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Important Info!

• Exam:

• Place: Here (Robotics Teaching Lab)

• Time: Dec 17th, 10:00 – 12:00

• Material allowed:

• Any robotics book 

• Any other printed material except:

• Material not allowed:

• Printout of any lecture slides (handwritten copies are ok)

• Any electronics (Computer, Smartphone, Smartwatch, Calculator, …)

• Paper will be provided – bring your own pens ;)

• Only answers given in English will be accepted.
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Why Autonomous Mobile Robotics?
• Tele-operated robots: boring and inefficient
• Autonomous robots: Robots that act by their own reasoning

• Human operator might be present: Gives high level tasks
• Why autonomy?

• Autonomous behaviors might be better than remote control by humans
• Remote control might be boring or stressful and tiresome 
• Human operators might be a scarce resource or expensive
• Multi robot approaches: One operator for many robots

• Semi-autonomy:
• Autonomous behaviors that help the operator, for example:
• Way-point navigation, autonomous stair climbing, assisted manipulation
• Gradual development from tele-operation to full autonomy possible
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• Autonomous mobile robots 
move around in the 
environment. Therefore ALL of 
them:
• They need to know where they 

are.
• They need to know where their 

goal is.
• They need to know how to get 

there.

• Where am I?
• Global Positioning System: 

outdoor, meters of error
• Guiding system: (painted lines, 

inductive guides), markers, 
iBeacon

• Model of the environment (Map), 
Localize yourself in this model
• Build the model online: Mapping
• Localization: determine position by 

comparing sensor data with the map
• Do both at the same time: 

Simultaneous Localization and 
Mapping (SLAM)
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• Autonomous mobile robots 
move around in the 
environment. Therefore ALL of 
them:
• They need to know where they 

are.
• They need to know where their 

goal is.
• They need to know how to get 

there.

• Where is my goal?
• Two part problem:

• What is the goal?
• Expressed using the world model 

(map)
• Using object recognition
• No specific goal (random)

• Where is that goal?
• Coordinates in the map
• Localization step at the end of the 

object recognition process
• User input
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• Autonomous mobile robots 
move around in the 
environment. Therefore ALL of 
them:
• They need to know where they 

are.
• They need to know where their 

goal is.
• They need to know how to get 

there.

• Different levels:
• Control:

• How much power to the motors to 
move in that direction, reach desired 
speed

• Navigation:
• Avoid obstacles
• Classify the terrain in front of you
• Predict the behavior (motion) of other 

agents (humans, robots, animals, 
machines)

• Planning:
• Long distance path planning
• What is the way, optimize for certain 

parameters
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Overview Hardware
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Micro Controller:
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PC:
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Right Hand Coordinate System
• Standard in Robotics
• Positive rotation around X is 

anti-clockwise
• Right-hand rule mnemonic:

• Thumb: z-axis
• Index finger: x-axis 
• Second finger: y-axis
• Rotation: Thumb = rotation axis, 

positive rotation in finger direction
• Robot Coordinate System:

• X front
• Z up   (Underwater: Z down)
• Y ???
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3D Rotation

• Euler angles: Roll, Pitch, Yaw

• L Singularities 

• Quaternions:
• Concatenating rotations is computationally faster 

and numerically more stable

• Extracting the angle and axis of rotation is 
simpler

• Interpolation is more straightforward 

• Unit Quaternion: norm = 1

• Scalar (real) part:  !" , sometimes !#
• Vector (imaginary) part: q
• Over determined: 4 variables for 3 DoF
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Position, Orientation & Pose
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Translation, Rotation & Transform
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• Translation:
•
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Transform in 3D
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In ROS: Quaternions!  (w, x, y, z) 
Uses Bullet library for Transforms



Transforms
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In ROS
• First Message at time 97 : G (frame_id)
• This Message at time 103  : X
• Next Message at time 107 : X+1

• Take a look at the other related Pose or Transform messages in ROS!
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General Control Scheme for Mobile Robot Systems
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Two Approaches
§ Classical AI

(model based navigation)

§ complete modeling
§ function based
§ horizontal 

decomposition
§ New AI

(behavior based navigation)

§ sparse or no modeling
§ behavior based
§ vertical decomposition
§ bottom up

§ Possible Solution
§ Combine Approaches
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Sensors: outline
• Optical encoders
• Heading sensors

• Compass
• Gyroscopes

• Accelerometer
• IMU
• GPS
• Range sensors

• Sonar
• Laser
• Structured light

• Vision

IR camera

stereo camera

Pan, tilt, zoom camera
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Classification of Sensors
• What:

• Proprioceptive sensors 
• measure values internally to the system (robot), 
• e.g. motor speed, wheel load, heading of the robot, battery status 

• Exteroceptive sensors 
• information from the robots environment
• distances to objects, intensity of the ambient light, unique features.

• How:
• Passive sensors 

• Measure energy coming from the environment 
• Active sensors 

• emit their proper energy and measure the reaction 
• better performance, but some influence on environment 
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In Situ Sensor Performance (2)
• Error / Accuracy

• How close to true value
• Precision

• Reproducibility

• Systematic error -> deterministic errors
• caused by factors that can (in theory) be 

modeled -> prediction
• e.g. calibration of a laser sensor or of the 

distortion cause by the optic of a camera

• Random error -> non-deterministic
• no prediction possible
• however, they can be described probabilistically 
• e.g. Hue instability of camera, black level noise of camera ..
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Inertial Measurement Unit (IMU)
• Device combining different measurement systems:

• Gyroscopes, Accelerometers, Compass 

• Estimate relative position (x, y, z), orientation (roll, pitch, yaw), velocity, and 
acceleration

• Gravity vector is subtracted to estimate motion
• Initial velocity has to be known

Xsens MTI
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IMU Error and Drift
• Extremely sensitive to measurement errors in gyroscopes and 

accelerometers: 
• drift in the gyroscope unavoidably => 
• error in orientation relative to gravity => 
• incorrect cancellation of the gravity vector. 

• Accelerometer data is integrated twice to obtain the position => gravity vector 
error leads to quadratic error in position. 

• All IMUs drift after some time
• Use of external reference for correction: 
• compass, GPS, cameras, localization
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Range sensors
• Sonar      ------------------------------------------------------->

• Laser range finder  --->

• Time of Flight Camera   ------------------------------------->

• Structured light ---------->
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LINE EXTRACTION

Split and merge 
Linear regression
RANSAC
Hough-Transform



Algorithm 3: RANSAC ALL-INLIER SAMPLE
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Algorithm 4: Hough-Transform
Effect of Noise
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Digital Color Camera
• Bayer Pattern:

• 50% green, 25% red and 25% blue =>
• RGBG or GRGB or  RGGB.
• 1 Byte per square
• 4 squared per 1 pixel
• More green: eyes are more sensitive to green (nature!)

A micrograph of the corner of the photosensor 
array of a ‘webcam’ digital camera. 
(Wikimedia) 
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Computer Vision: 
Perspective Projection onto the image plane
§ To project a 3D scene point P = (x,y,z) [meters] onto the 

camera image plane p=(u,v) [pixels] we need to consider:

§ Pixelization: size of the pixel and position of the CCD 
with respect to the optical center

§ Rigid body transformation between camera and scene

§ u = v = 0: where z-Axis passes trhough center of lens – z-
Azis prependicular to lens (coincident with optical axis)

Simple case 
(without pixelization)

With pixelization
u0, v0 are the coordinates 

of the optical center
Ku and Kv are in [pxl/m]
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Camera Calibration

§ How many parameters do we need to model a camera?
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§ 5 “intrinsic” parameters: αu, α v, u0, v0, k1

§ Camera pose?
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Stereo Vision – the general case
• Two identical cameras do not exist in nature!
• Aligning both cameras on a horizontal axis is very hard, also with the most expensive stereo 

cameras!

• In order to be able to use a stereo camera, we need first to estimate the relative pose between 
the cameras, that is, Rotation and Translation

• However, as the two cameras are not identical, we need to estimate:
focal length, image center, radial distortion
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Stereo Vision: Correspondence Problem
§ Matching between points in the two images which are projection of the 

same 3D real point
§ Correspondence search could be done by comparing the observed 

points with all other points in the other image. Typical similarity measures 
are the Correlation and image Difference. 

§ This image search can be computationally very expensive! Is there a way 
to make the correspondence search 1 dimensional?
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Spatial filters
• Let Sxy denote the set of coordinates of a neighborhood centered on an arbitrary point (x,y) in an image I
• Spatial filtering generates a corresponding pixel at the same coordinates in an output image I’ where the value of that 

pixel is determined by a specified operation on the pixels in Sxy

• For example, an averaging filter is: 
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Smoothing filters (1)
• A constant averaging filter yields the standard average of all the pixels in the mask. For a 3x3 mask this writes:

• where notice that all the coefficients sum to 1. This normalization is important to keep the same value as the original 
image if the region by which the filter is multiplied is uniform.

ShanghaiTech University - SIST - Nov 26 2019

This example was generated with a 21x21 mask
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Smoothing filters (2)
• A Gaussian averaging write as

• To generate, say, a 3x3 filter mask from this function, we sample it about its center. For example, with 
σ=0.85, we get

• Very popular: Such low-pass filters effectively removes high-frequency noise =>
• First derivative and especially the second derivative of intensity far more stable
• Gradients and derivatives  very important in image processing =>
• Gaussian smoothing preprocessing popular first step in computer vision algorithms
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Edge Detection
• Ultimate goal of edge detection 

• an idealized line drawing. 

• Edge contours in the image correspond to important scene contours.
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The Canny Edge Detector
• Consider  

Laplacian of Gaussian
operator

§ Where is the edge?  § Zero-crossings of bottom graph
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The Sobel edge detector

thinning
(non-maxima suppression)
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IMAGE FEATURES
• Lines
• Points

•Harris
•SIFT



SLAM overview
• Let us assume that the robot 
uncertainty at its initial location 
is zero. 

• From this position, the robot 
observes a feature which is 
mapped with an uncertainty 
related to the exteroceptive
sensor error model
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SLAM overview
• As the robot moves, its pose 
uncertainty increases under the 
effect of the errors introduced 
by the odometry
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SLAM overview
• At this point, the robot observes two 

features and maps them with an 
uncertainty which results from the 
combination of the measurement 
error with the robot pose uncertainty

• From this, we can notice that the 
map becomes correlated with the 
robot position estimate. Similarly, if 
the robot updates its position based 
on an observation of an imprecisely 
known feature in the map, the 
resulting position estimate becomes 
correlated with the feature location 
estimate.
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SLAM overview
• The robot moves again and its 
uncertainty increases under the 
effect of the errors introduced 
by the odometry
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SLAM overview
• In order to reduce its uncertainty, the 

robot must observe features whose 
location is relatively well known. 
These features can for instance be 
landmarks that the robot has already 
observed before. 

• In this case, the observation is called 
loop closure detection.

• When a loop closure is detected, the 
robot pose uncertainty shrinks. 

• At the same time, the map is 
updated and the uncertainty of other 
observed features and all previous 
robot poses also reduce
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The Three SLAM paradigms
• Most of the SLAM algorithms are based on the following three different 

approaches:
• Extended Kalman Filter SLAM: (called EKF SLAM)
• Particle Filter SLAM: (called FAST SLAM)
• Graph-Based SLAM
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Grid-based Representation - Multi Hypothesis
Courtesy of W.  Burgard
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Map Representation:Continuous Line-Based
a) Architecture map
b) Representation with set of finite or infinite lines
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Map Representation: Approximate cell decomposition (1)
• Fixed cell decomposition

• Narrow passages disappear
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• For example: Quadtree

Map Representation: Adaptive cell decomposition (2)
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Map Representation: Occupancy grid
• Fixed cell decomposition: occupancy grid example

• In occupancy grids, each cell may have a counter where 0 indicates that the cell has not 
been hit by any ranging measurements and therefore it is likely free-space. As the number 
of ranging strikes increases, the cell value is incremented and, above a certain threshold, 
the cell is deemed to be an obstacle

• The values of the cells are discounted when a ranging strike travels through the cell. This 
allows us to represent “transient” (dynamic) obstacles

Courtesy of S. Thrun
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ICP: Iterative Closest Points Algorithm

• Align two partially-
overlapping point sets (2D or 3D)

• Given initial guess
for relative transform

Material derived from Ronen Gvili :   www.cs.tau.ac.il/~dcor/Graphics/adv-slides/ICP.ppt
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The Algorithm

Init the error to ∞

Calculate correspondence

Calculate alignment

Apply alignment

Update error

If error > threshold

Y = CP(M,S),e

(rot,trans,d)

S`= rot(S)+trans

d` = d
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Work Space (Map) à Configuration Space

• State or configuration q can be described with k values qi

• What is the configuration space of a mobile robot?

Work Space Configuration Space: 
the dimension of this 

space is equal to the Degrees of Freedom (DoF) 
of the robot
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Potential Field Path Planning Strategies
• Robot is treated as a point under the 

influence of an artificial potential field.
• Operates in the continuum

• Generated robot movement is similar to a 
ball rolling down the hill

• Goal generates attractive force
• Obstacle are repulsive forces
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Graph Search Strategies: A* Search
• Similar to Dijkstra‘s algorithm, except that it uses a heuristic function h(n)
• f(n) = g(n) + ε h(n)
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Robot Arm: Joints
• Revolute Joint: 1DOF

• Prismatic Joint/ Linear Joint: 1DOF

• Spherical Joint: 3DOF
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Robot Arm: Link

• A link is considered as a rigid body which defines the relationship 
between two neighboring joint axes of a manipulator.

Link n

q n+1a n
q n

Joint n+1
Joint n

z n

x n

x n+1

z n+1

x n

z n
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Link and Joint Parameters
4 parameters are associated with each link. You
can align the two axis using these parameters.

• Link parameters:
an the length of the link.
an the twist angle between the joint axes.

• Joint parameters:
qn the angle between the links.
dn the distance between the links
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Links Numbering Convention

Base of the arm: Link-0
1st moving link: Link-1

. .

. .

. .
Last moving link: Link-n

A 3-DOF Manipulator Arm

0

1

2
3

Link 0

Link 1

Link 2
Link 3
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Frames
• Choose the base and tool coordinate frame 

• Make your life easy!

• Several conventions
• Denavit Hartenberg (DH), modified DH, Hayati, etc.
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Kinematics
Forward Kinematics (angles to position)    (it is straight-forward -> easy)

What you are given:  The length of each link
The angle of each joint

What you can find:  The position of any point (i.e. it’s  (x, y, z) coordinates)

Inverse Kinematics (position to angles) (more difficult)

What you are given: The length of each link
The position of some point on the robot

What you can find: The angles of each joint needed to obtain that position
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Kinematics
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Cartesian Space

Tool Frame (E)
(aka End-Effector)
Base Frame (B)
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Joint Space

Joint 1 = q1
Joint 2 = q2
Joint 3 = q3

…
Joint n = qn
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Forward
Kinematics

Inverse
Kinematics

Rigid body transformation
Between coordinate frames

Linear algebra
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Inverse Kinematics (IK)
• Given end effector position, compute required joint angles
• In simple case, analytic solution exists

• Use trig, geometry, and algebra to solve

• Generally (more DOF) difficult
• Use Newton’s method
• Often more than one solution exist!
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Iterative IK Solutions

• Frequently analytic solution is infeasible
• Use Jacobian
• Derivative of function output relative to each of its inputs
• If y is function of three inputs and one output
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• Represent Jacobian J(X) as a 1x3 matrix of partial derivatives
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Kinematic Problems for Manipulation
• Reliably position the tip - go from one position to another position 

• Don’t hit anything, avoid obstacles

• Make smooth motions
• at reasonable speeds and 

• at reasonable accelerations

• Adjust to changing conditions -
• i.e. when something is picked up respond to the change in weight
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Graph Search Strategies: Randomized Search
• Most popular version is the rapidly exploring random tree (RRT)

• Well suited for high-dimensional search spaces
• Often produces highly suboptimal solutions
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RRT
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ROS Basics
• Different components, modules, algorithms run in different processes: nodes
• Nodes communicate using messages (and services …)
• Nodes publish and subscribe to messages by using names ( topics )
• Messages are often passed around as shared pointers which are

• “write protected” using the const keyword 
• The shared pointers take the message type as template argument
• Shared pointers can be accessed like normal pointers

• Talker/ Listener example
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End-to-End Deep Learning
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Environment Model
Local Map

Position
Global Map

Actuator Commands
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Sensing

Raw data

Acting

Actuator Commands

Deep Learning
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Problems with Deep Learning
• 99% success rate sounds good, but 1% failure is often unacceptable (e.g. autonomous car)

• Failures are unavoidable => 
• need quality estimate/ uncertainty of the result!
• Often not available for DL L

• Lack of theory regarding deep learning
• Acts like a black box…

• No introspection of how or why a DL system is behaving like it is =>
• No safety guarantees possible

• Deep learning only part of an overall AI system
• Hand-crafted methods can still be very powerful
• Modelling useful (with input from DL)
• Statistical methods
• Reasoning
• Planning
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Ethical AI: Many open questions and topics:
• Autonomy and liability
• Ethical principles in robotics
• Defining ethical guidelines for the 

design, use and operation of robots
• Enhancement technologies: ethical 

issues
• Privacy and the management of 

personal data
• Ethical frameworks: universal or 

region specific?
• The role of industry and society in the 

definition of safety standards
• AI technology to block unethical/ 

mendacious social-media 
communication

• Accountability in autonomous 
systems

• Transparency in autonomous 
systems

• Embedding values and norms into 
intelligent systems

• Ethics and standardization
• Raising ethical awareness among 

stakeholders
• Political and legal frameworks
• Formal and mathematical frameworks 

for robot ethics
• Implementations and engineering 

studies
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What is a Kalman Filter?
• Recursive data processing algorithm
• Generates optimal estimate of desired quantities 
given the set of measurements

• Optimal?
• For linear system and white Gaussian errors, Kalman 

filter is “best” estimate based on all previous 
measurements

• For non-linear system optimality is ‘qualified’
• Recursive?

• Doesn’t need to store all previous measurements and 
reprocess all data each time step
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Gaussians

p(x) ~ N(µ,s 2 ) :

p(x) = 1
2ps

-
e 2

1 (x-µ )2
s 2

-s s

µ
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Theoretical Basis

ŷ-
k = Ayk-1 + Buk

P-
k = APk-1AT + Q

Prediction (Time Update)

(1) Project the state ahead

(2) Project the error covariance ahead

Correction (Measurement Update)

(1) Compute the Kalman Gain

(2) Update estimate with measurement zk

(3) Update Error Covariance

ŷk = ŷ-
k + K(zk - H ŷ-

k )

K = P-
kHT(HP-

kHT + R)-1

Pk = (I - KH)P-
k
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QUESTIONS ? J
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