or = ky|s;|

Nonlinear process model f:
Tk—1 St (—sin gy + sin(fp_1 + =5))
Xp= | ypo1 | + SLESe ( cos Ok—1 — cos(fk—1 + Z252L))
0’9—1 Srgsl

N[N | o

Sr—38;
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Landmark-based Localization

State Prediction (Odometry)
Xt = f(Xk—1,uk)
Cv=F,Cr, FT + F, Uy FT

Control u;: wheel displacements s, s,

2
ur = (87 8,)7 — | Y% 0
k= (81 8r) Us [ 0 o
Error model: linear growth O «
(o)) = kl |Sl| B
or = ky|s;|

Nonlinear process model f:

B a et (—sin Oy + sin(fg_1 + *=5°L))
X = Yk—1 i
ek_l Srgsl

N[N | o

Sitsr ( cos Op_1 — COS(ek—l + %))

Sr—38;
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Landmark-based Localization

y [m]

) | ) 1 1
o » w N — o - N w » o

Landmark Extraction (Observation)

Raw laser Extracted
range data lines
— §F ¢ % T 7 ' ¥ T 1
5 \“ \
4 \\\
3 t
2 \
E' o
. >0 ~ '.:_‘a."' .
_1,/ :-, ‘\/’ =
_3_
_4, i
5 4 5 2 S0 1 2 3 4 =5 4 3 2 6‘
x[m] x[m]
line model
z cos(a) +y sin(a) —r =0

Extracted lines
in model space

line j

=
&
R

v
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Landmark-based Localization

Measurement Prediction

® ...is a coordinate frame transform world-to-sensor

e Given the predicted state (robot pose),
predicts the location Z; and location . model space
uncertainty H Ci H' of expected r
observations in sensor coordinates %

Zk = h(f(k, m)
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Robotics

Landmark-based Localization

Data Association (Matching)

* Associates predicted measurements 2%

with observations z~l7€
. : Z_ . model space
ij j a iT
e Innovation and No match!!
innovation  ;; Wall was not
observed.

covariance Yk @)

match j,i
rj]
n¥e ¥

|
- 00 0 T

~

v

Green: observation
Magenta: measurement prediction
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Landmark-based Localization

Update

e Kalman gain

Ky =Cy HTS.! \
e State update (robot pose)

X = X + K vy
e State covariance update

Cr = (I — Ky, H) Cj,

Red: posterior estimate
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ADMIN
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Project

- 2"d meeting of project — done for most groups

- Sophia group & Robot dog group & mission planning LLM: meet after the lecture?
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Midterm; April 23; during class hours

- Midterm: “test-run” for the final...

- Content:
- Everything till (including) April 9 lecture.
- Take a look at facts, algorithms, concepts
- Take a look at the homeworks again
- Sample exam: https://robotics.shanghaitech.edu.cn/sites/default/files//files/final Example.pdf

- You are allowed to bring 3 A4 sheets (so 6 pages) of info to the exams (including Final — so for
midterm maybe use 1.5 or 2 A4 sheets). You can write/ print anything on those sheets. On top
of every page (so 6 times) there needs to be your name (pinyin), student ID and
ShanghaiTech email address. We will check every cheat sheet before the exam
and confiscate every sheet without name or with a name that is not yours.

- No electronics/ calculator/ smartwatch allowed


https://robotics.shanghaitech.edu.cn/sites/default/files//files/final_Example.pdf
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Presentation 24w xiong

r24hw_wangyzh2023

| LLZL |

r24hw_taoheng2023

- Upload your pdf/ ppt to your HW git latest tomorrow 22:00!

- If you want to use your own pdf/ ppt later you’ll loose 30% of
that score.

r24hw_zhangyq2023

r24hw_duanxin2023

- Be present at all 3 presentation slots — listen carefully — 4w ghanatio
everybody needs to ask in total at least 3 questions (for 3
different presentations)

r24hw_hanzht2022
r24hw_shiyd2023
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PARTICLE FILTER

31

Following Material:
Wolfram Burgard, University of Freiburg
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Particle Filter SLAM: FastSLAM

- FastSLAM approach

- Using particle filters.

- Particle filters: mathematical models that represent
probability distribution as a set of discrete
particles that occupy the state space.

- Particle filter update probability distribution (ellipse) as particle set (red dots)
- Generate new particle distribution using motion
model and controls

a) For each particle:

1. Compare particle’s prediction of measurements with actual measurements

2. Particles whose predictions match the measurements are given a high weight
b) Filter resample:

- Resample particles based on weight

- Filter resample

+ Assign each particle a weight depending on how well its estimate of the state agrees with the measurements and
randomly draw particles from previous distribution based on weights creating a new distribution.
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Motivation

- Particle filters are a way to efficiently represent non-Gaussian distribution
- Basic principle

- Set of state hypotheses (“particles”)

- Survival-of-the-fittest
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Robotics

Function Approximation

- Particle sets can be used to approximate functions

f(x)
samples

f(x)
samples

probability / weight
probability / weight

/\

[ LA L AR RERRT MR

- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples from a function/distribution?
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Rejection Sampling
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- Let us assume that f(x) < a for all x
- Sample x from a uniform distribution
- Sample ¢ from [0, a]

-if f(x) >c
- otherwise

keep the sample
reject the sample

probability / weight

f(x)

samples

(x7)

Ce o
OK
7(x)

0
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Importance Sampling Principle

- We can even use a different distribution g to generate samples from f

- By introducing an importance weight w, we can account for the “differences

between g and f ”
w=1/g
- f is called target
- g Is called proposal

- Pre-condition:
cf(x)>0 - g(x)>0

probability / weight

proposal(x) ——
target(x)
samples

.mnmlJIIIJJIIunLquHw e

X
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Importance Sampling with Resampling

Weighted Samples After Resampling
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Particle Filter Algorithm

- Sample the next generation for particles using the proposal
distribution

- Compute the importance weights :
weight = target distribution / proposal distribution

- Resampling: “Replace unlikely samples by more likely ones”
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Particle Filter Algorithm

1. Algorithm particle_filter( S;_1, us, z¢):

2. S=0,n=

3. Fori=1,..,n Generate new samples

4 Sample index j(i) from the discrete distribution given by w;_;

5. Sample x; from p(x|xe—1 , ur) using x/) and u,

6 wi = p(z¢|x}) Compute importance weight
7 n=n+w Update normalization factor
8 Sy = S, U {< xt,wi >) Add to new particle set

9. Fori=1,..,n

10. wt = wi/n Normalize weights
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Mobile Robot Localization

- Each particle is a potential pose of the robot
- Proposal distribution is the motion model of the robot
(prediction step)

- The observation model is used to compute the importance
weight (correction step)
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Motion Model Reminder

End Pose

Start Pose @

According to the estimated motion
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Motion Model Reminder

translation

_rotation

—
\\

Decompose the motion into
e Traveled distance

e Start rotation

* End rotation

/
/
/

‘rotation

-
—
— -
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Motion Model Reminder

Uncertainty in the translation of the robot:
Gaussian over the traveled distance

* Uncertainty in the rotation of the robot:
Gaussians over start and end rotation

* For each particle, draw a new pose by
sampling from these three individual normal
distributions
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Mobile Robot Localization Using Particle Filters (1)

- Each particle is a potential pose of the robot

- The set of weighted particles approximates the posterior
belief about the robot’'s pose (target distribution)
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Mobile Robot Localization Using Particle Filters (2)

- Particles are drawn from the motion model (proposal
distribution)

- Particles are weighted according to the observation model
(sensor model)

- Particles are resampled according to the particle weights
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Mobile Robot Localization Using Particle Filters (3)

-Why is resampling needed?
- We only have a finite number of particles

- Without resampling: The filter is likely to loose track of
the “good” hypotheses

- Resampling ensures that particles stay in the meaningful
area of the state space
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SLAM Using Particle Filters — Grid-based SLAM

- Can we solve the SLAM problem if no pre- defined
landmarks are available?

- Can we use the ideas of FastSLAM to build grid maps®?

- As with landmarks, the map depends on the poses of the
robot during data acquisition

- If the poses are known, grid-based mapping is easy
(“mapping with known poses”)
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Rao-Blackwellization

Poses Observations

\ Map Movements

| /

‘ p(x1;t;m|21;t; uO:t—l) — p(xl:t' |Zl:t1 uO:t—l) ) p(mlxl;t; Zl:t)

I

SLAM posterior

Robot path posterior

Mapping with known poses
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Rao-Blackwellization

‘ p(xl:bm Z1:t» uO:t—l) — p(xl:t! |Zl:t1 uO:t—l) ) p(mlxl:t) Zl:t)
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Mapping with Rao- Blackwellized Particle Filters

- Each particle represents a possible trajectory of the robot

- Each particle
- maintains its own map and
- updates it upon “mapping with known poses”

- Each particle survives with a probabillity proportional to the
likelihood of the observations relative to its own map
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Particle Filter Example

b a4 3 particles

map of particle 2 ¥y Al &
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Problem

- Each map is quite big in case of grid maps
- Each particle maintains its own map, therefore, one needs
to keep the number of particles small

- Solution:
Compute better proposal distributions!

-ldea:
Improve the pose estimate before applying the particle
filter



ShanghaiTech University - SIST - April 9, 2023

FastSLAM with Improved Odometry

- Scan-matching provides a locally consistent pose
correction

- Pre-correct short odometry sequences using scan-
matching and use them as input to FastSLAM

- Fewer particles are needed, since the error in the input is
smaller
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Raw Odometry

« Famous Intel Research
Lab dataset (Seattle)
by Dirk Hahnel

Courtesy of S. Thrun

http://robots.stanford.edu/videos.html
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http://robots.stanford.edu/videos.html

Robotics

Scan Matching:
compare to
sensor

data from
previous scan

Courtesy of S. Thrun
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FastSLAM:
Particle-Filter
SLAM

Courtesy of S. Thrun
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PLANNING
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General Control Scheme for Mobile Robot Systems

Position
Global Map

Environment Model Path
Local Map
Informatlon Path
Extraction Execution —
- V1s1on g
)
= g c
o, O .S
3] Raw data Actuator Commands =
S
5 8 .80
¥ ° 3
= Z

\\ /—

With material from Roland Siegwart and Davide Scaramuzza, ETH Zurich
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The Planning Problem

- The problem: find a path in the work space (physical space) from the initial
position to the goal position avoiding all collisions with the obstacles

- Assumption: there exists a good enough map of the enwronment for
navigation. '

~
e

M
»

A
~
I
i
-———————1"
Y

Coarse Grid Map
(for reference only)

e
AY
Tttt e W

Topologlcal Map
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The Planning Problem

- We can generally distinguish between
- (global) path planning and
- (local) obstacle avoidance.

- First step:
- Transformation of the map into a representation useful for planning
- This step is planner-dependent

- Second step:
- Plan a path on the transformed map

- Third step:
- Send motion commands to controller
- This step is planner-dependent (e.g. Model based feed forward, path following)
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Work Space (Map) - Configuration Space

- State or configuration q can be described with k values g,

00 .,

)/ 6

_ start l
}/ 5

Work Space

0

m

0\

w

N
=
T

Configuration Space:
the dimension of this

- What is the configuration space of a mobile robot? space is equal to ”(;? t?Zgrrffi’t"f Freedom (DoF)
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Configuration Space for a Mobile Robot

- Mobile robots operating on a flat ground (2D) have 3 DoF: (x, y, 0)

- Differential Drive: only two motors => only 2 degrees of freedom directly controlled (forward/ backward +
turn) => non-holonomic

- Simplification: assume robot is holonomic and it is a point => configuration space is reduced to 2D (x,y)
- => inflate obstacle by size of the robot radius to avoid crashes => obstacle growing

10 v 10 v
st > st
8 8
5
k)
3
4
A i A l L A 1 4 1
b ] - °2 a [ 3 F 4 - a (-]

X X
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Typical Configuration Space: Occupancy grid

- Fixed cell decomposition: occupancy grid example: STAR Center
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Path Planning: Overview of Algorithms

1. Optimal Control

- Solves truly optimal solution

- Becomes intractable for even moderately
complex as well as nonconvex problems

20

7

Source:
http://mitocw.udsm.ac.tz

2. Potential Field

- Imposes a mathematical function over the
state/configuration space

- Many physical metaphors exist

- Often employed due to its simplicity and
similarity to optimal control solutions

Py

'ﬂ‘lu}lvliuﬁ‘w

3. Graph Search

- |ldentify a set edges between nodes within the
free space

o]

\_

- Where to put the nodes?
\

\

\\
\
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Potential Field Path Planning Strategies
- Robot is treated as a point under the
influence of an artificial potential field.
f ‘ - Operates in the continuum
- Generated robot movement is similar to a
ball rolling down the hill
g.w A - Goal generates attractive force
- Obstacle are repulsive forces

}||

,,‘h"th ”'MM

RN M
it e
!\u;n}”ﬁl*.!w,\f
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Robot Path Planning and Obstacle
Avoildance using Harmonic Potential Fields
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Potential Field Path Planning: Potential Field
Generation

- Generation of potential field function U(q)

- attracting (goal) and repulsing (obstacle) fields
- summing up the fields
- functions must be differentiable

- Generate artificial force field F(q) oU

F(q)=-VU(9)=-VU,(9)-VU,,(9) = g(x]

R

- Set robot speed (v,, v,) proportional to the force F(q) generated by the field
- the force field drives the robot to the goal

- if robot is assumed to be a point mass
- Method produces both a plan and the corresponding control
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Potential Field Path Planning: Attractive Potential Field

- Parabolic function representing the Euclidean distance 2., =Hq—qg0a;
to the goal

1

Uatt (@) = E katt ' pgzoal (9)

1

- 5 att'(q_qgoaz)z

- Attracting force converges linearly towards 0 (goal)

Fatt (Q) — o V Uatt (Q)
= katt ) (q - qgoal)



Robotics ShanghaiTech University - SIST - April 9, 2023

Potential Field Path Planning: Repulsing Potential Field

- Should generate a barrier around all the obstacle
- strong if close to the obstacle
- not influence if far from the obstacle

P | | 1\ .
k., (-———) if p(q) <
U@) =1 277(3(g) py) PP

0 if p(q)2p,

. P(4) - minimum distance to the object

- Field is positive or zero and fends to infinity as q gets closer to the
object
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ROS Grld Map PaCkage http://wiki.ros.org/grid_map

S - ) 13112 3%

{_':) nteract T Move Camera | e

B Displays

v @ Clobal Options

Fixed Frame map
Background Color [ 48; 48; 48
Frame Rate 30

@ Fix No tf data. Actual erro...
» @ Grid ™

» P2 Map ~

» ¥ MarkerArray

» @ GridMap

» @ GridMap

» @ GridMap

3@@@0@4@@

w
=
[

[INFO] Getting Map from /map topic



https://www.youtube.com/redirect?redir_token=QUFFLUhqbEFTb1RVenFNNGZ2VjdmZ1JwU3AxZlp5U3Ftd3xBQ3Jtc0tuYmloaGtybmFmdGhDeV9Yc1FWUzRDU3M4VTktTUZhbC1hWlVjVllKZVRhdV9IMVgyUVVxS1VpZmlfMWUwYzJNWjBLTmZ6Y3lQbU91M2NhODdZNzdkN2FQbVlRRXN3SXE1NFJwOWxSYWRWWVVrSWFoQQ%3D%3D&v=BDzufMACM2M&q=http%3A%2F%2Fwiki.ros.org%2Fgrid_map&event=video_description
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Potential Field Path Planning:

- Notes:
- Local minima problem exists

- Problem is getting more complex if the robot is not considered as a point mass

- If objects are non-convex there exists situations where several minimal distances exist —
can result in oscillations
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Potential Field Path Planning: Extended Potential Field Method

- Additionally a rotation potential

field and a task potential field is
iIntroduced

- Rotation potential field

- force is also a function of robots orientation relative

a) Classical Potential

to the obstacles. This is done using a gain factor that

reduces the repulsive force when obstacles are
parallel to robot’s direction of travel

- Task potential field

- Filters out the obstacles that should not influence

the robots movements, i.e. only the obstacles in the
sector in front of the robot are considered

b) Rotation Potential
with parameter 3

Khatib and Chatila



