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Project Meeting

- This week!

- Make an appointment — making appointments (and coming to them) is 10% of
your course grade!
- Go to piazza and propose a time!
- Rover manipulation: check piazza again!

- HW 1 and Quiz 1 are graded and published on gradescope.

- HW 2 is due Sep 30, 22:00
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General Control Scheme for Mobile Robot Systems
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Representation of the Environment

- Environment Representation
- Continuous Metric — x,vy, 0
- Discrete Metric — metric grid
- Discrete Topological — topological grid

- Environment Modeling

- Raw sensor data, e.g. laser range data, grayscale images
- large volume of data, low distinctiveness on the level of individual values
- makes use of all acquired information
- Low level features, e.g. line other geometric features
- medium volume of data, average distinctiveness
- filters out the useful information, still ambiguities
- High level features, e.g. doors, a car, the Eiffel tower
- low volume of data, high distinctiveness
- filters out the useful information, few/ no ambiguities
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Map Representation: Approximate cell decomposition

- Fixed cell decomposition => 2D grid map
- Cells: probability of being occupied =>
- 0 free; 0.5 (or 128) unknown; 1 or (255) occupied
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Map Representation: Occupancy grid

- Fixed cell decomposition: occupancy grid example: STAR Center
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General Control Scheme for Mobile Robot Systems
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The Planning Problem

- The problem: find a path in the work space (physical space) from the initial
position to the goal position avoiding all collisions with the obstacles

- Assumption: there exists a good enough map of the enwronment for
navigation. '
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The Planning Problem

- We can generally distinguish between
- (global) path planning and
- (local) obstacle avoidance.

- First step:
- Transformation of the map into a representation useful for planning
- This step is planner-dependent

- Second step:
- Plan a path on the transformed map

- Third step:
- Send motion commands to controller
- This step is planner-dependent (e.g. Model based feed forward, path following)
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Work Space (Map) - Configuration Space

- State or configuration q can be described with k values g,
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Configuration Space:
the dimension of this

- What is the configuration space of a mobile robot?  spaceis equal to tg‘: t[r’]zg:jsgt"f Freedom (DoF)
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Configuration Space for a Mobile Robot

- Mobile robots operating on a flat ground (2D) have 3 DoF: (x, y, 0)

- Differential Drive: only two motors => only 2 degrees of freedom directly controlled (forward/ backward +
turn) => non-holonomic

- Simplification: assume robot is holonomic and it is a point => configuration space is reduced to 2D (x,y)
- => inflate obstacle by size of the robot radius to avoid crashes => obstacle growing
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Path Planning: Overview of Algorithms

1. Optimal Control

- Solves truly optimal solution

- Becomes intractable for even moderately
complex as well as nonconvex problems
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Source:
http://mitocw.udsm.ac.tz

2. Potential Field

- Imposes a mathematical function over the
state/configuration space

- Many physical metaphors exist

- Often employed due to its simplicity and
similarity to optimal control solutions
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3. Graph Search

- |ldentify a set edges between nodes within the
free space
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- Where to put the nodes?
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Potential Field Path Planning Strategies
- Robot is treated as a point under the
influence of an artificial potential field.
f ‘ - Operates in the continuum
- Generated robot movement is similar to a
ball rolling down the hill
g.w A - Goal generates attractive force
- Obstacle are repulsive forces
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Potential Field Path Planning: Potential Field
Generation

- Generation of potential field function U(q)

- attracting (goal) and repulsing (obstacle) fields
- summing up the fields
- functions must be differentiable

- Generate artificial force field F(q) oU

F(q)=-VU(9)=-VU,(9)-VU,,(9) = g(x]

R

- Set robot speed (v,, v,) proportional to the force F(q) generated by the field
- the force field drives the robot to the goal

- if robot is assumed to be a point mass
- Method produces both a plan and the corresponding control
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Potential Field Path Planning: Attractive Potential Field

- Parabolic function representing the Euclidean distance 2., =Hq—qg0a;
to the goal

1

Uatt (@) = E katt ' pgzoal (9)

1

- 5 att'(q_qgoaz)z

- Attracting force converges linearly towards 0 (goal)

Fatt (Q) — o V Uatt (Q)
= katt ) (q - qgoal)



Potential Field Path Planning: Repulsing Potential Field

- Should generate a barrier around all the obstacle
- strong if close to the obstacle
- not influence if far from the obstacle

P | | 1\ .
k., (-———) if p(q) <
U@) =1 277(3(g) py) PP

0 if p(q)2p,

- p(g) : minimum distance to the object

- Field is positive or zero and fends to infinity as q gets closer to the
object
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Potential Field Path Planning:

- Notes:
- Local minima problem exists
- problem is getting more complex if the robot is not considered as a point mass

- If objects are non-convex there exists situations where several minimal distances exist —
can result in oscillations
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Potential Field Path Planning: Extended Potential Field Method

- Additionally a rotation potential

field and a task potential field is
iIntroduced

- Rotation potential field

- force is also a function of robots orientation relative

a) Classical Potential

to the obstacles. This is done using a gain factor that

reduces the repulsive force when obstacles are
parallel to robot’s direction of travel

- Task potential field

- Filters out the obstacles that should not influence

the robots movements, i.e. only the obstacles in the
sector in front of the robot are considered

b) Rotation Potential
with parameter 3

Khatib and Chatila
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Graph Search

- Overview

- Solves a least cost problem between two states on a (directed) graph
- Graph structure is a discrete representation

- Limitations
- State space is discretized - completeness is at stake
- Feasibility of paths is often not inherently encoded

- Algorithms
- (Preprocessing steps)
- Breath first
- Depth first
- Dijkstra
- A* and variants
- D* and variants
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Graph Construction: Visibility Graph

- Particularly suitable for polygon-like obstacles
- Shortest path length
- Grow obstacles to avoid collisions
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Graph Construction: Visibility Graph

- Pros
- The found path is optimal because it is the shortest length path
- Implementation simple when obstacles are polygons

- Cons

- The solution path found by the visibility graph tend to take the robot as close as possible to
the obstacles: the common solution is to grow obstacles by more than robot’s radius

- Number of edges and nodes increases with the number of polygons
- Thus it can be inefficient in densely populated environments
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Graph Construction: Voronoi Diagram

- Tends to maximize the distance between robot and obstacles



Topology Graph
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Graph Construction: Voronoi Diagram

- Pros

- Using range sensors like laser or sonar, a robot can navigate along the Voronoi diagram
using simple control rules

- Cons

- Because the Voronoi diagram tends to keep the robot as far as possible from obstacles, any
short range sensor will be in danger of failing

- Voronoi diagram can change drastically in open areas
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Graph Construction: Exact Cell Decomposition (2/4)
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Graph Construction: Approximate Cell Decomposition (3/4)
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Graph Construction: Adaptive Cell Decomposition (4/4)

start
»

e goal

- Close relationship with map representation (Quadtree)!



Graph Construction: State Lattice Design (1/2)

= Enforces edge feasibility

Offline:
Motion Model
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Graph Construction: State Lattice Design (2/2)

Martin Rufli
- State lattice encodes only kinematically feasible edges

velocity [m/s]
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Deterministic Graph Search

- Methods
- Breath First
- Depth First
- Dijkstra
- A* and variants
- D* and variants

. obstacle cell

12 cell with
distance value




DIJKSTRA'S ALGORITHM
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EDSGER WYBE LC

"Computer Science is no more about computers than
astronomy is about telescopes."

http://www.cs.utexas.edu/~EWD/
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SINGLE-SOURCE SHORTEST PATH PROBLEM

- Single-Source Shortest Path Problem - The problem of finding shortest
paths from a source vertex v to all other vertices in the graph.

- Graph
- Set of vertices and edges
- Vertex:
- Place in the graph; connected by:

- Edge: connecting two vertices
- Directed or undirected (undirected in Dijkstra’s Algorithm)
- Edges can have weight/ distance assigned

Dijkstra material from http://www.cs.utexas.edu/~tandy/barrera.ppt
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Diklstra’s Algorithm

- Assign all vertices infinite distance to goal
- Assign 0 to distance from start
- Add all vertices to the queue

- While the queue is not empty:
- Select vertex with smallest distance and remove it from the queue
- Visit all neighbor vertices of that vertex,
- calculate their distance and
- update their (the neighbors) distance if the new distance is smaller
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Diklstra’s Algorithm - Pseudocode

dist[s] < o (distance to source vertex is zero)
for all v e V-{s}
do dist[v] < o (set all other distances to infinity)
S—¢@ (S, the set of visited vertices is initially empty)
Q—V (Q, the queue initially contains all vertices)
while Q =0 (while the queue is not empty)
do u < mindistance(Q, dist) (select the element of Q with the min. distance)
S«—Su{u} (add u to list of visited vertices)
for all v € neighbors|u]
do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
then d[v] «d[u] + w(u, v) (set new value of shortest path)

(if desired, add traceback code)
return dist
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Dijkstra Example

Initialize: =
A

0-4 B CDE =~ YC]
Q0

0 o o oo o
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example

b
0 1 4 79
0
3

S {A C)
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example

7
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Dijkstra Example

7 11
O
0 1 4 7 9

0 1 D CfF—=F

0 ® 0 0 o 3 5
10 3 o
7 11 5

7 11 S: {A, C, E, B}
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Dijkstra Example

9 S {4 CE B
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Dijkstra Example

9 S {4 CEBD}
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APPLICATIONS OF DIJKSTRA'S ALGORITHM

- Navigation Systems
- Internet Routing
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Router A
Routing Table

Togoto Routewvia

network: port #:
10.0.0.0 1
20.0.00 2
30.0.00 3
40.0.0.0 1

Port 1

=

_ Router A

Port 2

g =

20.0.0.0

Port 3

From Computer Desktop Encyclopedia
© 1998 The Computer Language Co. Inc.
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30.0.0.0 40.0.0.0
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Dijkstra’s Algorithm for Path Planning: Topological Maps

- Topological Map:
- Places (vertices) in the environment
(red dots)

- Paths (edges) between them
(blue lines)

- Length of path = weight of edge

- => Apply Dijkstra’s Algorithm to
find path from start vertex to goal
vertex




Dijkstra’s Algorithm for Path Planning: Grid Maps

- Graph:

- Neighboring free cells are connected: .
- 4-neighborhood: up/ down/ left right
- 8-neighborhood: also diagonals

- All edges have weight 1

- Stop once goal vertex is reached

- Per vertex: save edge over which
the shortest distance from start was : =
reached => Path ::
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Graph Search Strategies: Breath-First Search

- Corresponds to a wavefront expansion on a 2D grid
- Breath-First: Dijkstra‘’s search where all edges have weight 1

6
. obstacle cell

12 cell with
4 distance value




SIST - 24 Sep 2019

1
>
=
o
—_
()
=
c
]
e
3
=
@©
<
(o)
c
®
<
w

egies: Depth-First Search

{

Graph Search Stra




Graph Search Strategies: A* Search
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- Similar to Dijkstra's algorithm, except that it uses a heuristic function h(n)
- f(n) = g(n) + € h(n)

goal

goal

g=38

'h=1.0
g=3.4

h=2.0

g=3.8

h=3.0

g=1.0

h=3.8
g=2.8 @g=24 g=28

h=34 h=3.8 h=42

goal

g=3.8 ¢g=28

h=3.0 h=34

g=14

h=2.8

g=2.4

h=3.8

g=1.0

h=3.8

g=2.8

h=4.2

goal

g=3.8 @g=2.8

h=3.0 h=3.4

g=14

h=2.8

g=2.4

h=3.8

g=1.0

h=3.8

g=2.8

h=4.2

g=2.8
h=3.4

g=2.4

h=3.8

g=2.8
h=4.2
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Graph Search Strategies: D* Search

- Similar to A* search, except that the search starts from the goal outward
- f(n) = g(n) + € h(n)

- First pass is identical to A*

- Subsequent passes reuse information from previous searches

e = 1.0 e = 1.0 e = 1.0
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TN
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Graph Search Strategies: Randomized Search

- Most popular version is the rapidly exploring random tree (RRT)
- Well suited for high-dimensional search spaces
- Often produces highly suboptimal solutions
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Why are RRT's rapidly exploring?

The probability of a
node to be selected
for expansion is b
proportional to the
area of its Voronoi
region
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R.0.B-0.T. Comics

ROS Navigation

- http://wiki.ros.org/navigation

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."



http://wiki.ros.org/navigation
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Path Planning in ROS: move base

“move_base_simple/goal”® . .
geometry_msgs/PoseStamped Navigation Stack Setup
|
move_base l "Imap"
Y nav_msgs/GetMap map_server
amcl — global_planner -=—— global_costmap
/ A
enso Wit ; sensor topics
sensor transforms = intemal t Sensor sources
ll ! tf/tfMessage nav_msgs/Path recovery_behaviors gggzgg_m:g:'{lﬁgfniggﬂg
Y \ Y
odometry source [ ocom_ =  local_planner < |ocal_costmap

nav_msgs/Odometry

“emd_vel"|geometry msgs/Twist

Y provided node
optional provided node
platform specific node

base controller



