
CS283: Robotics Fall 2016: Software

Sören Schwertfeger / 师泽仁

ShanghaiTech University

Review
• Definition Robot: A machine capable of performing complex tasks in the

physical world, that is using sensors to perceive the environment and acts
tele-operated or autonomous.

• Usually Industrial Robots are stationary.
• Most other Robots move.

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 2

Most important capability
(for autonomous mobile robots)

How to get from A to B?
(safely and efficiently)

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 3

• Autonomous mobile robots
move around in the
environment. Therefore ALL of
them:
• They need to know where they

are.
• They need to know where their

goal is.
• They need to know how to get

there.

• Where am I?
• GPS, Guiding system
• Build a map: Mapping
• Find position in a map:

Localization
• Both: Simultaneous Localization

and Mapping (SLAM)
• Where is my goal?

• What is the goal: map or object
recognition

• Where is that goal?

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 4

• Autonomous mobile robots
move around in the
environment. Therefore ALL of
them:
• They need to know where they

are.
• They need to know where their

goal is.
• They need to know how to get

there.

• Different levels:
• Control:

• How much power to the motors to
move in that direction, reach desired
speed

• Navigation:
• Avoid obstacles
• Classify the terrain in front of you
• Predict the behavior (motion) of other

agents (humans, robots, animals,
machines)

• Planning:
• Long distance path planning
• What is the way, optimize for certain

parameters

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 5

How to get from A to B?

How to program an intelligent ROBOT
to go from A to B?

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 6

General Control Scheme for Mobile Robot Systems

Sensing Acting

Information
Extraction

Vision

Path
Execution

Cognition & AI
Path Planning

Real World
Environment

Localization
Map Building

M
ot

io
n

Co
nt

ro
l

N
av

ig
at

io
n

Pe
rc

ep
tio

n

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 7

With material from Roland Siegwart and Davide Scaramuzza, ETH Zurich

Raw data

Environment Model
Local Map

Position
Global Map

Actuator Commands

Path

How to get from A to B?

What are the components of a
ROBOT?

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 8

Overview Hardware

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 9

Speed sensor
Quadrature Encoding

Sensors:
IMU (Gyro,

Accelerometer),
Cameras, Laser
Range Finders
(LRF), GPS,
Microphone

Micro Controller

Battery,
Power

DC/ DC

Mechanics:
Structure, Housing,

Tracks, Flippers

Switches,
LEDs, Plugs

Storage
(Hard Disk) Networking

Battery
managementServos …

Micro Controller:
Real time,

PWM signals,
Analog In- and Output
Digital In- and Output

Motor Motor Driver/
Motor ControllerWheel

Motor Motor Driver/
Motor Controller

Wheel,
Track,
Joint,

Finger, …

Micro Controller

Other RobotsOperator Interface

Computer:
Sensing,

Computing,
Storage

Computer:

Control and Navigation
Planning

Perception
Vision

Artificial Intelligence

Outline
• Software

• Software Design
• Programming Review
• Robot Operating System (ROS)

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 10

Robot Software: Tasks/ Modules/ Programs (ROS: node)

Support

• Communication with Micro
controller

• Sensor drivers
• Networking

• With other PCs, other Robots, Operators
• Data storage

• Store all data for offline processing and
simulation and testing

• Monitoring/ Watchdog

Robotics

• Control
• Navigation
• Planning
• Sensor data processing

• e.g. Stereo processing, Image rectification
• Mapping
• Localization
• Object Recognition
• Mission Execution
• Task specific computing, e.g.:

• View planning, Victim search, Planning for
robot arm, …

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 11

Software Design
• Modularization:

• Keep different software components separated
• J Keep complexity low
• J Easily exchange a component (with a different, better algorithm)
• J Easily exchange multiple components with simulation
• J Easily exchange dada from components with replay from hard disk instead of live sensor

data
• J Multiple programming teams working on different components easier
• Need: Clean definition of interfaces or exchange messages!
• Allows: Multi-Process (vs. Single-Process, Multi-Thread) robot software system
• Allows: Distributing computation over multiple computers

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 12

Programming review
• Process vs. Thread
• C++ Object Orientation
• Constant Variables

• const-correctness
• C++ Templates
• Shared Pointer

• Objective:
• Prerequisites for understanding

ROS.
• Understand how we can efficiently

retrieve and transfer data in ROS.

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 13

Process
• Execution of one instance of a computer program
• Virtual memory:

• Contains only code and data from this program, the libraries
and the operating system

• Other processes (programs) can not access this memory
(shared memory access is possible but complicated)

• Operating system gives each process equal amount
of processing time (scheduling) – if the processes
need it
• Good support from the operating system to give certain

processes higher or lower priority
• Linux console program to see processes: top

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 14

(From Wikipedia)

Multi-Threading
• In one process, multiple threads =>

parallel execution
• J Code and Memory is shared =>

easy exchange of data, save mem.
• K Synchronization can be tricky

(mutex, dead lock, race condition)
• L If one thread crashes, the whole

process (all threads) die

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 15

(from http://www.tutorialspoint.com)

Processes and Threads in Robotics - Messages
• Both approaches have been implemented!
• Both are used and important!
• Robot Operating System (ROS): Multiple Processes:

• Each component runs in its own process: called node
• A node can have multiple threads => faster computation
• Nodes communicate using messages
• A node can send (publish) messages under different names called topic
• Nodes can listen to (subscribe) messages under different topics
• The messages are transferred over the network (TCP/IP) => multiple computers work

together transparently
• L Messages are serialized, copied and de-serialized even if both nodes on the same

computer => slow (compared to pointer passing)
• Optimization: Nodelet: run different nodes in the SAME process => pointer passing => fast

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 16

ROS nodes
• ROS core: keep track which nodes are running and their topics
• Show all nodes and topics in a graph: rosrun rqt_graph rqt_graph

• /rosout : special node for output on console (standard out)
• /turtlesim1/sim, /turtlesim2/sim : simulated robots (nodes) (multiple nodes

per simulated robot)
• /command_velocity : set the speed of a robot (topic)
• Node /turtlesim1/sim publishes on topic /turtlesim1/turtle_pose

• Node /mimic subscribes to topic /turtlesim1/turtle_pose

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 17

Object Oriented (OO) Programming
• C++ is OO … C is not
• Object: have data fields (variables) and associated procedures (methods)
• Instance of an object: created with keyword new
• Object: Abstract data type: has data and code

• encapsulation and information hiding: private variables not visible for outside code – interact
through the methods

• Methods can be private, too: can only be used by (methods of) the object itself
• Inheritance: code-reuse through re-use of variables and methods from base class. Child

class extends/ modifies functionality
• Polymorphism: Base class defines interface to some functionality (e.g. Method for getting a

camera image). A child implements the actual code for a specific use case (e.g. A certain
driver for a specific camera) – this is NOT how ROS works
• ROS uses messages as “interface”

• Objects have destructors for deletion/ cleanup

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 18

Object Orientation: Example

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 19

(From Wikipedia)

Constant Variables
• Declare variables that do not change

(anymore) in the code: const
• Works for variables and objects
• Const Objects:

• Only methods that do not change any
variable of the object may be called =>

• Those methods have to be declared const
• Used for program-correctness
• Especially for multi-threading:

• Share the data (e.g. image)
• Make it read only via const
• => no side-effects between different

threads

1. const int x = 5; // x may not be changed
2. int * someValue = &x; // pointer –

compilation error!!
3. const int * pointy = &x; // good
4. *pointy = 8; // error – pointing to const!
5. int y = 4;
6. pointy = &y; // from non const to const is

always possible!
7. const int * p2 const = &y; // pointing to

const variable and p2 is also const
8. p2 =&x; // error – p2 is const

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 20

QUESTIONS REGARDING HW1?

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 21

Admin
• Did you read your Literature?

• Will be provided at least one week ahead from now on.

• Please join piazza
• Please use your ping yin name

• HW 1:
• Don’t forget to send me your public ssh key on Thursday already!
• Backup both private and public ssh keys!

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 22

C++ Templates
• Functions and classes that operate with generic types
• Function or class works on many different data types without rewrite

• template <typename T> int compare(T v1, T v2);

• Type of T is determined during compile time => errors during compilation (and not run-time)
• Any type (type == class) that offers the needed methods & variables can be used
• Usage: compare<string>(string(“string number one”), “hello world”);

• Explicit declaration: typename T = string
• typename T can (most often) deducted by the compiler from the argument types

• Class template:
• template <typename T> class myStuff{

T v1, v2;
myStuff(T var1, T var2){ v1 = var2; v2 = var2; }

};

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 23

Template example

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 24

Shared Pointer
• C++ Standard Library (std): heavily templated part of C++ Standard (many

parts used to be in boost library)
• Pointer: address of some data in the heap – in the virtual address space
• Space for data has to be allocated (reserved) with: new
• After usage of data it has to be destroyed to free the memory: delete
• Problem: Data (e.g.) image is shared among different modules/ components/

threads. Who is the last user – who has to delete the data?
• Shared pointer: counts the number of users (smart pointers); upon destruction of last user

(smart pointer) the object gets destroyed : called “Reference counting”
• Problem: Shared pointer needs to know the destructor method for the pointer =>
• Shared pointer is a templated class: Template argument: class type of the object pointed to
• Shared pointer can also point to const object!

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 25

Shared pointer example

• Earlier, shared_ptr used to be in boost
• Excerpt from ROS message of type “String” :

• typedef: create another (shorter) name for a certain type
• Our type: a shared pointer that points to a (complicated) String object

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 26

Review for ROS
• Different components, modules, algorithms run in different processes: nodes
• Nodes communicate using messages (and services …)
• Nodes publish and subscribe to messages by using names (topics)
• Messages are often passed around as shared pointers which are

• “write protected” using the const keyword
• The shared pointers take the message type as template argument
• Shared pointers can be accessed like normal pointers

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 27

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 28

ROS Tutorial: Listener

Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 29

