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Robotics

Map based localization

position ..
Position Update
:' i E— (Estimation?) \
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extracted features
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» Localization base on external sensors,
beacons or landmarks

» Probabilistic Map Based Localization

Perception
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Od om etry Growth of Pose uncertainty for Straight Line Movement

- Note: Errors perpendicular to the direction of movement are growing much faster!

Error Propagation in Odometry
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Od O m etry Growth of Pose uncertainty for Movement on a Circle

- Note: Errors ellipse in does not remain perpendicular to the direction of movement!

Error Propagation in Odometry
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O d O m etry example of non-Gaussian error model

- Note: Errors are not shaped like ellipses!

Courtesy Al Lab, Stanford

[Fox, Thrun, Burgard, Dellaert, 2000]
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|

probability P

Belief Representation /\

- How do we represent the robot position, | position x
where the robot “believes” to be?

b i‘
- a) Continuous map §
with single hypothesis 2
probability distribution
| | ! | -
position x
- b) Continuous map c oA
with multiple hypothesis >
probability distribution 3
- ¢) Discretized map ) N m _ . -
with probability distribution position x
d t‘
- d) Discretized topological E
map with probability S
distribution . S . .

A B C D E F G ode

of topological map
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Grid- based Representation - Multl Hypothesis

nluln

Courtesy of W. Burgard

nluln | nlifn

Path of the robot Belief states at positions 2, 3 and 4



Robotics ShanghaiTech University - SIST - Nov 14, 2019

SLAM overview

- Let us assume that the robot
uncertainty at its initial location
IS zero.

- From this position, the robot
observes a feature which is
mapped with an uncertainty o
related to the exteroceptive D *
sensor error model s

g




Robotics

SLAM overview

- As the robot moves, its pose
uncertainty increases under the
effect of the errors introduced
by the odometry
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SLAM overview

- At this point, the robot observes two
features and maps them with an
uncertainty which results from the
combination of the measurement
error with the robot pose uncertainty

- From this, we can notice that the
map becomes correlated with the
robot position estimate. Similarly, if
the robot updates its position based
on an observation of an imprecisely
known feature in the map, the
resulting position estimate becomes
correlated with the feature location
estimate.

)




Robotics ShanghaiTech University - SIST - Nov 14, 2019

SLAM overview

- The robot moves again and its
uncertainty increases under the
effect of the errors introduced
by the odometry
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SLAM overview

- In order to reduce its uncertainty, the
robot must observe features whose m’@ O m:
location is relatively well known.

These features can for instance be
landmarks that the robot has already A
observed before.

- In this case, the observation is called
loop closure detection.

- When a loop closure is detected, the Qm“ 4_/@
robot pose uncertainty shrinks.

- At the same time, the map is ®
updated and the uncertainty of other
observed features and all previous
robot poses also reduce
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KALMAN FILTER OVERVIEW

14

Following Material:
Michael Williams, Australian National University
Cornelia Fermuller, University of Maryland
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The Problem
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System error . SyStem state cannot be
S"‘;m measured directly
— S n - Need to estimate “optimally”

from measurements

System state
(desired but

not known)
Observed Optimal estimate of
Measurmg measurement system state
devices "
Measurement

error sources
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Robotics

What is a Kalman Filter?

- Recursive data processing algorithm

- Generates optimal estimate of desired quantities
given the set of measurements

- Optimal?
- For linear system and white Gaussian errors, Kalman
filter is “best” estimate based on all previous
measurements

- For non-linear system optimality is ‘qualified’

- Recursive?
- Doesn’t need to store all previous measurements and
reprocess all data each time step
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Conceptual Overview

- Lost on the 1-dimensional line
- Position — y(t)
- Assume Gaussian distributed measurements



.
Conceptual Overview

0.16
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0 1 r0 2r0 3r0 4r0 5r0 6r0 7r0 8r0 9r0 100
« Sextant Measurement at t;: Mean = z, and Variance = o,,
« Optimal estimate of position is: y(t) = z,

« Variance of error in estimate: ¢, (t1) = 62,4

« Boat in same position at time t, - Predicted position is z,
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Conceptual Overview

0.16

0.14 L

prediction y-(t,) 0.12|

\O'“

0.08 |-

measurement
z(t,)

0.06 -

0.04 |

0.02}

0

¢ [ L I [ I L
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So we have the prediction y-(t,)

GPS Measurement at t,: Mean = z, and Variance = o,

Need to correct the prediction due to measurement to get y(t,)
Closer to more trusted measurement — linear interpolation?
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Conceptual Overview

prediction y-(t,)

0.16
0.14L corrected optimal
estimate y(t,)

0.12L

0.1L
0.08 - measurement
0.06 | z(tp)
0.04 |-
0.02

0

50 60 70 80 90 100

« Corrected mean is the new optimal estimate of position
 New variance is smaller than either of the previous two variances
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Conceptual Overview
- Lessons so far:

Make prediction based on previous data - y-, o

v

Take measurement — z,, o,

v

Optimal estimate (y) = Prediction + (Kalman Gain) * (Measurement - Prediction)

Variance of estimate = Variance of prediction * (1 — Kalman Gain)
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Robotics

Conceptual Overview

0.16 -

0.14|
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0.12| / \\

Naive Prediction
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« Attime t;, boat moves with velocity dy/dt=u
« Naive approach: Shift probability to the right to predict
« This would work if we knew the velocity exactly (perfect model)
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Robotics

Conceptual Overview

Naive Prediction
f ~ y-(tS) ﬂ
() |

¥

¢

0.11

0.16 -

0.08 L f
0.06 | )

0.04 +

0.02} | 1

« Better to assume imperfect model by adding Gaussian noise

e dy/dt=u+w
 Distribution for prediction moves and spreads out
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Conceptual Overview

0.16 -

014l Corrected optimal estimate y(t,)

0.12L

o1l Measurement z(t3)

0.08 |-
0.06 |-
Prediction y-(t;)
0.04 L

0.02 |-

 Now we take a measurement at t;
* Need to once again correct the prediction
« Same as before
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Conceptual Overview

- Lessons learnt from conceptual overview:
- Initial conditions (y,., and c,_4)

- Prediction (y, o)
- Use initial conditions and model (eg. constant velocity) to make prediction

- Measurement (z,)
- Take measurement

- Correction (Y, o)

- Use measurement to correct prediction by ‘blending’ prediction and residual — always a
case of merging only two Gaussians

- Optimal estimate with smaller variance
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Theoretical Basis

- Process to be estimated:

Vi = Ayiq + Bug + Wi Process Noise (w) with covariance Q

Z = Hyy + vy Measurement Noise (v) with covariance R
« Kalman Filter

Predicted: y is estimate based on measurements at previous time-steps
Yk = Ayx.q + Bug
P'k - APk_1AT + Q

Corrected: y has additional information — the measurement at time k

Y=Yk *+Kzc-HYw)
K=PHT(HPHT + R)"

Pk= (l - KH)P'k
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Blending Factor

 If we are sure about measurements:
— Measurement error covariance (R) decreases to zero
— K decreases and weights residual more heavily than prediction

 |If we are sure about prediction
— Prediction error covariance P-, decreases to zero
— Kincreases and weights prediction more heavily than residual
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Theoretical Basis

& @

Correction (Measurement Update)

Prediction (Time Update)

(1) Compute the Kalman Gain

1) Project th h
(1) Project the state ahead K = P~ HT(HP-HT + R)*

Yk = Ayk.1 + Bu
(2) Update estimate with measurement z,
(2) Project the error covariance ahead
Y=Ykt Kzc-Hyy)
P-k = APk_1AT +Q
(3) Update Error Covariance

Pk= (l - KH)P_k

—
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Markov <~ Kalman Filter Localization

e Markov localization

e localization starting from any unknown
position

e recovers from ambiguous situation

« However, to update the probability of
all positions within the whole state
space at any time requires a discrete
representation of the space (grid).
The required memory and calculation
power can thus become very
important if a fine grid is used.

e Kalman filter localization

e tracks the robot and is
inherently very precise and
efficient.

e However, if the uncertainty of
the robot becomes to large (e.g.
collision with an object) the
Kalman filter will fail and the
position is definitively lost.
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KALMAN FILTER DETAILS

30

Following Material:
Michael Williams, Australian National University
Cornelia Fermuller, University of Maryland
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Bayes Filter

Bel(x,)=n P(z,| xt)fP(xt |u,,x,_) Bel(x,_) dx,_

Algorithm Bayes_filter( Bel(x),d ):
n=0
If d is a perceptual data item z then
For all x do
Bel'(x) = P(z| x)Bel(x)
n=n+Bel'(x)
For all x do
Bel'(x) =n"'Bel'(x)

NI AWNE

\0

Else if d is an action data item u then

10. For all x do
11. Bel'(x) =fP(x|u,x’)Bel(x')dx'

12. Return Bel’(x)
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Bayes Filter Reminder

® Prediction

b_el(xt) =fp(xt | u,,x,_;) bel(x,_,) dx,_,

® Correction
bel(xz) = 7717(2; ‘ x,)b_el(xt)
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Kalman Filter

® Bayes filter with Gaussians
® Developed in the late 1950's
® Most relevant Bayes filter variant in practice

® Applications range from economics, wheather forecasting,
satellite navigation to robotics and many more.

® The Kalman filter "algorithm" is a couple of matrix
multiplications!
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Gaussians

p(x) ~ N(p,0%):

_ l(x—,u)2
= 71— 7
P\X) =
2To
Univariate
pP(x)~N(X):
p(x) = 1 ~5(-p) 27 (x-p)

(Zﬂ)d/2|2|1/2 €

Multivariate
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Gaussians

34.199 34.1%

0.020 0.013
C =

0.013  0.020
7L1 = 0.007
A, = 0.033

p = GXY/O'XGY = 0.673
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Properties of Gaussians

* Univariate
X ~N(u,o’
(n.07) = Y ~N(au+b,a’c?)
Y=aX+b
X ~N(,u,o2) o, o’
: 1 12 =>p(Xl).p(X2)NN 2 2 2lul+ 2 ] 21u29 )
X, ~N(,,0,7) o, +0, 0, $+0, O

* Multivariate

X ~N(u,2) r

— Y ~N(Au+B, AZ4")
Y=A4AX+B
XINN(MUZ]) 2, 2,

Uy, +

S +Z, 0 3+, -

X, ~ N(Mz,Ez)}: PR N(

*We stay in the “Gaussian world” as long as we start with
Gaussians and perform only linear transformations

|

DI Y

|
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Introduction to Kalman Filter (1)

 flg)
- 41\ 0= exp[—(j;’jl]
e Two measurements no dynamics om | 20
A . . 2 o
¢, = ¢, with variance o i
~ : . 2 8 Sl
4, = ¢, with variance G5 et L,
e \Weighted least-square i e
n . e :
n 2
§ =Y wlqg-q,)
i:] .........
e Finding minimum error - wd n. &

aS a n n
~ 2 ~
= ==Y w(qg—¢q,)" =2» w(qg—q,) =0
aq aqlzzl fgl
e After some calculation and rearrangements

~ (;2

q9=a,+5——=—q)

o] +0;5

e Another way to look at it — weigthed mean
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Discrete Kalman Filter

*Estimates the state x of a discrete-time controlled process
that is governed by the linear stochastic difference equation

X, = Atxt |+ Btut + €, <— Process dynamics

« with a measurement

zZ, = Ctxt + 51‘ <€<———  Observation model

Matrix (nxn) that describes how the state evolves from ¢-
A : .
! 1 to ¢ without controls or noise.
Bt Matrix (nxl) that describes how the control «, changes

the state from 1 to +.

C, Matrix (kxn) that describes how to map the state x, to
an observation z,.

E, Random variables representing the process and
measurement noise that are assumed to be
5 independent and normally distributed with covariance

t R, and Q,respectively.
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Robotics
Kalman Filter Updates in 1D
.| prediction measurement |
w/ It's a weighted mean!
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Kalman Filter Updates in 1D
e gam/ innovation

bel(x,) = My =y K (2, with K, = 9,
o} =(1-K,)3; 5 v,

=u+K (z,-C.u = =
bel(xt) _ {:ut U, t(Zt ttut) with Kt _ er,T (C¢2’CzT + Qt)_l

S =(I-KC)S

azs

azr

Q15

QoS -
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Kalman Filter Updates in 1D

— (U =a +b.u
bel(xt)=< fé Z‘Mt—l tzt

2 2
o, = d, Ot + Oact,t

r_tl'_lt =Au,_, +Bu,

bel(x,) =4
!
S =A% A +R




Robotics

Kalman Filter Updates

oz

azr

ais

LR

Q05 |-

o

Az

azr

Q15

LR

Q05 |
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0z

oz

Qs
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Linear Gaussian Systems: Initialization

e Initial belief is normally distributed:

bel(x,) = N(xo;l/‘()azo)
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Linear Gaussian Systems: Dynamics

® Dynamics are linear function of state and control
plus additive noise:

x =Ax_ +Bu, +¢,

p(xt |ut9xt—1) = N(xt;Atxt—l + Btuth)

@(Xt) =fp(X, | u;ax;_1) bel(xt—l) dxt—l

J U
~ N(xt;Atxt—l + Btut9Rt) ~ N(xt—l;:ut—lazt—l
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Linear Gaussian Systems: Dynamics
bel(x,) = [p(x, |u,.x,.) bel(x,.,) dx,

J U
~ N(‘xt;Atxt—l + Btut’Rt = N(xt—l;lut—l’zt—l)

U

— | _
bel(xt) = ﬂfexp{— E(xt - Atxt—l _Btut)TRt l(xt - Atxt—l - Btut)}

1 _
exp{— E (xt—l - U, )th—]l (xt—l - nut—l)} dxt—l

Aat = Atlut—l + Btut

bel(x,) = {E, A4S AT +R

1= t-1
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Linear Gaussian Systems: Observations

® Observations are linear function of state plus
additive noise:

z, =Cx, +0,
p(z,1x)=N(z:Cx,.0,)
bel(x)= n p(z,|x) b_ez<x>

J
NN(Z t z»Q) NNGt»xut? ]
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Linear Gaussian Systems: Observations

bel(xt)= n plz |xt) b_el(xz)
U J
NN(Zr;CrxtaQt) NNGt;;tﬁif
J

1 T -l ] TS -
bel(xt) =N eXp{—E(Zt - Ctx;) Q; (Zt _Ctxz)}exp{_g(xt - Iut) 2t (xt - Mt)}

U, = /'_‘t +Kt(Zt - Ctﬁt)

_ with K, =3C"(C=C +0)"
S =([-KC)Z

bel(x,) = {
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Kalman Filter Algorithm

1.

B W

O N O U

Algorithm Kalman_filter( us-1, X¢t-1, Us Z¢):

Prediction:
ALLt = Atll'tt—l + Btut
S =A4%,_ A +R,

1=t-1

Correction:
K =2C(CzC+0)"

U, =u, +Kt(Zt__CtAut)
Zt = (I_Ktct)zf

Return g 2t
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The Prediction-Correction-Cycle

& |

— u =a +bu
bel(xt)={fé tMt—l 7t

2 2 2
Ot = at Ot + Oact,t

ﬁt = Anut—l + Btut

bel(x) =12
e (xt) {2[ = AZ A[T +Rt

t“t=1
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The Prediction-Correction-Cycle

0z

=u, K(z, w) g’

bel(x,) = { oo ke KT

=u +K,(z,-Cu,) - s ]
bel(xt)= K, 21C (C, EIC £0)'
2 =(/-KC )2, L e .

o O
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The Prediction-Correction-Cycle

2 J—

| w=u+Ki(z-n) a, — =a +hu
bellx) =" o ey Kt == bel(x) = | L0~
at _( - t)at (Tf +()’(>hs.t Gl = af GTH *G‘:C’t
| u=u+K((z,-Cu S < 7 w, =4 +B
b@l(xt) = s (Z = )9Kt = ZlC[T(CIEIC[T +Q1)_1 bel(xt) = 5 ;ut (M T tut
Zt = (I"K,C/ )21 2 = AtEt—lAt +Rt
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Kalman Filter Summary

® Highly efficient: Polynomial in
measurement dimensionality k
and state dimensionality n:

O(k2-376 + n2)
® Optimal for linear Gaussian systems!

® Most robotics systems are nonlinear!



EXTENDED KALMAN FILTER (EKF)
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Nonlinear Dynamic Systems
® Most realistic robotic problems involve nonlinear functions
xt :g(uth—l)
Zy :h(xt)

e Extended Kalman filter relaxes linearity assumption
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Other Error Prop. Techniques

e Second-Order Error Propagation

Rarely used (complex expressions)

e Monte-Carlo

Non-parametric
representation of
uncertainties

1. Sampling from p(X)
2. Propagation of samples

3. Histogramming

4. Normalization

4

ply)
— Gaussian of p(y)

X Mean of p{y)

-4

¥=g(x)

— Function g{x)
= Meanp

O oW

0.5

P(x)
= Meanp
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First-Order Error Propagation

X,Y assumed to be Gaussian

Y=1X

X——» System i

Taylor series expansion

Yzf(MX)-l_g_];(X:uX(X_uX)

Wanted: u,, cy?,
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Jacobian Matrix

e It's a non-square matrix n x m in general

f1(x) ]

* Suppose you have a vector-valued function f(x) = [ Fa(x)
2

* Let the gradient operator be the vector of (first-order)
partial derivatives

_ 0 0 0
VX_ [ Ox1 oz,

8332

* Then, the Jacobian matrix is defined as

9f1 of1
fl (X) ] 5 5 0x1 .. D

F, — 2 L 2=
[ f2(x) [ 3 an | 9 0
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Jacobian Matrix

* It’ s the orientation of the tangent plane to the vector-
valued function at a given point

* Generalizes the gradient of a scalar valued function
* Heavily used for first-order error propagation...
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First-Order Error Propagation
Putting things together...

2
GX[ GXIX2 Y GXan
2 P 6, ©
X2 — Y Y Y. Y
CX = GXZXI GXZ Tt GXZXn X3 ———> System ! CY = 1 1=2
; z Y
X,———
Gy,y, Oy
2
GXnXI GXnX2 Y GXn

with o = 3(5) o1+ 33(5) ()

=3 (3) (%) 3.3 (53 G

—> “Is there a compact form?...”
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First-Order Error Propagation

® Input covariance matrix Cy
® Jacobian matrix Fy

the Error Propagation Law

C, = F,C,Fy

computes the output covariance matrix Cy
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Landmark-based Localization

EKF Localization: Basic Cycle

Odometry State Prediction
or IMU
> Measurement Data
Prediction Association

Feature/Landmark
Extraction

: Sensors /
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Landmark-based Localization

EKF Localization: Basic Cycle

posterior
encoder measurements state

: Og?melgry F, State Prediction

predicted
state

Update

innovation from
matched landmarks
landmarks in global

coordinates
> Measurement >
Prediction
predicted
measurements in
sensor coordinates
landmarks

Feature/Landmark
Extraction

Data
Association

raw sensory data

Sensors

Uy
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Robotics

Landmark-based Localization

State Prediction (Odometry)

Xy = f(Xp—1,uz)
Cv=F,Cr, FT + F, Uy FT

0

WA

Control u,: wheel displacements s, s,

2
o 0
U, = (Sl Sf,-)T U, = ! o
0 o
Error model: linear growth
o] = kl |Sl|
xk—]’yk—l’ek—l

Nonlinear process model f:
+sr 3 ] Sr—8
Th—1 % (—sin Ox_1 +sin(Op_1 + >=5))
X = | Yr—1 | + ii_i’; ( cos Or_1 — cos(Or—1 + 2=32))
ek_l S'rgsl

NN |
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Robotics

Landmark-based Localization

State Prediction (Odometry)

Xy = f(Xp—1,uz)
Cv=F,Cr, FT + F, Uy FT

T~

Control u,: wheel displacements s,

2
ur = (s; s,.)7 _|o 0
k= (51 8r) Us, 0 o
Error model: linear growth O
=K
o] = kl |Sl|
or = ky|s;|

Nonlinear process model f:
+sr 3 ] Sr—8
Th—1 % (—sin Ox_1 +sin(Op_1 + >=5))
X = | Yr—1 | + ii_i’; ( cos Or_1 — cos(Or—1 + 2=32))
ek_l S'rgsl

NN |
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Landmark-based Localization

y [m]

) | ! U 1
o o w N — o - N w o o

Landmark Extraction (Observation)

Raw laser Extracted
range data lines
— &t & & 3 A A |
5 :
4 \\\
3 t
2 \
E' o
N >0 ~ '.:_‘a."' 2
_1,/ :., ‘\/’ -
_3_
_4, ¥
S R EERER R R
x[m] x[m]

Hessian line model
z cos(a) +y sin(a) —r =0

Extracted lines
in model space

line j

=
&
R

v
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Landmark-based Localization

Measurement Prediction

® ...is a coordinate frame transform world-to-sensor

e Given the predicted state (robot pose),
predicts the location Z; and location . model space
uncertainty H Ci H' of expected r
observations in sensor coordinates %

Zk = h(f(k, m)
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Robotics

Landmark-based Localization

Data Association (Matching)

* Associates predicted measurements 2%

with observations z~l7€
% p , . model space
I/’C — Zk - Zk r l %
ij j i A iT
e Innovation and No match!!
innovation  ;; Wall was not
observed.

covariance Yk @

match j,i
I
nm¥e ¥

|
- 00 0 T

—

v

Green: observation
Magenta: measurement prediction
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Landmark-based Localization

Update

e Kalman gain

Ky =Cy HTS.! \
e State update (robot pose)

X = X + K vy
e State covariance update

Cr = (I — Ky, H) Cj,

Red: posterior estimate
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- Welch, G and Bishop, G. 2001. “An introduction to the Kalman Filter”,
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- Thrun, S. and Burgard, W. and Fox, D. “Probabilistic Robotics” MIT Press 2006
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