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Odometry:Growth of Pose uncertainty for Straight Line Movement

• Note: Errors perpendicular to the direction of movement are growing much faster!
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Odometry:Growth of Pose uncertainty for Movement on a Circle

• Note: Errors ellipse in does not remain perpendicular to the direction of movement!
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Odometry:example of non-Gaussian error model

• Note: Errors are not shaped like ellipses!

[Fox, Thrun, Burgard, Dellaert, 2000]

Courtesy AI Lab, Stanford
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Belief Representation
• How do we represent the robot position, 

where the robot “believes” to be?

• a) Continuous map
with single hypothesis 
probability distribution

• b) Continuous map
with multiple hypothesis
probability distribution

• c) Discretized map
with probability distribution

• d) Discretized topological
map with probability
distribution
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Grid-based Representation - Multi Hypothesis
Courtesy of W.  Burgard
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SLAM overview
• Let us assume that the robot 
uncertainty at its initial location 
is zero. 

• From this position, the robot 
observes a feature which is 
mapped with an uncertainty 
related to the exteroceptive
sensor error model
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SLAM overview
• As the robot moves, its pose 
uncertainty increases under the 
effect of the errors introduced 
by the odometry
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SLAM overview
• At this point, the robot observes two 

features and maps them with an 
uncertainty which results from the 
combination of the measurement 
error with the robot pose uncertainty

• From this, we can notice that the 
map becomes correlated with the 
robot position estimate. Similarly, if 
the robot updates its position based 
on an observation of an imprecisely 
known feature in the map, the 
resulting position estimate becomes 
correlated with the feature location 
estimate.
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SLAM overview
• The robot moves again and its 
uncertainty increases under the 
effect of the errors introduced 
by the odometry
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SLAM overview
• In order to reduce its uncertainty, the 

robot must observe features whose 
location is relatively well known. 
These features can for instance be 
landmarks that the robot has already 
observed before. 

• In this case, the observation is called 
loop closure detection.

• When a loop closure is detected, the 
robot pose uncertainty shrinks. 

• At the same time, the map is 
updated and the uncertainty of other 
observed features and all previous 
robot poses also reduce
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KALMAN FILTER OVERVIEW
Following Material: 
• Michael Williams, Australian National University
• Cornelia Fermüller, University of Maryland
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The Problem

Robotics ShanghaiTech University - SIST - Nov 14, 2019 15

• System state cannot be 
measured directly

• Need to estimate “optimally” 
from measurements
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What is a Kalman Filter?
• Recursive data processing algorithm
• Generates optimal estimate of desired quantities 
given the set of measurements

• Optimal?
• For linear system and white Gaussian errors, Kalman 

filter is “best” estimate based on all previous 
measurements

• For non-linear system optimality is ‘qualified’
• Recursive?

• Doesn’t need to store all previous measurements and 
reprocess all data each time step
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Conceptual Overview

• Lost on the 1-dimensional line
• Position – y(t)
• Assume Gaussian distributed measurements

y
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Conceptual Overview
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• Sextant Measurement at t1: Mean = z1 and Variance = sz1

• Optimal estimate of position is: ŷ(t1) = z1

• Variance of error in estimate: s2
x (t1) = s2

z1

• Boat in same position at time t2 - Predicted position is z1
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Conceptual Overview

• So we have the prediction ŷ-(t2)

• GPS Measurement at t2: Mean = z2 and Variance = sz2

• Need to correct the prediction due to measurement to get ŷ(t2)

• Closer to more trusted measurement – linear interpolation?

prediction ŷ-(t2)

measurement 

z(t2)
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• Corrected mean is the new optimal estimate of position

• New variance is smaller than either of the previous two variances

measurement 

z(t2)

corrected optimal 

estimate ŷ(t2)

prediction ŷ-(t2)

Conceptual Overview
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• Lessons so far:

Make prediction based on previous data - ŷ-, s-

Take measurement – zk, sz

Optimal estimate (ŷ) = Prediction + (Kalman Gain) * (Measurement - Prediction)

Variance of estimate = Variance of prediction * (1  – Kalman Gain)

Conceptual Overview
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• At time t3, boat moves with velocity dy/dt=u
• Naïve approach: Shift probability to the right to predict
• This would work if we knew the velocity exactly (perfect model)

ŷ(t2)
Naïve Prediction 
ŷ-(t3)

Conceptual Overview
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• Better to assume imperfect model by adding Gaussian noise
• dy/dt = u + w
• Distribution for prediction moves and spreads out

ŷ(t2)

Naïve Prediction 
ŷ-(t3)

Prediction ŷ-(t3)

Conceptual Overview
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• Now we take a measurement at t3
• Need to once again correct the prediction
• Same as before

Prediction ŷ-(t3)

Measurement z(t3)

Corrected optimal estimate ŷ(t3)

Conceptual Overview
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Conceptual Overview
• Lessons learnt from conceptual overview:

• Initial conditions (ŷk-1 and sk-1)

• Prediction (ŷ-
k , s-

k)
• Use initial conditions and model (eg. constant velocity) to make prediction

• Measurement (zk)
• Take measurement

• Correction (ŷk , sk)
• Use measurement to correct prediction by ‘blending’ prediction and residual – always a 

case of merging only two Gaussians
• Optimal estimate with smaller variance
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Theoretical Basis
• Process to be estimated:

yk = Ayk-1 + Buk + wk-1

zk = Hyk + vk

Process Noise (w) with covariance Q

Measurement Noise (v) with covariance R

• Kalman Filter
Predicted: ŷ-k is estimate based on measurements at previous time-steps

ŷk = ŷ-k + K(zk - H ŷ-k )

Corrected: ŷk has additional information – the measurement at time k

K = P-kHT(HP-kHT + R)-1

ŷ-k = Ayk-1 + Buk

P-k = APk-1AT + Q

Pk = (I - KH)P-k
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Blending Factor

• If we are sure about measurements:
– Measurement error covariance (R) decreases to zero
– K decreases and weights residual more heavily than prediction

• If we are sure about prediction
– Prediction error covariance P-

k decreases to zero
– K increases and weights prediction more heavily than residual
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Theoretical Basis

ŷ-
k = Ayk-1 + Buk

P-
k = APk-1AT + Q

Prediction (Time Update)

(1) Project the state ahead

(2) Project the error covariance ahead

Correction (Measurement Update)

(1) Compute the Kalman Gain

(2) Update estimate with measurement zk

(3) Update Error Covariance

ŷk = ŷ-
k + K(zk - H ŷ-

k )

K = P-
kHT(HP-

kHT + R)-1

Pk = (I - KH)P-
k
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Markov ó Kalman Filter Localization
• Markov localization

• localization starting from any unknown
position

• recovers from ambiguous situation

• However, to update the probability of 
all positions within the whole state 
space at any time requires a discrete
representation of the space (grid). 
The required memory and calculation 
power can thus become very 
important if a fine grid is used.

• Kalman filter localization
• tracks the robot and is 

inherently very precise and
efficient.

• However, if the uncertainty of 
the robot becomes to large (e.g. 
collision with an object) the 
Kalman filter will fail and the
position is definitively lost.
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KALMAN FILTER DETAILS
Following Material: 
• Michael Williams, Australian National University
• Cornelia Fermüller, University of Maryland
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Bayes Filter
Reminder

For all x do

Else if d is an action data item u then 
For all x do

Return Bel’(x)

Robotics ShanghaiTech University - SIST - Nov 14, 2019 31

1. Algorithm Bayes_filter( Bel(x),d ):
2. h=0
3. If d is a perceptual data item z then
4. For all x do
5.
6.
7.
8.
9.
10.
11.
12.



•Prediction

•Correction

Bayes Filter Reminder
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Kalman Filter
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• Bayes filter with Gaussians
• Developed in the late 1950's
• Most relevant Bayes filter variant in practice
• Applications range from economics, wheather forecasting,

satellite navigation to robotics and many more.

• The Kalman filter "algorithm" is a couple of matrix
multiplications!



Gaussians

p(x) ~ N(µ,s 2 ) :

p(x) = 1
2ps

-
e 2

1 (x-µ )2
s 2

-s s

µ
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µ

Multivariate

Univariate



Gaussians

1D

2D

3D
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Properties of Gaussians

• Multivariate

• Univariate

•We stay in the “Gaussian world” as long as we start with 
Gaussians and perform only linear transformations
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Introduction to Kalman Filter (1)

• Two measurements no dynamics

• Weighted least-square

• Finding minimum error

• After some calculation and rearrangements

• Another way to look at it – weigthed mean
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Discrete Kalman Filter
•Estimates the state x of a discrete-time controlled process
that is governed by the linear stochastic difference equation

• with a measurement

Matrix (nxn) that describes how the state evolves from t -
1 to t without controls or noise.
Matrix (nxl) that describes how the control ut changes 
the state from t-1 to t.
Matrix (kxn) that describes how to map the state xt to
an observation zt.
Random variables representing the process and 
measurement noise that are assumed to be 
independent and normally distributed with covariance
Rt and Qt respectively.

Process dynamics

Observation model
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Kalman Filter Updates in 1D

prediction measurement

correction

It's a weighted mean!
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Kalman Filter Updates in 1D
gain innovation
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1

Kalman Filter Updates in 1D

4
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1

Kalman Filter Updates
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Linear Gaussian Systems: Initialization

• Initial belief is normally distributed:
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• Dynamics are linear function of state and control
plus additive noise:

Linear Gaussian Systems: Dynamics

Robotics ShanghaiTech University - SIST - Nov 14, 2019 44



Linear Gaussian Systems: Dynamics
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• Observations are linear function of state plus
additive noise:

Linear Gaussian Systems: Observations
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Linear Gaussian Systems: Observations
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Kalman Filter Algorithm

1. Algorithm Kalman_filter( µt-1, St-1, ut, zt):

2. Prediction:
3.
4.

5. Correction:
6.
7.
8.

9. Return µt, St
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The Prediction-Correction-Cycle
Prediction
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The Prediction-Correction-Cycle

Correction

5
0
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The Prediction-Correction-Cycle

Correction

Prediction
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Kalman Filter Summary
•Highly efficient: Polynomial in 

measurement dimensionality k
and state dimensionality n:

O(k2.376 + n2)

•Optimal for linear Gaussian systems!

•Most robotics systems are nonlinear!
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EXTENDED KALMAN FILTER (EKF)
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Nonlinear Dynamic Systems
• Most realistic robotic problems involve nonlinear functions

• Extended Kalman filter relaxes linearity assumption

xt = g(ut , xt-1)

zt =h(xt )
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• Second-Order Error Propagation
Rarely used (complex expressions)

• Monte-Carlo
Non-parametric 
representation of
uncertainties

1. Sampling from p(X)

2. Propagation of samples

3. Histogramming

4. Normalization

Other Error Prop. Techniques

Robotics ShanghaiTech University - SIST - Nov 14, 2019 55



First-Order Error Propagation
X,Y assumed to be Gaussian

Y = f(X)

Taylor series expansion

Wanted: ,
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Jacobian Matrix
• It�s a non-square matrix in general

• Suppose you have a vector-valued function

• Let the gradient operator be the vector of (first-order) 
partial derivatives

• Then, the Jacobian matrix is defined as
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• It�s the orientation of the tangent plane to the vector-
valued function at a given point

• Generalizes the gradient of a scalar valued function
• Heavily used for first-order error propagation...

Jacobian Matrix
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First-Order Error Propagation
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Putting things together...

with

�Is there a compact form?...�
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First-Order Error Propagation
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• Input covariance matrix CX
• Jacobian matrix FX
the Error Propagation Law

computes the output covariance matrix CY
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State Prediction Update

Map

Feature/Landmark 
Extraction

Data 
Association

Odometry 
or IMU

Sensors

Measurement 
Prediction

Landmark-based Localization
EKF Localization: Basic Cycle
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State Prediction

posterior 
state

Update

Map

Data 
Association

Odometry 
or IMU

raw sensory data

Sensors

landmarks

Feature/Landmark 
Extraction

Measurement 
Prediction

Landmark-based Localization
EKF Localization: Basic Cycle

innovation from 
matched landmarks

predicted
measurements in

sensor coordinates

landmarks in global 
coordinates

encoder measurements

predicted
state
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State Prediction (Odometry)

Landmark-based Localization

Control uk: wheel displacements sl , sr

Error model: linear growth

Nonlinear process model f :
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State Prediction (Odometry)

Landmark-based Localization

Control uk: wheel displacements sl ,

sr

Error model: linear growth

Nonlinear process model f :
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Landmark-based Localization

65

Landmark Extraction (Observation)

Extracted 
lines

Hessian line model

Extracted lines
in model space

Raw laser 
range data
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Landmark-based Localization
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Measurement Prediction
• ...is a coordinate frame transform world-to-sensor
• Given the predicted state (robot pose),
predicts the location
uncertainty

and location
of expected

observations in sensor coordinates

model space
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Data Association (Matching)
• Associates predicted measurements 

with observations

• Innovation and
innovation
covariance

Landmark-based Localization

model space

Green: observation 
Magenta: measurement prediction
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Landmark-based Localization
Update

• Kalman gain

• State update (robot pose)

• State covariance update

Red: posterior estimate
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Material

• Kalman, R. E. 1960. “A New Approach to Linear Filtering and Prediction Problems”, 

Transaction of the ASME--Journal of Basic Engineering, pp. 35-45 (March 1960). 

• Welch, G and Bishop, G. 2001. “An introduction to the Kalman Filter”, 

http://www.cs.unc.edu/~welch/kalman/

• Thrun, S. and Burgard, W. and Fox, D. “Probabilistic Robotics” MIT Press 2006

http://www.cs.unc.edu/~welch/kalman/

