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Map based localization
?

• Odometry, Dead Reckoning
• Localization base on external sensors, 

beacons or landmarks
• Probabilistic Map Based Localization
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Odometry:Growth of Pose uncertainty for Movement on a Circle

• Note: Errors ellipse in does not remain perpendicular to the direction of movement!
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Odometry:example of non-Gaussian error model

• Note: Errors are not shaped like ellipses!

[Fox, Thrun, Burgard, Dellaert, 2000]

Courtesy AI Lab, Stanford
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Odometry: Calibration of Errors
• The unidirectional square path experiment
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Grid-based Representation - Multi Hypothesis
Courtesy of W.  Burgard
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Scan Matching:
compare to sensor data from previous scan
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SLAM overview
• Let us assume that the robot 
uncertainty at its initial location 
is zero. 

• From this position, the robot 
observes a feature which is 
mapped with an uncertainty 
related to the exteroceptive
sensor error model
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SLAM overview
• As the robot moves, its pose 
uncertainty increases under the 
effect of the errors introduced 
by the odometry
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SLAM overview
• At this point, the robot observes two 

features and maps them with an 
uncertainty which results from the 
combination of the measurement 
error with the robot pose uncertainty

• From this, we can notice that the 
map becomes correlated with the 
robot position estimate. Similarly, if 
the robot updates its position based 
on an observation of an imprecisely 
known feature in the map, the 
resulting position estimate becomes 
correlated with the feature location 
estimate.
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SLAM overview
• The robot moves again and its 
uncertainty increases under the 
effect of the errors introduced 
by the odometry
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SLAM overview
• In order to reduce its uncertainty, the 

robot must observe features whose 
location is relatively well known. 
These features can for instance be 
landmarks that the robot has already 
observed before. 

• In this case, the observation is called 
loop closure detection.

• When a loop closure is detected, the 
robot pose uncertainty shrinks. 

• At the same time, the map is 
updated and the uncertainty of other 
observed features and all previous 
robot poses also reduce
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The Three SLAM paradigms
• Most of the SLAM algorithms are based on the following three different 

approaches:
• Extended Kalman Filter SLAM: (called EKF SLAM)
• Particle Filter SLAM: (called FAST SLAM)
• Graph-Based SLAM
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• FastSLAM approach
• Using particle filters. 
• Particle filters: mathematical models that represent 

probability distribution as a set of discrete 
particles that occupy the state space.

• Particle filter update
• Generate new particle distribution using motion 

model and controls 
a) For each particle:

1. Compare particle’s prediction of measurements with actual measurements
2. Particles whose predictions match the measurements are given a high weight

b) Filter resample:
• Resample particles based on weight
• Filter resample

• Assign each particle a weight depending on how well its estimate of the state agrees with the measurements and 
randomly draw particles from previous distribution based on weights creating a new distribution.

Particle Filter SLAM: FastSLAM
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FAST SLAM example 
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Courtesy of S. Thrun
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FAST SLAM example
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Courtesy of S. Thrun
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Map based localization
?

• Odometry, Dead Reckoning
• Localization base on external sensors, 

beacons or landmarks
• Probabilistic Map Based Localization
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ICP: Iterative Closest Points Algorithm

• Align two partially-
overlapping point sets (2D or 3D)

• Given initial guess
for relative transform

Material derived from Ronen Gvili :   www.cs.tau.ac.il/~dcor/Graphics/adv-slides/ICP.ppt
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Data Types
• Point sets
• Line segment sets (polylines)
• Implicit curves  : f(x,y,z) = 0
• Parametric curves : (x(u),y(u),z(u))
• Triangle sets (meshes)
• Implicit surfaces : s(x,y,z) = 0
• Parametric surfaces (x(u,v),y(u,v),z(u,v)))
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Motivation
• Scan Matching -

Registration
• Shape inspection
• Motion estimation
• Appearance 

analysis
• Texture Mapping
• Tracking
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Aligning 3D Data
• Continuous lines or a set of points…
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Corresponding Point Set Alignment
• Let M be a model point set. (or map or previous scan) 
• Let S be a scene point set. (current scan)

We assume :
1. NM = NS.
2. Each point Si correspond to Mi .
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Corresponding Point Set Alignment

The Mean Squared Error (MSE) objective function :

The alignment is :
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Aligning 3D Data
• If correct correspondences are known, can find correct relative 
rotation/ translation, e.g. using Horn’s method
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Horn’s method
• Input

• Two point sets: 𝑋 and 𝑌
• Output

• Rotation matrix 𝑅
• Translation vector 𝒕

X Y

𝑅 and 𝒕

Material by Toru Tamaki, Miho Abe, 
Bisser Raytchev, Kazufumi Kaneda
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Horn’s method: correspondence is known.
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Horn’s method: correspondence is known.
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Aligning 3D Data
• How to find correspondences:  User input? Feature detection?  
Signatures?

• Alternative: assume closest points correspond
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Aligning 3D Data
• How to find correspondences:  User input? Feature detection?  
Signatures?

• Alternative: assume closest points correspond
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Aligning 3D Data
• Converges if starting position “close enough“
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Closest Point

• Given 2 points r1 and r2 , the Euclidean 
distance is:

• Given a point r1 and set of points A , the 
Euclidean distance is:
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Finding Matches

• The scene shape S is aligned to be in the best 
alignment with the model shape M.

• The distance of each point s of the scene from the 
model is :
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Finding Matches 
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C – the closest point operator

Y – the set of closest points to S
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Finding Matches 

• Finding each match is performed in O(NM) 
worst case.

• Given Y we can calculate alignment

• S is updated to be :

),(),,( YSdtransrot F=

transSrotSnew += )(
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ICP: correspondence is unknown.
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ICP: correspondence is unknown.
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ICP: correspondence is unknown.
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The Algorithm

Init the error to ∞

Calculate correspondence

Calculate alignment

Apply alignment

Update error

If error > threshold

Y = CP(M,S),e

(rot,trans,d)

S`= rot(S)+trans

d` = d
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The Algorithm
function ICP(Scene,Model)
begin
E` ß + ∞;
(Rot,Trans) ß In Initialize-Alignment(Scene,Model);
repeat 

E ß E`;
Aligned-Scene ß Apply-Alignment(Scene,Rot,Trans);
Pairs ß Return-Closest-Pairs(Aligned-Scene,Model);
(Rot,Trans,E`) ß Update-Alignment(Scene,Model,Pairs,Rot,Trans);

Until |E`- E|  < Threshold
return (Rot,Trans);
end    
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Convergence Theorem
• The ICP algorithm always converges monotonically to a local minimum with 

respect to the MSE distance objective function.
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Time analysis
Each iteration includes 3 main steps 

A.  Finding the closest points :  
O(NM) per each point
O(NM*NS) total.

B. Calculating the alignment: O(NS)
C. Updating the scene: O(NS)
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Optimizing the Algorithm
The best match/nearest neighbor problem :  
Given N records each described by K real values (attributes)  , and 
a dissimilarity measure D , find the m records closest  to a query 
record.
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Optimizing the Algorithm
• K-D Tree :

Construction time: O(kn log n)
Space: O(n)
Region Query : O(n1-1/k+k ) 
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Time analysis
Each iteration includes 3 main steps

A.  Finding the closest points :  
O(NM) per each point
O(NMlogNS) total.

B. Calculating the alignment: O(NS)

C. Updating the scene: O(NS)
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ICP Variants

• Variants on the following stages of ICP
have been proposed:

1. Selecting sample points (from one or both point clouds)
2. Matching to points to a plane or mesh
3. Weighting the correspondences
4. Rejecting certain (outlier) point pairs
5. Assigning an error metric to the current transform
6. Minimizing the error metric w.r.t. transformation
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Performance of Variants
• Can analyze various aspects of performance:

• Speed
• Stability
• Tolerance of noise and/or outliers
• Maximum initial misalignment
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ICP Variants

1. Selecting sample points (from one or both 
meshes).

2. Matching to points to a plane or mesh
3. Weighting the correspondences.
4. Rejecting certain (outlier) point pairs.
5. Assigning an error metric to the current 

transform.
6. Minimizing the error metric w.r.t. 

transformation.
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Rejecting Pairs

• Corresponding points with point to point distance 
higher than a given threshold.

• Rejection of worst n% pairs based on some metric. 
• Pairs containing points on end vertices.
• Rejection of pairs whose point to point distance is 

higher than n*σ.
• Rejection of pairs that are not consistent with their 

neighboring pairs  [Dorai 98] :
(p1,q1) , (p2,q2) are inconsistent iff

thresholdqqDistppDist >- ),(),( 2121
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Rejecting Pairs

Distance thresholding
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Rejecting Pairs

Points on end vertices
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Rejecting Pairs

Inconsistent Pairs

p1 p2

q2

q1
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ICP Variants

1. Selecting sample points (from one or both 
meshes).

2. Matching to points to a plane or mesh.
3. Weighting the correspondences.
4. Rejecting certain (outlier) point pairs.
5. Assigning an error metric to the current 

transform.
6. Minimizing the error metric w.r.t. 

transformation.
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Other registration methods exist
• Robust point matching (soft point correspondences)
• Coherent point drift
• Kernel correlation
• Approximations of the squared distance functions to 

curves and surfaces

• Feature extracting methods 
• Corners in point clouds
• Lines
• Planes

• Spectral methods
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Fourier Mellin Transform
• Spectral based registration: detection of scaling, rotation and translation in 2 subsequent frames
• Processing spectrum magnitude decouples translation from affine transformations

• Detection of signal shift between 2 signals by phase information
• Resampling to polar coordinates → Rotation turns into signal shift !
• Resampling the radial axis from linear to logarithmic presentation

→ Scaling turns into signal shift !
• Calculate a Phase Only Match Filter (POMF) on the resampled magnitude spectra
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3D Scan matching using Spectral Method FMI
Flood Gate (sonar) Crashed car park

Disaster City  (3D LRF)
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Graph-Based SLAM (1/3)
• SLAM problem can be interpreted as a sparse graph of nodes and constraints between nodes.
• The nodes of the graph are the robot locations and the features in the map.
• Constraints: relative position between consecutive robot poses , (given by the odometry input u) and the relative 

position between the robot locations and the features observed from those locations.
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Graph-Based SLAM (2/3)
• Constraints are not rigid but soft constraints!
• Relaxation: compute the solution to the full SLAM problem =>

• Compute best estimate of the robot path and the environment map. 
• Graph-based SLAM represents robot locations and features as the nodes of an elastic net. The SLAM solution can 

then be found by computing the state of minimal energy of this net
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Graph-Based SLAM (3/3)
• Significant advantage of graph-based SLAM techniques over EKF SLAM: 

• EKF SLAM: computation and memory for to update and store the covariance matrix is 
quadratic with the number of features.

• Graph-based SLAM: update time of the graph is constant and the required memory is linear 
in the number of features.

• However, the final graph optimization can become computationally costly if the 
robot path is long.
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3D Mapping
• Using 2.5D Sensors:

• Create depth images –
suffer from occlusion

• Actuated LRF
• 3D LRF (Velodyne, Riegel, Faro)
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Davide Scaramuzza and
Roland Siegwart, ETH Zurich



3D Range
Sensing

Plane 
Extraction
Planar Scan 
Matching

Pose Graph ...
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Closing Errors

Jacobs 3D Mapping – Plane Mapping
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Plane Extraction from 3D Point Clouds
l Plane Fitting

l Assumes 3D sensor has radial Gaussian noise dependent on range
l Uses Approximate Least Squares solution to find  the best fit.
l Estimates covariance matrix of the plane parameters 

l Range Image Segmentation
l Is based on region growing algorithm
l Uses incremental formulas, therefore is fast
l Has linear computational complexity 
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Given a range image, returns a polygonal model i.e. a set 
of planar features and boundaries. 



An Example

Segments range image consisting of ~2∙105 pixels in ~3s. On 1.6 Ghz machine.

Segmentation Image Polygonal 3D Model
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One Point Cloud with human
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One Plane Cloud with human



Relaxation of Errors (Translation)

l Only translation errors are relaxed
l Good rotation estimates from the plane matching
l Non-linear optimization can be exchanged with linear if rotation is 

assumed to be known precisely. 
l This leads to a fast relaxation method
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Experiment Lab Run: 29  3D point-clouds; size of each: 541 x 361 = 195,301



Collect and Generate 3D Maps
Example: Bremen City Center
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Thank you!
( 3D Map of WWII Bunker Valentin – 2nd biggest in Europe)
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Aerial Map (Mosaic)
• Rubble pile and train
• 435 frames
• Real time generation of map
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