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MAP BASED LOCALIZATION
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ICP: Iterative Closest Points Algorithm

• Align two partially-
overlapping point sets (2D or 3D)

• Given initial guess
for relative transform

Material derived from Ronen Gvili :   www.cs.tau.ac.il/~dcor/Graphics/adv-slides/ICP.ppt
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Data Types
• Point sets
• Line segment sets (polylines)
• Implicit curves  : f(x,y,z) = 0
• Parametric curves : (x(u),y(u),z(u))
• Triangle sets (meshes)
• Implicit surfaces : s(x,y,z) = 0
• Parametric surfaces (x(u,v),y(u,v),z(u,v)))
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Motivation
• Scan Matching -

Registration
• Shape inspection
• Motion estimation
• Appearance 

analysis
• Texture Mapping
• Tracking

Robotics ShanghaiTech University - SIST - Oct 22, 2019 7



Robotics ShanghaiTech University - SIST - Oct 22, 2019 8



Robotics ShanghaiTech University - SIST - Oct 22, 2019 9



Aligning 3D Data
• Continuous lines or a set of points…
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Corresponding Point Set Alignment

• Let M be a model point set. (or map or previous scan) 

• Let S be a scene point set. (current scan)

We assume :
1. NM = NS.

2. Each point Si correspond to Mi .
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Corresponding Point Set Alignment

The Mean Squared Error (MSE) objective function :

The alignment is :
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Aligning 3D Data
• If correct correspondences are known, can find correct relative 
rotation/ translation, e.g. using Horn’s method, SVD
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Horn’s method
• Input

• Two point sets: ! and "
• Output

• Rotation matrix #
• Translation vector $

X Y

# and $

Material by Toru Tamaki, Miho Abe, 
Bisser Raytchev, Kazufumi Kaneda
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Horn’s method: correspondence is known.
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Horn’s method: correspondence is known.
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Aligning 3D Data
• How to find correspondences:  User input? Feature detection?  
Signatures?

• Alternative: assume closest points correspond

Robotics ShanghaiTech University - SIST - Oct 22, 2019 17



Aligning 3D Data
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Signatures?
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Aligning 3D Data
• Converges if starting position “close enough“
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Closest Point

• Given 2 points r1 and r2 , the Euclidean 
distance is:

• Given a point r1 and set of points A , the 
Euclidean distance is:
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Finding Matches

• The scene shape S is aligned to be in the best 
alignment with the model shape M.

• The distance of each point s of the scene from the 
model is :
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Finding Matches 
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C – the closest point operator

Y – the set of closest points to S
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Finding Matches 

• Finding each match is performed in O(MN) 

worst case.

• Given Y we can calculate alignment

• S is updated to be :
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ICP: correspondence is unknown.
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ICP: correspondence is unknown.
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ICP: correspondence is unknown.
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The Algorithm

Init the error to ∞

Calculate correspondence

Calculate alignment

Apply alignment

Update error

If error > threshold

Y = CP(M,S),e

(rot,trans,d)

S`= rot(S)+trans

d` = d

Robotics ShanghaiTech University - SIST - Oct 22, 2019 27



The Algorithm
function ICP(Scene,Model)
begin
E` ß + ∞;
(Rot,Trans) ß In Initialize-Alignment(Scene,Model);
repeat 

E ß E`;
Aligned-Scene ß Apply-Alignment(Scene,Rot,Trans);
Pairs ß Return-Closest-Pairs(Aligned-Scene,Model);
(Rot,Trans,E`) ß Update-Alignment(Scene,Model,Pairs,Rot,Trans);

Until |E`- E|  < Threshold
return (Rot,Trans);
end    
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Convergence Theorem
• The ICP algorithm always converges monotonically to a local minimum with 

respect to the MSE distance objective function.
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Time analysis
Each iteration includes 3 main steps 

A.  Finding the closest points :  
O(NM) per each point
O(NM*NS) total.

B. Calculating the alignment: O(NS)
C. Updating the scene: O(NS)
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Optimizing the Algorithm
• K-D Tree :

Construction time: O(kn log n)
Space: O(n)
Region Query : O(n1-1/k+k ) 
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Time analysis
Each iteration includes 3 main steps

A.  Finding the closest points :  
O(NM) per each point
O(NMlogNS) total.

B. Calculating the alignment: O(NS)

C. Updating the scene: O(NS)
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ICP Variants

• Variants on the following stages of ICP
have been proposed:

1. Selecting sample points (from one or both point clouds)
2. Matching to points to a plane or mesh
3. Weighting the correspondences
4. Rejecting certain (outlier) point pairs
5. Assigning an error metric to the current transform
6. Minimizing the error metric w.r.t. transformation

Robotics ShanghaiTech University - SIST - Oct 22, 2019 33



Performance of Variants
• Can analyze various aspects of performance:

• Speed
• Stability
• Tolerance of noise and/or outliers
• Maximum initial misalignment
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ICP Variants

1. Selecting sample points (from one or both 
meshes).

2. Matching to points to a plane or mesh
3. Weighting the correspondences.
4. Rejecting certain (outlier) point pairs.
5. Assigning an error metric to the current 

transform.
6. Minimizing the error metric w.r.t. 

transformation.
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ICP Variants
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Rejecting Pairs

• Corresponding points with point to point distance 
higher than a given threshold.

• Rejection of worst n% pairs based on some metric. 
• Pairs containing points on end vertices.
• Rejection of pairs whose point to point distance is 

higher than n*σ.
• Rejection of pairs that are not consistent with their 

neighboring pairs  [Dorai 98] :
(p1,q1) , (p2,q2) are inconsistent iff

thresholdqqDistppDist >- ),(),( 2121
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Rejecting Pairs

Distance thresholding
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Rejecting Pairs

Points on end vertices
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Rejecting Pairs

Inconsistent Pairs

p1 p2

q2

q1
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ICP Variants

1. Selecting sample points (from one or both 
meshes).

2. Matching to points to a plane or mesh.
3. Weighting the correspondences.
4. Rejecting certain (outlier) point pairs.
5. Assigning an error metric to the current 

transform.
6. Minimizing the error metric w.r.t. 

transformation.
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BLAM: ICP in action
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Other registration methods exist
• Robust point matching (soft point correspondences)
• Coherent point drift
• Kernel correlation
• Approximations of the squared distance functions to 

curves and surfaces

• Feature extracting methods 
• Corners in point clouds
• Lines
• Planes

• Spectral methods
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Fourier Mellin Transform
• Spectral based registration: detection of scaling, rotation and translation in 2 subsequent frames
• Processing spectrum magnitude decouples translation from affine transformations

• Detection of signal shift between 2 signals by phase information
• Resampling to polar coordinates → Rotation turns into signal shift !
• Resampling the radial axis from linear to logarithmic presentation

→ Scaling turns into signal shift !
• Calculate a Phase Only Match Filter (POMF) on the resampled magnitude spectra
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Aerial Map (Mosaic)
• Rubble pile and train
• 435 frames
• Real time generation of map
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3D Scan matching using Spectral Method
Flood Gate (sonar) Crashed car park

Disaster City  (3D LRF)
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Pose Estimation for Omni-directional Cameras using 
Sinusoid Fitting 
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3D Range
Sensing

Plane 
Extraction
Planar Scan 
Matching

Pose Graph ...
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Relax Loop-
Closing Errors

Jacobs 3D Mapping – Plane Mapping
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Plane Extraction from 3D Point Clouds

l Plane Fitting
l Assumes 3D sensor has radial Gaussian noise dependent on range

l Uses Approximate Least Squares solution to find  the best fit.

l Estimates covariance matrix of the plane parameters 

l Range Image Segmentation
l Is based on region growing algorithm

l Uses incremental formulas, therefore is fast

l Has linear computational complexity 
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Given a range image, returns a polygonal model i.e. a set 
of planar features and boundaries. 
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Plane Registration (Scan Matching)
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• Determining the correspondence set maximizing the global rigid body motion 

constraint.

• Finding the optimal decoupled rotations (Wahba's problem) and translations 

(closed form least squares) with related uncertainties.

• No motion estimates from any other source are needed.

• Very fast

• MUMC: Finding Minimally Uncertain Maximal Consensus

• Of matched planes

• Idea: select two non-parallel plane matches => fixes rotation and only leaves 

one degree of translation!



An Example

Segments range image consisting of ~2∙105 pixels in ~3s. On 1.6 Ghz machine.

Segmentation Image Polygonal 3D Model
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Relaxation of Errors (Translation)

l Only translation errors are relaxed
l Good rotation estimates from the plane matching

l Non-linear optimization can be exchanged with linear if rotation is 

assumed to be known precisely. 

l This leads to a fast relaxation method
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Experiment Lab Run: 29  3D point-clouds; size of each: 541 x 361 = 195,301
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Collect and Generate 3D Maps
Example: Bremen City Center
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Thank you!

( 3D Map of WWII Bunker Valentin – 2nd biggest in Europe)
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