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Algorithm 1: Split-and-Merge (Iterative-End-Point-Fit)
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Algorithm 2: Line-Regression
• Uses a “sliding window” of size Nf
• The points within each “sliding window” are fitted by a segment
• Then adjacent segments are merged if their line parameters are close

Nf = 3
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Algorithm 3: RANSAC
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Algorithm 3: RANSAC
• Select sample of 2 
points at random
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Algorithm 3: RANSAC
• Select sample of 2 
points at random

• Calculate model 
parameters that fit 
the data in the 
sample
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Algorithm 3: RANSAC
• Select sample of 2 
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Algorithm 3: RANSAC
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Algorithm 3: RANSAC ALL-INLIER SAMPLE
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Algorithm 4: Hough-Transform
• Hough Transform uses a voting scheme
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Algorithm 4: Hough-Transform
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• Autonomous mobile robots 
move around in the 
environment. Therefore ALL of 
them:
• They need to know where they 

are.
• They need to know where their 

goal is.
• They need to know how to get 

there.

• Different levels:
• Control:

• How much power to the motors to 
move in that direction, reach desired 
speed

• Navigation:
• Avoid obstacles
• Classify the terrain in front of you
• Follow a path 

• Planning:
• Long distance path planning
• What is the way, optimize for certain 

parameters
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General Control Scheme for Mobile Robot Systems
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With material from Roland Siegwart and Davide Scaramuzza, ETH Zurich
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MAPS
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Representation of the Environment

• Environment Representation
• Continuous Metric ® x, y, q
• Discrete Metric ® metric grid
• Discrete Topological ® topological grid

• Environment Modeling
• Raw sensor data, e.g. laser range data, grayscale images

• large volume of data, low distinctiveness on the level of individual values
• makes use of all acquired information

• Low level features, e.g. line other geometric features
• medium volume of data, average distinctiveness
• filters out the useful information, still ambiguities

• High level features, e.g. doors, a car, the Eiffel tower
• low volume of data, high distinctiveness
• filters out the useful information, few/ no ambiguities
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Map Representation: Approximate cell decomposition
• Fixed cell decomposition => 2D grid map

• Cells: probability of being occupied =>
• 0 free; 0.5 (or 128) unknown; 1 or (255) occupied
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Map Representation: Occupancy grid
• Fixed cell decomposition: occupancy grid example

Courtesy of S. Thrun
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PLANNING
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The Planning Problem
• The problem: find a path in the work space (physical space) from the initial 

position to the goal position avoiding all collisions with the obstacles

• Assumption: there exists a good enough map of the environment for 
navigation. 

Coffee room

Corridor

Bill’
s offic

e

Topological Map

Coarse Grid Map
(for reference only)

Coffee room

Corridor

Bill’
s offic

e

Topological Map

Coarse Grid Map
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The Planning Problem
• We can generally distinguish between 

• (global) path planning and 
• (local) obstacle avoidance. 

• First step:
• Transformation of the map into a representation useful for planning
• This step is planner-dependent

• Second step:
• Plan a path on the transformed map

• Third step:
• Send motion commands to controller
• This step is planner-dependent (e.g. Model based feed forward, path following)
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Work Space (Map) à Configuration Space
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• State or configuration q can be described with k values qi

• What is the configuration space of a mobile robot?
Work Space Configuration Space: 

the dimension of this 
space is equal to the Degrees of Freedom (DoF) 

of the robot
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• Mobile robots operating on a flat ground (2D) have 3 DoF: (x, y, θ)
• Differential Drive: only two motors => only 2 degrees of freedom directly controlled (forward/ backward + 

turn) => non-holonomic
• Simplification: assume robot is holonomic and it is a point => configuration space is reduced to 2D (x,y)
• => inflate obstacle by size of the robot radius to avoid crashes => obstacle growing

Configuration Space for a Mobile Robot
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Path Planning: Overview of Algorithms
3. Graph Search

• Identify a set edges between nodes within the 
free space

• Where to put the nodes?

1. Optimal Control
• Solves truly optimal solution
• Becomes intractable for even moderately 

complex as well as nonconvex problems

2. Potential Field
• Imposes a mathematical function over the 

state/configuration space
• Many physical metaphors exist
• Often employed due to its simplicity and 

similarity to optimal control solutions

Source: 
http://mitocw.udsm.ac.tz
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Potential Field Path Planning Strategies
• Robot is treated as a point under the 

influence of an artificial potential field.
• Operates in the continuum

• Generated robot movement is similar to a 
ball rolling down the hill

• Goal generates attractive force
• Obstacle are repulsive forces
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Potential Field Path Planning: Potential Field 
Generation
• Generation of potential field function U(q)

• attracting (goal) and repulsing (obstacle) fields
• summing up the fields
• functions must be differentiable 

• Generate artificial force field F(q)

• Set robot speed (vx, vy) proportional to the force F(q) generated by the field
• the force field drives the robot to the goal
• if robot is assumed to be a point mass
• Method produces both a plan and the corresponding control
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Potential Field Path Planning: Attractive Potential Field
• Parabolic function representing the Euclidean distance                      

to the goal

• Attracting force converges linearly towards 0 (goal)
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Potential Field Path Planning: Repulsing Potential Field

• Should generate a barrier around all the obstacle
• strong if close to the obstacle
• not influence if far from the obstacle

• : minimum distance to the object
• Field is positive or zero and tends to infinity as q gets closer to the 

object
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Potential Field Path Planning:
• Notes:

• Local minima problem exists
• problem is getting more complex if the robot is not considered as a point mass
• If objects are non-convex there exists situations where several minimal distances exist ®

can result in oscillations

Mobile Robotics ShanghaiTech University - SIST - 12.01.2016 32



Potential Field Path Planning: Extended Potential Field Method
• Additionally a rotation potential 
field and a task potential field is 
introduced

• Rotation potential field
• force is also a function of robots orientation relative 

to the obstacles. This is done using a gain factor that 
reduces the repulsive force when obstacles are 
parallel to robot’s direction of travel

• Task potential field
• Filters out the obstacles that should not influence 

the robots movements, i.e. only the obstacles in the 
sector in front of the robot are considered

Khatib and Chatila
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Graph Search
• Overview

• Solves a least cost problem between two states on a (directed) graph
• Graph structure is a discrete representation

• Limitations
• State space is discretized à completeness is at stake
• Feasibility of paths is often not inherently encoded

• Algorithms
• (Preprocessing steps)
• Breath first
• Depth first
• Dijkstra
• A* and variants
• D* and variants
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Graph Construction: Visibility Graph

• Particularly suitable for polygon-like obstacles
• Shortest path length
• Grow obstacles to avoid collisions
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Graph Construction: Visibility Graph
• Pros

• The found path is optimal because it is the shortest length path
• Implementation simple when obstacles are polygons

• Cons
• The solution path found by the visibility graph tend to take the robot as close as possible to 

the obstacles: the common solution is to grow obstacles by more than robot’s radius
• Number of edges and nodes increases with the number of polygons
• Thus it can be inefficient in densely populated environments
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Graph Construction: Voronoi Diagram 

• Tends to maximize the distance between robot and obstacles
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Graph Construction: Voronoi Diagram
• Pros

• Using range sensors like laser or sonar, a robot can navigate along the Voronoi diagram 
using simple control rules

• Cons
• Because the Voronoi diagram tends to keep the robot as far as possible from obstacles, any 

short range sensor will be in danger of failing
• Voronoi diagram can change drastically in open areas
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Graph Construction: Exact Cell Decomposition (2/4)
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Graph Construction: Approximate Cell Decomposition (3/4)
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Graph Construction: Adaptive Cell Decomposition (4/4)

• Close relationship with map representation (Quadtree)!  
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Graph Construction: State Lattice Design (1/2)

Online: 
Incremental Graph 

Constr.

Offline: 
Lattice Gen.

Offline: 
Motion Model

§ Enforces edge feasibility
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Graph Construction: State Lattice Design (2/2)
• State lattice encodes only kinematically feasible edges

Martin Rufli
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Deterministic Graph Search
• Methods

• Breath First
• Depth First
• Dijkstra
• A* and variants
• D* and variants
• ...
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DIJKSTRA‘S ALGORITHM
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1930 - 2002

"Computer Science is no more about computers than 
astronomy is about telescopes."

http://www.cs.utexas.edu/~EWD/ 

EDSGER WYBE DIJKSTRA
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• Single-Source Shortest Path Problem - The problem of finding shortest 
paths from a source vertex v to all other vertices in the graph.

• Graph
• Set of vertices and edges
• Vertex: 

• Place in the graph; connected by:
• Edge: connecting two vertices 

• Directed or undirected (undirected in Dijkstra’s Algorithm)
• Edges can have weight/ distance assigned

SINGLE-SOURCE SHORTEST PATH PROBLEM 
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Dijkstra material from http://www.cs.utexas.edu/~tandy/barrera.ppt
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Diklstra’s Algorithm
• Assign all vertices infinite distance to goal
• Assign 0 to distance from start
• Add all vertices to the queue

• While the queue is not empty:
• Select vertex with smallest distance and remove it from the queue
• Visit all neighbor vertices of that vertex,
• calculate their distance and
• update their (the neighbors) distance if the new distance is smaller
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dist[s] ← 0        (distance to source vertex is zero)
for all v ∈ V–{s}

do dist[v] ← ∞ (set all other distances to infinity) 
S ← ∅ (S, the set of visited vertices is initially empty) 
Q← V (Q, the queue initially contains all vertices) 
while Q ≠∅ (while the queue is not empty) 
do u ← mindistance(Q, dist) (select the element of Q with the min. distance) 

S←S∪{u} (add u to list of visited vertices) 
for all v ∈ neighbors[u]

do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
then d[v] ←d[u] + w(u, v) (set new value of shortest path)

(if desired, add traceback code)
return dist

Diklstra’s Algorithm - Pseudocode
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
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- Navigation Systems 
- Internet Routing

APPLICATIONS OF DIJKSTRA'S ALGORITHM
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Dijkstra’s Algorithm for Path Planning: Topological Maps
• Topological Map:

• Places (vertices) in the environment 
(red dots)

• Paths (edges) between them 
(blue lines)

• Length of path = weight of edge

• => Apply Dijkstra’s Algorithm to 
find path from start vertex to goal 
vertex
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Dijkstra’s Algorithm for Path Planning: Grid Maps

• Graph:
• Neighboring free cells are connected:

• 4-neighborhood: up/ down/ left right
• 8-neighborhood: also diagonals

• All edges have weight 1

• Stop once goal vertex is reached
• Per vertex: save edge over which 
the shortest distance from start was 
reached => Path
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Graph Search Strategies: Breath-First Search
• Corresponds to a wavefront expansion on a 2D grid
• Breath-First: Dijkstra‘s search where all edges have weight 1
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Graph Search Strategies: Depth-First Search
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Graph Search Strategies: A* Search
• Similar to Dijkstra‘s algorithm, except that it uses a heuristic function h(n)
• f(n) = g(n) + ε h(n)
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Graph Search Strategies: D* Search
• Similar to A* search, except that the search starts from the goal outward
• f(n) = g(n) + ε h(n)
• First pass is identical to A*
• Subsequent passes reuse information from previous searches
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Graph Search Strategies: Randomized Search
• Most popular version is the rapidly exploring random tree (RRT)

• Well suited for high-dimensional search spaces
• Often produces highly suboptimal solutions
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