

CS283: Robotics Fall 2019: Vision

Sören Schwertfeger / 师泽仁

ShanghaiTech University

VISION

Introduction to Autonomous Mobile Robots pages 142ff

Computer Vision

Origins of Computer Vision

(a) Original picture.

(b) Differentiated picture.

L. G. Roberts, *Machine Perception of Three Dimensional Solids,* Ph.D.

thesis, MIT Department of
Electrical Engineering, 1963.

Connection to other disciplines

Image

- Image: a two-dimensional array of pixels
- The indices [i, j] of pixels: integer values that specify the rows and columns in pixel values

Digital Color Camera

- Bayer Pattern:
 - 50% green, 25% red and 25% blue =>
 - RGBG or GRGB or RGGB.
 - 1 Byte per square
 - 4 squared per 1 pixel
 - More green: eyes are more sensitive to green (nature!)

A micrograph of the corner of the photosensor array of a 'webcam' digital camera. (Wikimedia)

How do we see the world?

- Let's design a camera
 - Idea 1: put a piece of film in front of an object
 - Do we get a reasonable image?

Pinhole camera

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the aperture

Camera obscura

Gemma Frisius, 1558

- Basic principle known to Mozi (470-390 BC), Aristotle (384-322 BC)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)
- Depth of the room (box) is the effective focal length

Pinhole camera model

- Pinhole model:
 - Captures pencil of rays all rays through a single point
 - The point is called Center of Projection
 - The image is formed on the Image Plane

Home-made pinhole camera

Why so blurry?

http://www.debevec.org/Pinhole/

Shrinking the aperture

- Why not make the aperture as small as possible?
 - Less light gets through (must increase the exposure)
 - Diffraction effects...

Shrinking the aperture

Solution: adding a lens

- A lens focuses light onto the film
 - Rays passing through the center are not deviated

Solution: adding a lens

- A lens focuses light onto the film
 - Rays passing through the center are not deviated
 - All parallel rays converge to one point on a plane located at the focal length f

Solution: adding a lens

- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"
 - other points project to a "circle of confusion" in the image

Thin lenses

- Thin lens equation: $\frac{1}{d_0} + \frac{1}{d_i} = \frac{1}{f}$
 - Any object point satisfying this equation is in focus
 - This formula can also be used to estimate roughly the distance to the object ("Depth from Focus")

Pin-hole approximation

$$\frac{1}{d_0} + \frac{1}{d_i} = \frac{1}{f}$$

$$d_0 >> d_i \Rightarrow \frac{1}{d_i} \approx \frac{1}{f} \Rightarrow d_i \approx f$$

C = "optical center"

Pin-hole Model

Perspective camera

C = optical center = center of the lens

- For convenience, the image plane is usually represented in front so that the image preserves the same orientation (i.e. not flipped)
- Notice: a camera does not measure distances but angles! Therefore it is a "bearing sensor"

Perspective Projection onto the image plane

- To project a 3D scene point P = (x,y,z) [meters] onto the camera image plane p=(u,v) [pixels] we need to consider:
 - Pixelization: size of the pixel and position of the CCD with respect to the optical center
 - Rigid body transformation between camera and scene
- u = v = 0: where z-Axis passes trhough center of lens z-Azis prependicular to lens (coincident with optical axis)

$$u = \frac{f}{z} \cdot x$$

Simple case (without pixelization)

$$u = k_{u_{\overline{z}}} \cdot x + u_0$$

$$v = k_{v_{\overline{z}}} \cdot y + v_0$$

With pixelization u_0 , v_0 are the coordinates of the optical center Ku and Kv are in [pxl/m]

Projection onto the image plane

Observe that we can also rewrite this

$$u = k_{u_z}^{f} \cdot x + u_0$$

$$v = k_{v_{\overline{z}}} \cdot y + v_0$$

in matrix form (λ - homogeneous coordinates)

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} k_u f & 0 & u_0 \\ 0 & k_v f & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Or alternatively

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_u & 0 & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Projection onto the image plane

 Rigid body transformation from the World to the Camera reference frame

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_u & 0 & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = A \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = R \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} + T$$

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = A \cdot R \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} + T$$

Radial distortion

$$\begin{bmatrix} u_d \\ v_d \end{bmatrix} = (1 + k_1 r^2) \begin{bmatrix} u - u_0 \\ v - v_0 \end{bmatrix} + \begin{bmatrix} u_0 \\ v_0 \end{bmatrix}$$

where

$$r^2 = (u - u_0)^2 + (v - v_0)^2$$
.

Barrel distortion Pincus

Pincushion distortion

Camera Calibration

How many parameters do we need to model a camera?

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_u & 0 & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot R \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} + T \qquad \begin{bmatrix} u_d \\ v_d \end{bmatrix} = (1 + k_1 \rho^2) \cdot \begin{bmatrix} u \\ v \end{bmatrix}$$

- 5 "intrinsic" parameters: α_u, α_v, u₀, v₀, k₁
- Camera pose?
- 6 "extrinsic" parameters (or 0 if the world and the camera frames coincide)

Camera Calibration: how does it work?

- Calibration: measuring accurately **intrinsic** + **extrinsic** parameters of the camera model.
- Parameters: govern mapping from scene points to image points
- Idea: known:
 - pixel coordinates of image points p
 - 3D coordinates of the corresponding scene points P
 - => compute the unknown parameters A, R, T by solving the perspective projection equation

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_u & 0 & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot R \begin{bmatrix} x_w \\ y_w \\ z \end{bmatrix} + T$$
Extrinsic parameters

Admin

- HW 2 will be graded this week...
- HW 3 is published
 - Two weeks
 - Practical robotics knowledge: robot simulator gazebo and ROS navigation
 - Start early!
- Project:
 - Schedule a meeting with your TA advisor for this week! We will write down when you meet and who is absent. Part of your project score meeting every week!
- Paper presentation selection thread is open first come first serve

STEREO VISION

How do we measure distances with cameras?

- Structure from stereo (Stereo-vision):
 - > use two cameras with known relative position and orientation

- Structure from motion:
 - >use a single moving camera: both 3D structure and camera motion can be estimated up to a scale

Stereo Vision

Allows to reconstruct a 3D object from two images taken at different locations

Disparity in the human retina

Stereo Vision - The simplified case

 The simplified case is an ideal case. It assumes that both cameras are identical and are aligned on a horizontal axis

- **b** = baseline, distance between the optical centers of the two cameras
- f = focal length
- u_l - u_r = disparity

Stereo Vision: how to improve accuracy?

$$z = b \frac{f}{u_l - u_r}$$

- 1. Distance is inversely proportional to disparity (u₁-u_r)
 - closer objects can be measured more accurately
- 2. Disparity is proportional to **b**
 - For a given disparity error, the accuracy of the depth estimate increases with increasing baseline b.
 - However, as b is increased, some objects may appear in one camera, but not in the other.
- 3. Increasing image resolution improves accuracy

Stereo Vision – the general case

Two identical cameras do not exist in nature!

Aligning both cameras on a horizontal axis is very hard, also with the most expensive stereo

cameras!

- In order to be able to use a stereo camera, we need first to estimate the relative pose between the cameras, that is, Rotation and Translation
- However, as the two cameras are not identical, we need to estimate:
 focal length, image center, radial distortion

Stereo Vision – the general case

To estimate the 3D position we just construct the system of equations of the left and right camera

$$\lambda_l \begin{bmatrix} u_l \\ v_l \\ 1 \end{bmatrix} = A_l \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix}$$
 Left camera; world frame coincides with the left camera frame

$$\lambda_r \begin{bmatrix} u_r \\ v_r \\ 1 \end{bmatrix} = A_r \cdot R \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} + T \text{ Right camera}$$

Stereo Vision: Correspondence Problem

- Matching between points in the two images which are projection of the same 3D real point
- Correspondence search could be done by comparing the observed points with all other points in the other image. Typical similarity measures are the Correlation and image Difference.
- This image search can be computationally very expensive! Is there a way to make the correspondence search 1 dimensional?

Correspondence Problem: Epipolar Constraint

• The correspondent of a point in an image must lie on a line in the other image,

Correspondence Problem: Epipolar Constraint

Thanks to the epipolar constraint, conjugate points can be searched along epipolar lines: this reduces the computational cost to 1 dimension!

Epipolar Rectification

 Determines a transformation of each image plane so that pairs of conjugate epipolar lines become collinear and parallel to one of the image axes (usually the horizontal one)

Stereo Vision Output 1 – Disparity map

- Find the correspondent points of all image pixels of the original images
- For each pair of conjugate points compute the disparity d = v-v'
- d(x,y) is called Disparity map.

 Disparity maps are usually visualized as grey-scale images. Objects that are closer to the camera appear lighter, those who are further appear darker.

Left image

Right image

Disparity map

Stereo Vision Output 2 - 3D Reconstruction via triangulation

Tetally:

Estimpates nthetera farmetexts chart ena ina gedtenet 3 Don 2 De hisart efformation 10 paratiset tension (readich & amegentiet ditatore ensitimated

Estimates the parameters that manage the 3D – 2D transformation

$$\begin{bmatrix} u_L \\ v_L \end{bmatrix} = \int \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

$$\begin{bmatrix} u_R \\ v_R \end{bmatrix} = \int \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

Totally:

Estimates the parameters that manage the 3D – 2D transformation 10 parameters for each camera need to be estimated

$$\begin{bmatrix}
u_{L} \\
v_{L} \\
1
\end{bmatrix} = \begin{bmatrix}
f_{u,L} & 0 & u_{0,L} \\
0 & f_{v,L} & v_{0,L} \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
r_{11} & r_{12} & r_{13} & t_{x} \\
r_{21} & r_{22} & r_{23} & t_{y} \\
r_{31} & r_{32} & r_{33} & t_{z}
\end{bmatrix} \cdot \begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}$$

$$\begin{bmatrix}
u_{R} \\
v_{R} \\
1
\end{bmatrix} = \begin{bmatrix}
f_{u,R} & 0 & u_{0,R} \\
0 & f_{v,R} & v_{0,R} \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
r_{11} & r_{12} & r_{13} & t_{x} \\
r_{21} & r_{22} & r_{23} & t_{y} \\
r_{31} & r_{32} & r_{33} & t_{z}
\end{bmatrix} \cdot \begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}$$

PLUS

5 parameters for each camera in order to compensate for lens distortion (radial & tangential distortion)

$$\begin{bmatrix} u_{d,L} \\ v_{d,L} \end{bmatrix} = (1 + kc_{1,L}\rho^2 + kc_{2,L}\rho^4 + kc_{5,L}\rho^6) \cdot \begin{bmatrix} u \\ v \end{bmatrix} + \begin{bmatrix} 2kc_{3,L} \cdot u \cdot v + kc_{4,L}(\rho^2 + 2u^2) \\ kc_{3,L}(\rho^2 + 2v^2) + 2kc_{4,L} \cdot u \cdot v \end{bmatrix} \\
\begin{bmatrix} u_{d,R} \\ v_{d,R} \end{bmatrix} = (1 + kc_{1,R}\rho^2 + kc_{2,R}\rho^4 + kc_{5,R}\rho^6) \cdot \begin{bmatrix} u \\ v \end{bmatrix} + \begin{bmatrix} 2kc_{3,R} \cdot u \cdot v + kc_{4,R}(\rho^2 + 2u^2) \\ kc_{3,R}(\rho^2 + 2v^2) + 2kc_{4,R} \cdot u \cdot v \end{bmatrix}$$

Stereo Vision - summary

- 1. Stereo camera calibration -> compute camera relative pose
- Epipolar rectification -> align images
- 3. Search correspondences
- 4. Output: compute stereo triangulation or disparity map
- 5. Consider baseline and image resolution to compute accuracy!

Device example:

- 640x480 stereo infrared cameras
- 1920x1080 HD RGB camera
- Infrared Laser Projector
- Up to 60Hz

1 CAPTURE Project invisible light pattern on low texture surfaces like plain walls

Each camera sees a slightly different viewpoint

² SEARCH

Closer objects shift more than further away

ASIC computes depth by calculating shift of every pixel on the image between the left and right images

Structure from motion

- Given image point correspondences, $x_i \leftrightarrow x_i'$, determine R and T
- Rotate and translate camera until stars of rays intersect
- At least 5 point correspondences are needed

Multiple-view structure from motion

Multiple-view structure from motion

 Results of Structure from motion from 2 million user images from flickr.com -2,106 images selected, 819,242 points

Optical Flow

 It computes the motion vectors of all pixels in the image (or a subset of them to be faster)

Applications include collision avoidance

Color Tracking

Motion estimation of ball and robot for soccer playing using color tracking

Color segmentation with fixed thesholds

- Simple: constant thresholding:
 - selection only iff RGB values (r,g,b) simultaneously in R, G, and B ranges:
 - six thresholds [Rmin,Rmax], [Gmin,Gmax], [Bmin,Bmax]:

$$R_{min} < r < R_{max}$$
 and $G_{min} < g < G_{max}$ and $B_{min} < b < B_{max}$

- Alternative: YUV color space
 - RGB values encode intensity of each color
 - YUV:
 - U and V together color (or chrominance)
 - Y brightness (or luminosity)
 - bounding box in YUV space => greater stability wrt. changes in illumination