
CS283: Robotics Fall 2016: Planning

Sören Schwertfeger / 师泽仁

ShanghaiTech University

REVIEW

ShanghaiTech University - SIST - 23.05.2016 2

Algorithm 1: Split-and-Merge (Iterative-End-Point-Fit)

Robotics ShanghaiTech University - SIST - 19.10.2016 3

Algorithm 2: Line-Regression
• Uses a “sliding window” of size Nf
• The points within each “sliding window” are fitted by a segment
• Then adjacent segments are merged if their line parameters are close

Nf = 3

Robotics ShanghaiTech University - SIST - 19.10.2016 4

Algorithm 3: RANSAC

Robotics ShanghaiTech University - SIST - 19.10.2016 5

Algorithm 3: RANSAC
• Select sample of 2
points at random

Robotics ShanghaiTech University - SIST - 19.10.2016 6

Algorithm 3: RANSAC
• Select sample of 2
points at random

• Calculate model
parameters that fit
the data in the
sample

Robotics ShanghaiTech University - SIST - 19.10.2016 7

RANSAC
• Select sample of 2
points at random

• Calculate model
parameters that fit the
data in the sample

• Calculate error
function for each
data point

Robotics ShanghaiTech University - SIST - 19.10.2016 8

Algorithm 3: RANSAC
• Select sample of 2
points at random

• Calculate model
parameters that fit the
data in the sample

• Calculate error
function for each data
point

• Select data that
support current
hypothesis

Robotics ShanghaiTech University - SIST - 19.10.2016 9

Algorithm 3: RANSAC
• Select sample of 2
points at random

• Calculate model
parameters that fit the
data in the sample

• Calculate error
function for each data
point

• Select data that
support current
hypothesis

• Repeat sampling

Robotics ShanghaiTech University - SIST - 19.10.2016 10

Algorithm 3: RANSAC
• Select sample of 2
points at random

• Calculate model
parameters that fit the
data in the sample

• Calculate error
function for each data
point

• Select data that
support current
hypothesis

• Repeat sampling

Robotics ShanghaiTech University - SIST - 19.10.2016 11

Algorithm 3: RANSAC ALL-INLIER SAMPLE

Robotics ShanghaiTech University - SIST - 19.10.2016 12

Algorithm 4: Hough-Transform
• Hough Transform uses a voting scheme

Robotics ShanghaiTech University - SIST - 19.10.2016 13

Algorithm 4: Hough-Transform

Robotics ShanghaiTech University - SIST - 19.10.2016 14

• Autonomous mobile robots
move around in the
environment. Therefore ALL of
them:
• They need to know where they

are.
• They need to know where their

goal is.
• They need to know how to get

there.

• Different levels:
• Control:

• How much power to the motors to
move in that direction, reach desired
speed

• Navigation:
• Avoid obstacles
• Classify the terrain in front of you
• Follow a path

• Planning:
• Long distance path planning
• What is the way, optimize for certain

parameters

ShanghaiTech University - SIST - 23.05.2016 15

General Control Scheme for Mobile Robot Systems

Sensing Acting

Information
Extraction

Vision

Path
Execution

Cognition & AI
Path Planning

Real World
Environment

Localization
Map Building

M
ot

io
n

Co
nt

ro
l

N
av

ig
at

io
n

Pe
rc

ep
tio

n

ShanghaiTech University - SIST - 23.05.2016

With material from Roland Siegwart and Davide Scaramuzza, ETH Zurich

Raw data

Environment Model
Local Map

Position
Global Map

Actuator Commands

Path

16

MAPS

ShanghaiTech University - SIST - 23.05.2016 17

Representation of the Environment

• Environment Representation
• Continuous Metric ® x, y, q
• Discrete Metric ® metric grid
• Discrete Topological ® topological grid

• Environment Modeling
• Raw sensor data, e.g. laser range data, grayscale images

• large volume of data, low distinctiveness on the level of individual values
• makes use of all acquired information

• Low level features, e.g. line other geometric features
• medium volume of data, average distinctiveness
• filters out the useful information, still ambiguities

• High level features, e.g. doors, a car, the Eiffel tower
• low volume of data, high distinctiveness
• filters out the useful information, few/ no ambiguities

ShanghaiTech University - SIST - 23.05.2016 18

Map Representation: Approximate cell decomposition
• Fixed cell decomposition => 2D grid map

• Cells: probability of being occupied =>
• 0 free; 0.5 (or 128) unknown; 1 or (255) occupied

ShanghaiTech University - SIST - 23.05.2016 19

Map Representation: Occupancy grid
• Fixed cell decomposition: occupancy grid example

Courtesy of S. Thrun

ShanghaiTech University - SIST - 23.05.2016EE 100 20

PLANNING

ShanghaiTech University - SIST - 23.05.2016 21

General Control Scheme for Mobile Robot Systems

Sensing Acting

Information
Extraction

Vision

Path
Execution

Cognition & AI
Path Planning

Real World
Environment

Localization
Map Building

M
ot

io
n

Co
nt

ro
l

N
av

ig
at

io
n

Pe
rc

ep
tio

n

ShanghaiTech University - SIST - 23.05.2016

With material from Roland Siegwart and Davide Scaramuzza, ETH Zurich

Raw data

Environment Model
Local Map

Position
Global Map

Actuator Commands

Path

22

The Planning Problem
• The problem: find a path in the work space (physical space) from the initial

position to the goal position avoiding all collisions with the obstacles

• Assumption: there exists a good enough map of the environment for
navigation.

Coffee room

Corridor

Bill’
s offic

e

Topological Map

Coarse Grid Map
(for reference only)

Coffee room

Corridor

Bill’
s offic

e

Topological Map

Coarse Grid Map
(for reference only)

ShanghaiTech University - SIST - 23.05.2016 23

The Planning Problem
• We can generally distinguish between

• (global) path planning and
• (local) obstacle avoidance.

• First step:
• Transformation of the map into a representation useful for planning
• This step is planner-dependent

• Second step:
• Plan a path on the transformed map

• Third step:
• Send motion commands to controller
• This step is planner-dependent (e.g. Model based feed forward, path following)

ShanghaiTech University - SIST - 23.05.2016 24

Work Space (Map) à Configuration Space

ShanghaiTech University - SIST - 23.05.2016

• State or configuration q can be described with k values qi

• What is the configuration space of a mobile robot?
Work Space Configuration Space:

the dimension of this
space is equal to the Degrees of Freedom (DoF)

of the robot

25

• Mobile robots operating on a flat ground (2D) have 3 DoF: (x, y, θ)
• Differential Drive: only two motors => only 2 degrees of freedom directly controlled (forward/ backward +

turn) => non-holonomic
• Simplification: assume robot is holonomic and it is a point => configuration space is reduced to 2D (x,y)
• => inflate obstacle by size of the robot radius to avoid crashes => obstacle growing

Configuration Space for a Mobile Robot

ShanghaiTech University - SIST - 23.05.2016 26

Path Planning: Overview of Algorithms
3. Graph Search

• Identify a set edges between nodes within the
free space

• Where to put the nodes?

1. Optimal Control
• Solves truly optimal solution
• Becomes intractable for even moderately

complex as well as nonconvex problems

2. Potential Field
• Imposes a mathematical function over the

state/configuration space
• Many physical metaphors exist
• Often employed due to its simplicity and

similarity to optimal control solutions

Source:
http://mitocw.udsm.ac.tz

ShanghaiTech University - SIST - 23.05.2016 27

Potential Field Path Planning Strategies
• Robot is treated as a point under the

influence of an artificial potential field.
• Operates in the continuum

• Generated robot movement is similar to a
ball rolling down the hill

• Goal generates attractive force
• Obstacle are repulsive forces

ShanghaiTech University - SIST - 23.05.2016 28

Potential Field Path Planning: Potential Field
Generation
• Generation of potential field function U(q)

• attracting (goal) and repulsing (obstacle) fields
• summing up the fields
• functions must be differentiable

• Generate artificial force field F(q)

• Set robot speed (vx, vy) proportional to the force F(q) generated by the field
• the force field drives the robot to the goal
• if robot is assumed to be a point mass
• Method produces both a plan and the corresponding control

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

¶
¶
¶
¶

=Ñ--Ñ=-Ñ=

y
U
x
U

qUqUqUqF repatt)()()()(

Mobile Robotics ShanghaiTech University - SIST - 12.01.2016 29

Potential Field Path Planning: Attractive Potential Field
• Parabolic function representing the Euclidean distance

to the goal

• Attracting force converges linearly towards 0 (goal)

goalgoal qq-=r

)(
)()(

goalatt

attatt

qqk
qUqF

-×=
Ñ-=

2

2

)(
2
1

)(
2
1)(

goalatt

goalattatt

qqk

qkqU

-×=

×= r

Mobile Robotics ShanghaiTech University - SIST - 12.01.2016 30

Potential Field Path Planning: Repulsing Potential Field

• Should generate a barrier around all the obstacle
• strong if close to the obstacle
• not influence if far from the obstacle

• : minimum distance to the object
• Field is positive or zero and tends to infinity as q gets closer to the

object

Mobile Robotics ShanghaiTech University - SIST - 12.01.2016 31

Potential Field Path Planning:
• Notes:

• Local minima problem exists
• problem is getting more complex if the robot is not considered as a point mass
• If objects are non-convex there exists situations where several minimal distances exist ®

can result in oscillations

Mobile Robotics ShanghaiTech University - SIST - 12.01.2016 32

Potential Field Path Planning: Extended Potential Field Method
• Additionally a rotation potential
field and a task potential field is
introduced

• Rotation potential field
• force is also a function of robots orientation relative

to the obstacles. This is done using a gain factor that
reduces the repulsive force when obstacles are
parallel to robot’s direction of travel

• Task potential field
• Filters out the obstacles that should not influence

the robots movements, i.e. only the obstacles in the
sector in front of the robot are considered

Khatib and Chatila

Mobile Robotics ShanghaiTech University - SIST - 12.01.2016 33

Graph Search
• Overview

• Solves a least cost problem between two states on a (directed) graph
• Graph structure is a discrete representation

• Limitations
• State space is discretized à completeness is at stake
• Feasibility of paths is often not inherently encoded

• Algorithms
• (Preprocessing steps)
• Breath first
• Depth first
• Dijkstra
• A* and variants
• D* and variants

ShanghaiTech University - SIST - 23.05.2016 34

Graph Construction: Visibility Graph

• Particularly suitable for polygon-like obstacles
• Shortest path length
• Grow obstacles to avoid collisions

ShanghaiTech University - SIST - 23.05.2016 35

Graph Construction: Visibility Graph
• Pros

• The found path is optimal because it is the shortest length path
• Implementation simple when obstacles are polygons

• Cons
• The solution path found by the visibility graph tend to take the robot as close as possible to

the obstacles: the common solution is to grow obstacles by more than robot’s radius
• Number of edges and nodes increases with the number of polygons
• Thus it can be inefficient in densely populated environments

ShanghaiTech University - SIST - 23.05.2016 36

Graph Construction: Voronoi Diagram

• Tends to maximize the distance between robot and obstacles

ShanghaiTech University - SIST - 23.05.2016 37

Graph Construction: Voronoi Diagram
• Pros

• Using range sensors like laser or sonar, a robot can navigate along the Voronoi diagram
using simple control rules

• Cons
• Because the Voronoi diagram tends to keep the robot as far as possible from obstacles, any

short range sensor will be in danger of failing
• Voronoi diagram can change drastically in open areas

ShanghaiTech University - SIST - 23.05.2016 38

Graph Construction: Exact Cell Decomposition (2/4)

Mobile Robotics ShanghaiTech University - SIST - 12.01.2016 39

Graph Construction: Approximate Cell Decomposition (3/4)

Mobile Robotics ShanghaiTech University - SIST - 12.01.2016 40

Graph Construction: Adaptive Cell Decomposition (4/4)

• Close relationship with map representation (Quadtree)!

Mobile Robotics ShanghaiTech University - SIST - 12.01.2016 41

Graph Construction: State Lattice Design (1/2)

Online:
Incremental Graph

Constr.

Offline:
Lattice Gen.

Offline:
Motion Model

§ Enforces edge feasibility

Mobile Robotics ShanghaiTech University - SIST - 12.01.2016 42

Graph Construction: State Lattice Design (2/2)
• State lattice encodes only kinematically feasible edges

Martin Rufli

Mobile Robotics ShanghaiTech University - SIST - 12.01.2016 43

Deterministic Graph Search
• Methods

• Breath First
• Depth First
• Dijkstra
• A* and variants
• D* and variants
• ...

ShanghaiTech University - SIST - 23.05.2016 44

DIJKSTRA‘S ALGORITHM

ShanghaiTech University - SIST - 23.05.2016 45

1930 - 2002

"Computer Science is no more about computers than
astronomy is about telescopes."

http://www.cs.utexas.edu/~EWD/

EDSGER WYBE DIJKSTRA

ShanghaiTech University - SIST - 23.05.2016 46

• Single-Source Shortest Path Problem - The problem of finding shortest
paths from a source vertex v to all other vertices in the graph.

• Graph
• Set of vertices and edges
• Vertex:

• Place in the graph; connected by:
• Edge: connecting two vertices

• Directed or undirected (undirected in Dijkstra’s Algorithm)
• Edges can have weight/ distance assigned

SINGLE-SOURCE SHORTEST PATH PROBLEM

ShanghaiTech University - SIST - 23.05.2016

Dijkstra material from http://www.cs.utexas.edu/~tandy/barrera.ppt

47

Diklstra’s Algorithm
• Assign all vertices infinite distance to goal
• Assign 0 to distance from start
• Add all vertices to the queue

• While the queue is not empty:
• Select vertex with smallest distance and remove it from the queue
• Visit all neighbor vertices of that vertex,
• calculate their distance and
• update their (the neighbors) distance if the new distance is smaller

ShanghaiTech University - SIST - 23.05.2016 48

dist[s] ← 0 (distance to source vertex is zero)
for all v ∈ V–{s}

do dist[v] ← ∞ (set all other distances to infinity)
S ← ∅ (S, the set of visited vertices is initially empty)
Q← V (Q, the queue initially contains all vertices)
while Q ≠∅ (while the queue is not empty)
do u ← mindistance(Q, dist) (select the element of Q with the min. distance)

S←S∪{u} (add u to list of visited vertices)
for all v ∈ neighbors[u]

do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
then d[v] ←d[u] + w(u, v) (set new value of shortest path)

(if desired, add traceback code)
return dist

Diklstra’s Algorithm - Pseudocode

ShanghaiTech University - SIST - 23.05.2016 49

Dijkstra Example

ShanghaiTech University - SIST - 23.05.2016 50

ShanghaiTech University - SIST - 23.05.2016

Dijkstra Example
51

ShanghaiTech University - SIST - 23.05.2016

Dijkstra Example
52

ShanghaiTech University - SIST - 23.05.2016

Dijkstra Example
53

ShanghaiTech University - SIST - 23.05.2016

Dijkstra Example
54

ShanghaiTech University - SIST - 23.05.2016

Dijkstra Example
55

ShanghaiTech University - SIST - 23.05.2016

Dijkstra Example
56

ShanghaiTech University - SIST - 23.05.2016

Dijkstra Example
57

ShanghaiTech University - SIST - 23.05.2016

Dijkstra Example
58

ShanghaiTech University - SIST - 23.05.2016

Dijkstra Example
59

- Navigation Systems
- Internet Routing

APPLICATIONS OF DIJKSTRA'S ALGORITHM

ShanghaiTech University - SIST - 23.05.2016 60

Dijkstra’s Algorithm for Path Planning: Topological Maps
• Topological Map:

• Places (vertices) in the environment
(red dots)

• Paths (edges) between them
(blue lines)

• Length of path = weight of edge

• => Apply Dijkstra’s Algorithm to
find path from start vertex to goal
vertex

ShanghaiTech University - SIST - 23.05.2016 61

Dijkstra’s Algorithm for Path Planning: Grid Maps

• Graph:
• Neighboring free cells are connected:

• 4-neighborhood: up/ down/ left right
• 8-neighborhood: also diagonals

• All edges have weight 1

• Stop once goal vertex is reached
• Per vertex: save edge over which
the shortest distance from start was
reached => Path

ShanghaiTech University - SIST - 23.05.2016 62

Graph Search Strategies: Breath-First Search
• Corresponds to a wavefront expansion on a 2D grid
• Breath-First: Dijkstra‘s search where all edges have weight 1

ShanghaiTech University - SIST - 23.05.2016 63

Graph Search Strategies: Depth-First Search
B C D

A

E

B C D

A

FE

B C D

A

G H

FE

B C D

A

ID

G H

FE

B C D

A

D

A

G H

FE

B C D

A

I

I KD

LA

G H

FE

B C D

A

ID

LA

G H

FE

B C D

A

First path found!
NOT optimal

I KD

L LA

G H

FE

B C D

A

G

I KD

L LA

G H

FE

B C D

A

F

G

I KD

L LA

G H I

FE

B C D

A

H

F

G

I K CD

L LA

G H I

FE

B C D

A

H

F

G

I K CD

L L AA

G H I

FE

B C D

A

H

K

F

G

I K CD

L L AA

G H I

FE

B C D

A

H

K

F

G

I K CD

L L AA

L

G H I

FE

B C D

A

H

K

F

G

I K CD L

L L AA

L

G H I

FE

B C D

A

A=initial

B

C

D

F

G

H

I

K

L=goal

E

ShanghaiTech University - SIST - 23.05.2016 64

Graph Search Strategies: A* Search
• Similar to Dijkstra‘s algorithm, except that it uses a heuristic function h(n)
• f(n) = g(n) + ε h(n)

ShanghaiTech University - SIST - 23.05.2016 65

Graph Search Strategies: D* Search
• Similar to A* search, except that the search starts from the goal outward
• f(n) = g(n) + ε h(n)
• First pass is identical to A*
• Subsequent passes reuse information from previous searches

Mobile Robotics ShanghaiTech University - SIST - 12.01.2016 66

Graph Search Strategies: Randomized Search
• Most popular version is the rapidly exploring random tree (RRT)

• Well suited for high-dimensional search spaces
• Often produces highly suboptimal solutions

ShanghaiTech University - SIST - 23.05.2016 67

