iR = R N
AFEEANOZ T (GR30)

Monocular Visual Odometry on the GPU

E %, 2012 4§
2= =, 20122779
o & EJE4:S
Ak Bzt
FESHI: ERET

SOren Schwertfeger

FERZBERFERREEH GE30

Bt & B BB S RN a4 Hahtt
EZ 2012 %% w4 (EE s

H

i H Monocular Visual Odometry on the GPU

BT
¥

RS HUM (&%)
WA
¥

WA (%)
L
ERERREL (%)

FRBAFARELEI (30

Edligit (830 EFH

HE % HAk 2 BF R R 2 5 20122779
R H 1. 2015411 A 30 H S HBA: 2016 £ 6 H 4 H

il H Monocular Visual Odometry on the GPU

1. ARCHHK. BX

One of the main challenges of mobile robotics is to know the location of the robot as it

moves in the environment. This is important to build a map of the environment, to follow a

pre-computed path and to assess the progress towards the high level task goals of the

system. Visual data from cameras provide lots of data with a high update rate. Using this

visual data to estimate the odometry of a moving system and thus estimating its location is

a widely investigated approach in robotics. Achieving a high update rate, preferably with

real time performance, will allow for more accurate localization. Utilizing the Graphics

Processing Unit (GPU) for this computation vields in high processing speeds and high

efficiency. Using and improving state of the art open source software this project will

enable robots to utilize a single camera for efficient and real-time localization.

2. AN TERIAESS

1. Read and understand state of the art literature on visual odometry and write the

respective part of the thesis document.

2. Use available open source software to quickly reach the state of the art.

3. Devise and perform experiments to test the localization accuracy of the system.

4. Improve the theoretical and/ or implementation aspects of the used software packages

with respect to accuracy, usability or speed.

5. Use experiments to measure and document the achieved improvements.

Col

EREAZ AR LI (830

3. WA WA NEEES: (318 D

St

% —¥4r__ Literature research. (3/A)

B ¥B4r Develop monocular visual odometry system on the GPU using available

open source software. (4)
H=%% Develop and perform experiments. (2 F)
HPUEE4r Improve certain aspects of the system. (5 H)

L4 Document improvements using experiments and finish the thesis. (3 &)

VB 1% (174)

& S #UM: 2015411 A 30 H
2015 4 11 A 30 H

R AN 20154 H H

o | I

FRBAFARELEI (30

Abstract

Monocular visual odometry is an important topic in computer vision, which can apply
in computing the location and path of the robot as it moves in the environment.

This thesis is a study and research about monocular visual odometry as well as
practical implementation and experimentation of its theory. With monocular visual
odometry we can estimate the camera pose transformation between images taken by a
single camera at different points in time.

The algorithm starts by describing the SIFT (Scale-Invariant Feature Transform)
features and using SiftGPU for feature extraction and feature matching. On the basis of a
depth study and research on its mathematical foundation, epipolar geometry, the
fundamental matrix and essential matrix are described and derived as a highlight. Besides,
there is an introduction to camera calibration and the image coordinates normalization.

The main algorithm of this thesis is the five-point algorithm with RANSAC (Random
Sample Consensus) to exclude outliers. The five-point algorithm, which is calculating the
essential matrix, is using the matched feature points which contain outliers. Also this
calculation does not exclude the pseudo-solutions. Therefore, using a single five-point
algorithm to get the correct essential matrix to get the camera pose transformation is not
reliable. This thesis's code is written by c++ language contained Eigen library,
programming to achieve the five-point algorithm with RANSAC to exclude the outliers of
the feature matching and the wrong roots of the essential matrix. This thesis describes the
algorithm with a lot of space, and explains how to use the epipolar constraint and Sampson
distance to check outliers, this method make the results greatly improved.

The theories and methods introduced in this thesis have been verified by the
implementation, as can be seen in the tables of the experiments, using the five-point
algorithm with RANSAC can calculate the relative pose transform between two images

taken by a single camera at the same scene reliably.

Keywords: Monocular Visual Odometry; Epipolar Geometry; Five-point Algorithm;
RANSAC,; SiftGPU

o | [)

EREAZ AR LI (830

m R

B H M AR 2 T EAL A B — A B LR, e R N TR LS R4 B A
FEAT, XIHLER NIRRT I 4

AR B H A AR B 5 S 7T, LA BRI SE Bk 5 e, R s
FEALAEAS 5] i R 40 55 () PR A T HAHATL I SR AR e

WNEEND T SIFT (Scale—Invariant Feature Transform) 454E, FfH ¥
T SiftGPU X EMG AT RHEIR BV S ULHC o R SCAEIR AN 2 20 1 H A 3R XA) LA
LR b, H R HE SRR AT R B R . RN T R e AL A SR BB AL BR
AT H— B TT

A S H L) S 2 K) RANSAC (Random Sample Consensus) HER: 5 4) T
MUEE . T TSR A A e A A UL R AR AT A B R v, R EN R
AR BAT ORI HERR o PRI, B0 B Ok T U SRR IR S IR W B R A LA S
A) A FLFE R AN R o AR SRS T Eigen FEM c++ARHS, ZwfSciil 14
FH RANSAC #EAT 57 B R I ORI A i 0 B O e RO HE B 1) T s . SO T KR
AT ZEE, FEHNA T W AR ZR 20 SR AT Sampson BR & AT F 0 AE R, X
WA 2 IR RS o 1R ORI BRR S TR A NS S, al i B e
SEIG AR R AE AT DU, R A RANSAC [T s S50y mT DA DAy IE A R st ok 55
15 AN A ALAE [R]— S s 0 00 P i [B AR AT AL IR AR X S AR e

KRR HHM IR XU TR RANSAC; SiftGPU

IV R

AERZBAFARENZHT G830

Contents

1 INtroducCtioN.veii 1
1.1 The Significance and Background of the Thesis.............................. 1
1.1.1 The Significance of Monocular Visual Odometry..................... 1
1.1.2 Current Research Situation at Home and Abroad 2

1.2 Monocular Visual Odometryocoooiii 4
121 Fundamental..........c.ooiiiiiiiii 4
1.2.2 Method and t0olscocoeiiiiiiiiiiiiii 5
1.2.3 The Overall Algorithm Flowchart...................... 7

1.3 The Main Content of the Thesiscoooiiiiiiiiiiiiiiiiii 7
1.4 Thesis structural arrangements................cooooiiiiii 8
2 Theory and Preparation.................oooiiiii 10
2.1 Overview of ROS.... ..o 10
211 Whatis ROS?....oeiiii e 10
2.1.2 Whatdowe doon ROS?ottt 11

2.2 Features Detecting and Matching......................., 11
221 Whatis SIFT? .. 11
2.2.2 The Purpose of Using SIFTcccooiiiiiiiiiin 12
223 Introduction of GPUoiiiiiiiiiiii e 14
224 Introduction to SiftGPU ... 14

2.3 Epipolar Geometryooiiiiiiiiiiiiii 16
2.3.1 Epipolar Geometrycocoiiiiiiiiiiiiiiii 16
2.3.2 Epipolar Constraint and Triangulation................................. 17

2.4 The Fundamental MatriX.........coeviiiiiiiiiiiiiniiiiiiiiiieee 18
24.1 Opverview of Fundamental MatriX...........c.c.oooiiiiiiina.. 18
242 Geometric Derivation of Fundamental Matrix 19
2.4.3 Algebra Derivation of Fundamental Matrix............................ 20

&
<
p=|

AERZBAFARENZHT G830

2.44 The Necessary and Sufficient Condition of Fundamental

MALTIX et 21
245 The Camera Matrix Obtained from the Fundamental Matrix...... 22
2.5 The Essential MatriX.........coeveiniiniiniiiiiii e 23
25.1 Camera Calibration............coovuiiiiiiiiiiiiii e 23
2.5.2 The Essential MatriX.........o.oveiiiiiiiiiiiiiiiiiiiiii e 27
2.5.3 RecoveringRand tfromE...................o 29
254 Chapter SUMMATYcoioiiiiiiiiii 31
3 Five-point Algorithm with RANSAC ..., 32
3.1 Five-point Algorithm................o 32
3.1.1 Basic Knowledge.................cooooiii 32
3.1.2 The Method of Calculating the Essential Matrix...................... 33
3.1.3 The Flowchart of the Five-point Algorithm 36
3.1.4 Result of Five-point Algorithm....................... 36
3.2 RANSAC . o 38
3.2.1 Overview of RANSAC......c.oiiiiiiiii i 38
3.2.2 Fundamental of RANSACcoiiiiiiiiiiiiiiieeeeee 39
3.2.3 Parameters........couoiuiiiiiiiii e 39
3.24 Algorithm Complexity Analysis of RANSAC 42
3.3 Five-point Algorithm with RANSAC ... 43
3.3.1 Description of the Algorithm 44
3.4 Chapter SUMMATIY ..ottt 44
4 Experimtal Setup and Results................coo 45
4.1 Experimental Steps for Each Part 45
4.2 The Verification Experiment with Different Groups of Relative
MOBION «.eii e 46
421 Experiment with Images At Same Position............................. 46
4.2.2 First Rotation: Pitch ... 48
4.2.3 Second Rotation: ROlocveiiiiiiiiiiiiiii 53

AERZBAFARENZHT G830

424 Third Rotation: Yaw...........ccooiiiiiiiiiiiiiii 57

43 Testing Experiment with Different Parameters in RANSAC 61
43.1 Change Parameters of the No Motion Group.......................... 61

4.3.2 Change Parameters of the Second Yaw Group 63

4.4 Chapter SUMMATYoooiiiiiiiiii e 64
CONCIUSIONSoeiei 65
Acknowledgments. ... 66
References.ouuiiiiiiii 67

& VIIH

AERZBAFARENZHT G830

1 Introduction

1.1 The Significance and Background of the Thesis
1.1.1 The Significance of Monocular Visual Odometry

In the research of mobile robots, to know the real-time position of the robot is
very important. But, most of methods have their limits. Using visual information to
locate the robots has become one of the current hot topics. We can get the current
environment information from the robot cameras, and then calculate the motion in-
formation when the robot moves (translation and rotation). Then we can compute
the related location of the robots.

This has many applications, for example in Simultaneous Localization And Map-
ping (SLAM). Here we need to know the location of the robot (Localization) in order
to create the map (Mapping). Other applications include the following of a pre-
computed path or the assessment of the progress towards the high level task goals
of the system. Visual data from cameras provide lots of data with a high update rate.
Using this visual data to estimate the motion (odometry) of a moving system and
thus estimating its location is a widely investigated approach in robotics.

In visual odometry we use the information provided by the camera by comparing
the previous camera image (frame) with the current frame. The goal is to compute
how the camera pose (position and orientation) changed between the two images. If
the camera is rigidly mounted on the robot we can then easily deduct the motion of
the robot from the calculated motion of the camera, thus achieving visual odometry.

Achieving a high update rate, preferably with real time performance, will allow
for more accurate localization. Utilizing the Graphics Processing Unit (GPU) for
this computation yields in high processing speeds and high efficiency. GPUs are
nowadays available on a wide range of devices: from supercomputers, over desktop
and laptop PCs to mobile phones.

Using and improving state of the art open source software, this project enables
robots to utilize a single camera for efficient and real-time localization. We will test
this software using real robots. The experiments will demonstrate the performance

and shortcomings of monocular visual odometry.

#
=t

AERZBAFARENZHT G830

1.1.2 Current Research Situation at Home and Abroad

Visual Odometry is an approach to estimate the agent motion which only uses
the visual data with a single or several cameras. There is a good tutorial [1] for be-
ginners, from which I summary some good introduction in my thesis. Its application
includes robotics, augmented reality, wearable computing, and automotive. Visual
odometry, this term, is created by Nister in 2004 in his paper [2]. How can visual
odometry estimate the motion? Its principle is to detect the differences between
adjacent frames from the camera, which are different due to the the motion of the
agent.

In the following the state of the research on visual odometry between 1980 and
2015 will be presented. Most visual odometry implementations in the first-twenty
years are offline. Some real-time implementations began to appear in the third
decade. What is this real-time approach for? visual odometry estimates the poses
of the argent frame by frame. After accumulation of time, the track of the camera
can be computed. For this great progress, visual odometry was first used on another

planet, Mars, by the Mars explorations!® 4],

More precisely, Visual Odometry is a
special part of SEM (Structure From Motion). The algorithm for extracting the cam-
era poses and 3D structure from a series of images from calibrated or calibrated or
uncalibrated camera is called SFM in Computer Vision. Compared to visual odom-
etry, SFM is more generic. It deals with the three-dimensional reconstruction of the
poses and the structure of the camera from a set of images - in order or not in order.
But visual odometry focuses on real-time and sequential (once a new frame arrival)
computation to estimate the three-dimensional movement of the camera.

Using only the visual data to estimate the egomotion of the vehicle began in the
early 1980s. There is a description by Moravecl®. What is interesting is that we
find that most the study of visual odometry in beginning is for planet explorations,
especially motivated by NASA (National Aeronautics and Space Administration)
Mars exploration program.

As we all known, wheel odometry always encounters the problems with the ac-
curacy. For example, wheel sliding on the floor or just wheel rotation can lead to
non-uniform movement, which can produce distance errors. And the problem can
be more complex if the wheels travel on a non-smooth surface. What’s worse, the
error accumulates as the time goes. Compared to unreliable wheel odometry, visual

odometry can provide much higher accuracy trajectory estimates. Therefore, it is

axand

201

AERZBAFARENZHT G830

widely required by some applications where the usage of wheel odometry is unre-

liable, such as space exploration project, underwater project, and so on. It strives to
provide with calibrated all-terrain detectors to measure their six degrees of freedom
of movement when wheels travel upon uneven and rough terrain.

Most of research on visual odometry is based on stereo camera systems. It is
common among these works that, for every stereo pair, the 3D points are triangu-
lated. And the relative motion problem is seen as a 3D to 3D point location problem
to solve. Comport et. al.ll introduced a different approach of motion estimation.
Unlike the before scheme to use 3D to 3D point registration or 3D to 2D point cam-
era poses estimation technology, it depends on the quadrifocal tensor. This method
allows motion to be computed in 2D to 2D point image matches, which doesn’t need
to triangulate 3D points in stereo pairs. Using original 2D points directly instead of
triangular 3D points results in more accurate calculations.

Instead of stereo visual odometry we want to use monocular visual odometry
in this project. In this case, only the location information is available. Therefore, it’s
disadvantage is the motion can only be restored to a scale factor. Its absolute size can
be obtained from direct measurements (for example, measuring a scale factor of the
scene), motion constraints, or other sensors integrated, such as IMU and distance
sensor. Under certain situations, stereo visual odometry degrades in performance
and we have to use monocular visual odometry. When the distance to the scene
is much longer than the distance between the two cameras of the stereo system,
stereo visual odometry does not work anymore. Different to the stereo scheme, both
relative motion and 3D structure in monocular visual odometry should be computed
from 2D image data.

In the last ten years, a successful outcome over long distances with single camera

[7-121 " There are

has been obtained using perspective and omnidirectional camera
three methods for the work: feature-based method, appearance-based method, and
hybrid approaches. The first method is the work by the authors of [2, 8, 9, 11, 13-
15]. It bases on the feature which are obvious and can be tracked in the frames. The
second method makes use of all the pixel intensities or a part of pixels. The hybrid
approach is a combination of both of them.

The first real-time, large scale monocular visual odometry was performed by Nis-
ter et. al.l”l They use RANSAC to reject outliers and estimate camera pose to compute
the coming poses. The five-point minimal solverl’] is used in this thesis to calculate
the motion with RANSAC, which made the five-point algorithm results became ex-

axand

301

AERZBAFARENZHT G830

actly in visual odometry[7, 9, 11]. To compute the visual odometry data, five-point

algorithm will be used in our project.

An important tool that I will use in my project is SifttGPU(SIFT on GPU). Andrea
Vedaldi’s sift++1®l and Sudipta N Sinha et al’'s GPU-SIFT!”] make great contribution
to SiftGPU’s development. So far, many parameters in SiftGPU are inherited from
sift++ (for instance, number of DOG levels, number of octaves, edge threshold, and
so on). And Sift on GPU is based on feature detecting and matching!'’l. In my

project, we use SiftGPU to detect and match features.

1.2 Monocular Visual Odometry
1.2.1 Fundamental

Monocular visual odometry is a method that use the images taken by a single
camera fixed on a agent as the input to calculate the relative motion information be-
tween frames, and finally obtained the agent poses by superimposing the motions.
For the single camera, assume that the image sequence photographed at various
times is donated as Ip., = Iy, ..., I;. The main task of the visual odometry is to cal-
culate the relative transformations T between the frames [and I;,_; fork =1, ..., n,
then recover the current pose of the camera C,, through series the relative transfor-
mations.

There are two main implementations can be used to calculate the relative motion:
the appearance (or global) based method, which uses the intensity information of all
pixels of two input images, as well as feature-based approach, which uses only the
features extracted (or track) from the images. The appearance-based approach is not
as accurate as feature-based method, and more expensive computationally. Feature-
based method requires a robust matched (or tracked) features between the frames,
but is faster and more accurate than the appearance-based approach. Thus, most of
the visual odometry programs are on feature-based method.

In this thesis, I use the feature-based implementation as well. With this method,
to estimate the relative motion between the instant k and k — 1, that the relative trans-
formation T, first of all, after we obtain the frames I; and I;._;, we need to extract the
features from these two images then match the corresponding features. Note that I
chose to use feature matching approach rather than feature tracking, both have been
mentioned at section 2.2.2. Feature tracking means to find the feature in one image

and then in the next one image uses a local search technique to track them; and fea-

54

AERZBAFARENZHT G830

ture matching means to independently identify the features in each frame, and then

based on some similarity to matching them between frames. Then we calculate the
transform between the corresponding image points as the transform between two
frames. However, there are must some outliers in these matches. For a accurate mo-
tion estimation, the matching features, as the input, can not include outliers, so we
need to use some outliers excluded method to select the inliers as much as possible
to be the input of the motion estimation. Calculation the relative transformation of
two frames actually is to calculate the mapping between the corresponding image
points, expressed as the essential matrix (when the image point coordinates are nor-
malized coordinates). The matching features coordinates for motion estimation are
calibrated, by the knowledge of the epipolar geometry, using the normalized image
coordinates (that is say have been calibrated) can directly work out the essential ma-
trix. The essential matrix contains the translation and rotation information, so the
camera matrix between two images (assume camera matrix of the image I is [I|0],
the rotation matrix R and translation vector t of the image I is the relative rotation
and translation between two images) can be extracted from the essential matrix. The
camera matrix extracted from essential matrix is not unique (mentioned in section
2.5.3). Therefore, we triangulate the corresponding points to select the correct solu-
tion, that choose a solution which image points are both in the front of the two cam-
eras. After getting the camera matrix, we can also use triangulation to re-projection
to exclude some of the wrong essential matrix.

After obtaining the relative transformation between every two frames, we can
get the final camera pose through seriesing the transforms. The camera pose in the
moment k, donated as Cj, is the integration of C;_; and Ty, that Cy = Cy_1T}. Sup-
pose the camera pose in the moment k = 0 is Cy, the camera’s current pose is the

integration of all the relative transforms C,, = Co(T7...Ty).

1.2.2 Method and tools

We chose the Asus Xtion to take pictures for us. It is a equipment with depth cam-
era (there are three cameras on it), but in view of our project needs, we only use the
normal camera. The package openni2_launch contains the driver OpenNI-compliant
for the camera on ROS. Tbe openni2_launch start command can replace roscore com-
mand to start ROS, drive camera, then publish the topics /camera/rgb/image_raw.

In this way, we can subscribe this topic in the code to get the images captured by the

axand

5L

AERZBAFARENZHT G830

camera.

After receiving the image, we use powerful visualization tools Rviz to view real-
time images captured by the camera. We need to start the Rviz, and then add the
image display in Rviz and subscribe the topics /camera/rgb/image raw in order
to see the image captured by the camera. In addition, we can also use the tool im-
age_view to see the camera images taken in real time, and right-click it to save images
at a time. In this way, we can use the fixed frames as the test data.

Visualization tools are just a way to view the image, which is not necessary. In
my code, one approach is to use the fixed frames to test the code, in which I take
pictures and tell the pictures” path to the code, then the code can find the pictures.
When we want to use the successive frames, we can not save each moment frame
(which consume a lot of memory, but not necessary). In this order we can use another
method, in the code directly subscribe the topic to get images” information, and then
calculate the transformations directly.

After incoming the image information to the code, we need to extract the features
in each frame. And then to match the features between the frame and the previous
frames, we use use SIFT to detect and match features for its outstanding robustness
and accuracy. But we do not need to write code to detect features by outselves, we
used SiftGPU open source code, as long as we use its interface function in our code.
Then it will output the coordinates of the matched features between frames, with
these we can calculate the relative transformation between frames.

First we need to get the internal parameters of the camera, the image point pre-
multiplied by the inverse of the internal parameters matrix K can be converted to the
normalized coordinate form. We use the camera_calibration’s cameracalibrator.py
node over ROS to calibrate the camera. Then we can get the camera internal param-
eter matrix K and radial distortion vector D. And the camera will publish a distortion
corrected topic after use the cameracalibrator.py node. Thus, we can use the distor-
tion corrected topic directly, without using the distortion vector D in the code.

After obtaining the normalized image points set, we use a five-point algorithm
to compute the essential matrix. Since the matching features may include some
wrong matches, we can use RANSAC algorithm, with five-point algorithm, to ex-
clude outliers. With this algorithm, we can get the essential matrix calculated by
normal matches. This is the most important part of our project, in section 3 has a
very detailed introduction. Then, we use SVD decomposition to obtain relative mo-
tion, rotation matrix R and translation ¢, from the essential matrix E. Finally, we can

axand

60T

AERZBAFARENZHT G830

use bundle adjustment to optimize the results.

In the next chapter the flowchart for the whole process will be drawn.

1.2.3 The Overall Algorithm Flowchart

Use Asus Xtion to capture images.

1
Calibrate the camera to get the internal parameter matrix K,
and the camera publish the topic "/camera/rgb/image_color_rect” of the calibrated images.

1
Use fixed images to test the code: save images with image_view.

|

Detect the features for each frame.

[

Match corresponding features between frames.

[

The image point coordinates premultiply K to obtain normalized coordinates.

|

Calculate the essential matrix E with five-point algorithm (with RANSAC).

[

Recover rotation matrix R and translation vector t from the essential matrix E.

End
Figure 1-1 The Overall Algorithm Flowchart

1.3 The Main Content of the Thesis

This thesis introduces the monocular visual odometry project, namely using the
images to estimate the relative motion of the camera. Realization of this project in-

cludes the following parts:
1) Use Robot Operating System['8 (ROS) to capture (live) images from cameras.
2) Use ROS to calibrate the camera and obtain the camera parameters.

3) Use available open source software in SiftGPU to extract features and descriptors

and to match the images’ features.

i
~
p=|

AERZBAFARENZHT G830

4) Use Nister’s Five-Point Motion Estimation Algorithm to compute the visual

odometry.

5) Use five-point algorithm combining with RANSAC to exclude outliers and make

the results more accurate.
6) Collect data with ground truth motion.

7) Do experimental validation of the algorithm under different configuration pa-

rameters.

Before all the principles being introduced, it will use a chapter explains the basic
principles of monocular visual odometry, and the overall algorithm, as a overview
of all the algorithms and principles. As the prepare part of the thesis, there is a intro-
duction of the operating system my project based on, ROS, and a simple description
of the GPU. In the project implementation process, before the beginning of each part,
read the relative papers while recording there principle. After achieving the code of
this part successfully, it’s necessary to write its principles and algorithms in my the-
sis. The thesis uses a lot of space introduces the main algorithms used in this project,
the five-point algorithm, and the fundamental it mainly based on the epipolar ge-
ometry, and the algorithm combining with RANSAC. Besides, there is a reasonable
space for SiftGPU, the method of detecting and matching features. Incidentally, an-
alyze the advantages and disadvantages of these algorithms. In the final part of the
thesis, there is the detailed process and result of my experimental, after which the

experimental results were analyzed and evaluated.

1.4 Thesis structural arrangements

This thesis is structured as follows:

The chapter 1 is the introduction, including the background and significance of
this thesis, after that there is a overview of monocular visual odometry. In this
part, it introduces the principle of monocular visual odometry and the research
tools(including algorithms and fundamental knowledge) involved. Then a flowchart
of its implementation is given to let readers understand what the thesis is doing, and
the details of every research parts will be included in the following chapters. Finally
it introduces the main content and structure of the thesis.

The chapter 2 is the prepare part, which includes two parts. First it gives an in-
troduction of ROS and SIFT(including SiftGPU). The first part is about what is ROS

55 811

AERZBAFARENZHT G830

and about the features” extraction and matching, and introduction of the features of

SIFT and GPU. At last of this part, it gives an introduction of tools of extraction of
teatures and matching tools—SiftGPU. The second part is the introduction of epipo-
lar geometry, fundamental matrix and essential matrix. Epipolar geometry is the
basic mathematical principle of monocular visual odometry, and we gives the de-
tails of the mathematical mapping relationship between the process of the camera
transformation obtained by the image points of the two images. Besides, we find the
fundamental matrix of the transform by epipolar geometry. After introducing the
calibration of camera and coordinate normalization, we introduce the essential ma-
trix and explain how to extract rotation and shift information from essential matrix.

The chapter 3 is the five-point algorithm, RANSAC algorithm and five-point al-
gorithm with RANSAC. The five-point algorithm is the main algorithm of the thesis,
while RANSAC algorithm can greatly exclude outliers. So, the five-point algorithm
with RANSAC is used in the thesis.

The chapter 4 is the experimental setting and experimental results. Two experi-
ments are included in the thesis. The first one is using different rotation transform
as input to verify the correctness of the code. The second one uses the fixed im-
ages as input, and changes the parameters of RANSAC, to test the correctness and
calculation time of the code. For the two experiments, this chapter has a detailed in-
troduction of the experimental procedures with corresponding codes listed. At last,
we have analysis the every results of the experiments.

The chapter 5 is the conclusion of the whole thesis.

AERZBAFARENZHT G830

2 Theory and Preparation

Before calculating the motion of the camera, we need to first get the camera frame
of every moment. Estimating camera motion is actually calculating the camera rel-
ative position and pose transforms between each of two frames, which is decided
by the image features points conversion between views. Thus, after obtaining the
frame from the camera in every moment, it needs to extract the features from the
frame and match features between this frame and the last frame. Then, it can output
the matching feature points for the next step calculation.

The most important arithmetic in this project is five-point algorithm, and the
basic theory of the algorithm is epipolar geometry. Thus, to facilitate describing the
tive-point algorithms in next chapter, this chapter is actually a introduction of the
tive-point algorithm basic theory, the epipolar geometry. When we get the calibrated
matching features between the images, we can use five-point algorithm to obtain the
essential matrix, which can be easily described after introducing the fundamental

matrix.

2.1 Overview of ROS
2.1.1 Whatis ROS?

The Robot Operating System (ROS) is an open-source meta-operating system for
robot!!8l. Tt provides the necessary services for operating system, including the hard-
ware abstraction, the underlying device control, commonly used functions, message
passing between processes, and package management. It also provides tools and
library functions for obtaining, compiling, writing codes, and running code across
computers. In certain aspects ROS equivalent of a robot frameworks.

ROS running process is a loosely coupled peer-to-peer network based on ROS
communications infrastructure. ROS implements several different means of commu-
nication, including those based on synchronous RPC-style communication services
mechanism, based on asynchronous data streaming topics server mechanisms and
parameters server. Our project communication is based mainly on the topic mecha-

nisms.

5107

ARAXBAFEABENET (830
2.1.2 What do we do on ROS?

The main objective of ROS is to provide code reusing support for robotics re-
search and development. ROS is a distributed process (i.e. nodes) framework, these
processes are encapsulated in easily share and publish packages and feature packs
sets. ROS support a joint system similar to code repository, which can also achieve
project collaboration and publishing. This design allows the development and im-
plementation of a project from the file system to the user interface completely inde-
pendent decisions (without ROS limitation). At the same time, all projects can be
integrated by ROS basic tools.

In this project, it mainly uses openni2_launch to drive the camera Asus Xtion.
This package contains a launch file, using OpenNI-compliant to drive the type of
kinect camera over ROS, and publish the topics. A detailed introduction can be
found in [19].

In addition, ROS has many useful tools. For example, in this project, we used rviz
visualization tool to view the input images, use the bag file to record data as input

and used rqt to draw the waveform of the output data.

2.2 Features Detecting and Matching

After getting the frames from the camera, we should detect and match the fea-
tures in frames. Then we can use these matched features pairs to calculate the rel-
ative motion between frames. In my project, the SiftGPU, SIFT for GPU, was used
for detecting and matching features. Therefore I will introduce SIFT and GPU, and

discuss why I use SIFT compared with other detectors/discriptors.

2.2.1 Whatis SIFT?

SIFT (Scale-Invariant Feature Transform) is a local feature extraction algorithm,
looking for extreme value in scale space, extracting location, scale, rotation invariant.
It is a kind of outstanding blob detector. SIFT was proposed by D.G.Lowe in 19991201,
and he developed and summarized the algorithm in 2004211, Later Y.Ke improved it
through using PCA to replace histogram in descriptor part!??].

SIFT features are local features in the images, keeping invariance of rotation, scal-
ing, brightness changes, also maintaining a certain degree of stability for viewpoint
changing(up to 60 degrees), affine transformation and noise. Based on these charac-

teristics, they are highly notable and relatively easy to be captured. Large amount

110

AERZBAFARENZHT G830

of information of SIFT descriptors makes it suitable for fast and accurate matching

in massive database. When SIFT features are used under the conditions of small
features database, it is accessible to instant computation on recognition speed.

In Mikolajczyk’s invariance comparative experiments!?3! for 10 kinds of local de-
scriptors, SIFT and its expansion algorithm have been confirmed that have the most

robust in the same type of descriptors.

2.2.2 The Purpose of Using SIFT

Given a sequence of images, generally speaking, there are two methods that can
be used to find the corresponding features between two frames. One method is to
find the features in the first frame, and then track these features in the next frames.
The second method is detecting features in each frame, then doing feature matching
between every two adjacent frames.

The first method is suitable for the case that most features of the first frame can be
traced in the second frame, that is, the viewpoint changing between the two frames
is small, i.e., during the time between taking two photos, the camera only made a

little movement. Most of early visual odometry works[® 2420

use this approach.

The second method is more suitable for the camera made large movement or
large viewpoint changed between two frames. In this case, the features from the
tirst frame are difficult to be trace in the second frame. It is used more frequently
in the last decadel®® 113 141 This is because the early VO researches are based on
small scale movements, and the main visual odometry work in recent years was in
large-scale environments. It makes it possible to use images with large movements
in between. The advantage of this method is to avoid feature drift in the tracking
process based on cross-correlation.

Some properties a good feature detector should have are:

* good localization accuracy (including in location and scale),

* reproducibility (majority of the detected features can be detected in the next

frames),
* computation efficiency,
* robustness (noise, blur and compression artifacts),

* distinctiveness (these features can be accurately detected in the different

frames),

51271

AERZBAFARENZHT G830

* invariance (under different illumination, scale, geometric transformations and

fluoroscopy distortion).

There are many points feature detector described in the VO literature, for exam-
ple, point detector!® 27-2°1 blob detectors[?!- 30321 and various detectors, each detec-

tor has its advantages and disadvantages.

Table 2-1 Properties and performance comparison of feature detectors!!!

>
= = "
58| .5 |68 |5 25| € |S5| £ | ¢
€c0 |20 |28 |=E | 8E s | =3 a 2
= — O _9 I O o [«9] < O 3 o
ST |Bmg |Sz |9z | <z | & | &< | ¢ | &
A A | &5 5 Sl e | A & s
Haris Y N Y N N +++ | +++ | ++ ++
Shi-Tomasi Y N Y N N +++ | +++ | ++ ++
FAST Y N Y Y N ++ ++ ++ | ++++
SIFT N Y Y Y Y [+++ | ++ | +++ +
SURF N Y Y Y Y +++ | ++ ++ ++
CENSURE | N Y Y Y Y | +++ | ++ | +++ | +++

From Table 2-1, we know that blob detector performs better than corner detector
in term of invariance(scale invariance and affine invariance). Though it is not as
strong as corner detector in localization accuracy, its repeatability and robustness
performance was phenomenal.

SIFT is a kind of outstanding blob detector. And it’s widely used for the following

advantages:

a) SIFT descriptor has a excellent robustness as local features in invariance.
b) Besides, it have well distinctiveness, and rich information.

c) A mount of SIFT features can be obtained from a few objects .

d) It provides high computation speed. The optimized SIFT algorithm can be seen

as a real-time method under current computer hardware.

e) Its outstanding scalability makes it can easily be combined with other forms of

feature vectors.

For these excellent properties, we can confirm that SIFT is really a good feature

detector. And it’s worth to use SIFT to detect and match features.

%131

ARAXBAFEABENET (830
2.2.3 Introduction of GPU

NVIDIA first proposed the concept of GPU when they announced the GeForce
256 graphics processing chips in 1999. From then on, NVIDIA use this new name
to call the chip of graphics!®® 34, GPU makes the graphics reduce the dependence
on CPU, and it replaces CPU to do some works, especially in the 3D graphics pro-
cessing. GPU is no longer confined to the 3D graphics processing now, its general
computing technology has caused quite a lot of attention. It turns out that in the
aspects of the floating point computing, parallel computing, etc., GPU can provide
dozens of times or even a hundred times better than the CPU in performance. Gen-
eral standard in computation for GPU are: CUDA, OpenCL and ATI STREAM.

Computing industry is developing from using only the CPU central processing to
the CPU and GPU co-processing. Graphics card maker NVIDIA introduced CUDA
(Compute Unified Device Architecture) programming model that is wanted to take
advantage of the respective advantages of CPU and GPU in the application. CUDA
is a a universal parallel computing architecture introduced by NVIDIA, the archi-
tecture makes the GPU can solve complex computational problems. It includes the
CUDA Instruction Set Architecture (ISA) and the GPU parallel computing engine.
Developers can use C language to write programs for the CUDA architecture, the
program can be run on the CUDA processor to support ultra-high performance.

OpenGL Shading Language is used in OpenGL shader programming, that de-
velopers write short custom programs. They are executed on the GPU, instead of
the fixed part of the rendering pipeline, so the rendering pipeline has programming
types in different levels. For example: view transformation, projection conversion.
GLSL (GL Shading Language) shader code is divided into two parts: Vertex Shader

and Fragment, and sometimes there is Geometry Shader.

2.2.4 Introduction to SiftGPU

SiftGPU is an implementation of SIFTI?!] (Scale Invariant Feature Transform) for
GPUPL. It provides two implementations: CUDA and GLSL. And it runs on GLSL
by default. SiftGPU can processes pixels/features in parallel to do the work in fol-

lowing step:

1) SiftGPU converts color input images to intensity and up-samples or down-

samples them.

51471

ARAXBAFERRENRT GE30
2) Builds Gaussian pyramids and detects DoG Keypoints.

3) Generates compact feature lists according to GPU list generation!®°l.

4) Processes features in parallel and determines their orientations and descriptors.

During this process, SiftGPU uses the GPU/CPU mixed method, which improves
the calculation speed considerably.

We can get the SiftGPU codes of Changchang Wu and its manual from [35].
The program package includes some functions about reading the pictures, convert-
ing colour image to intensity image, detecting features from images, and match-
ing features between images, etc. In addition, it requires that the GPU has a
large graphics memory and supports dynamic branch. It defaults to using GLSL,
and CUDA is not used by default. If you want to use CUDA, you should set
CUDA SIFTGPU_ENABLED in compiler and recompile. But my computer doesn’t
support CUDA, so GLSL is used.

In my code, it use SIFT::RunSIFT function, than it is easy to get features from the
image by using SIFT::GetFeatureVector function. After getting features from both
two images, match these features with SiftMatchGL::GetSiftMatch function. As be-
fore shown to you, the program use Changchang Wu'’s code to detect and match
features instead of writing the codes to do this by myself.

The following figure is a feature matching instances. In the figure 2-2, I used
circle represents the detected feature points and the straight lines connecting the
corresponding features. In the figure, there are some matches are wrong, but not

many (looks not more than 10%).

Figure 2-1 SIFT Features in the Image

157

ARAZBEAFEARELEIT (830

Figure 2-2 Match the Features Between Two Images

2.3 Epipolar Geometry

In the beginning introduction of this chapter, we have known the relationship be-
tween the five-point algorithm, essential matrix and the epipolar geometry. It found
that the essential matrix is deduced from the epipolar geometry. Therefore, it’s es-
sential to telling the fundamental and the derivation of the epipolar geometry before
the description of the essential matrix. In this subsection, it highlight the fundamen-
tal matrix F, and its associated mathematical relationship will be derived in detail,
in order to give the relationship between the essential matrix E and the fundamental

matrix F in the next subsection.

2.3.1 Epipolar Geometry

Epipolar geometry is the intrinsic projective geometry between two views!®’]. Tt
does’t depend on scene structure, but only decided by the camera internal parame-
ters and the relative pose between two cameras. Due to the reason that it uses the
images which were taken by a single camera at different instants, it can be seen as
that it uses two camera to take two images respectively and calculate the relative
pose of these two cameras from these two images.

The geometric entities included in epipolar geometry are shown in Figure 2-3.
For stereo vision system(two cameras), definite the optical center of the two cameras
are C and C’. Assume that there is a 3D scene point X in 3D space. The plane made
up by the space point X and camera centers C, C’ is called epipolar plane. Every
camera has its own view, denoted as Imagel and Image2. The line CX intersects

Imagel at point x, and the line C’X intersects Image?2 at point x’. Two camera centers

¥ 16W

AERZBAFARENZHT G830

X
[]

epipolar plane 7T \

A A

epipolar line
for x

Figure 2-3 Epipolar Geometry!3!

intersect Imagel and Image2 at points e and e’ respectively. These two points are
called epipoles(or epipolar points). The line connecting two camera centers CC’ is
baseline. The epipolar plane intersects two image planes(Imagel and Image?2) at the
two epipolar lines | and I’ separately. What's the relation between the epipolar lines
I and I'? They are corresponding to each other, on which the point x, e and x’/, ¢’ lie
correspondingly. The rays from x and x’ to the space point X is coplanar, which tells
that more significance of the epipolar plane is to find the correspondence between x

and x’.

2.3.2 Epipolar Constraint and Triangulation

The epipolar plane is constituted by the ray from x to X and the baseline, and x’
is on the plane, which implies that we can find the x’ take advantage of this relation-
ship. If we have know the projection point x in imagel and the relative pose between
two cameras, it’s convenient to find the projection point x” in image2 with epipolar
constraint. The definition of epipolar constraint is that, for every space point X, if
the projection point x in imagel is known, its corresponding epipolar point x’ must
lie on the only corresponding epipolar line I’ of x. Because x is known, then its corre-
sponding epipolar line I’ can be calculated. According to the epipolar constraint, we
can just find the other projection point x” on the epipolar line I’ but not finding it on
the whole image2. The epipolar constraint between two cameras can be described as
the essential matrix E or the fundamental matrix F. However, it uses a single camera
in this thesis, so the relative pose between two views is not fixed that the epipolar

constraint is not used for finding the corresponding points between two views. We

177

AERZBAFARENZHT G830

use it in another aspect, verifying the essential matrix E. When the essential matrix

E is worked out, and we get a number of pairs of corresponding epipoles x and x’
in imagel and image2 respectively, then we can use epipolar constraint to verify the
relative pose, the essential matrix E, between two views.

Triangulation has a opposite usage against epipolar constraint, with which we
can get space point X from its two projection points x and x’. If the x, x’ and their
projection lines are known, these two lines must intersect at X in 3D space. Therefore

triangulation is useful in structure recovery.

\X\‘/
X i \\‘\
X o s N .
1 \
X -". ‘\
et L
3 K J : \\
X,
OL.A Oe '
5 \
Left view Right view DsEe

R, t,

Figure 2-4 Epipolar Constraint!?] Figure 2-5 Triangulation/®”]

2.4 The Fundamental Matrix
2.4.1 Overview of Fundamental Matrix

Fundamental matrix is a algebra representation of epipolar geometry, encapsu-
lating this internal geometry relationship, which is a 3*3 matrix, denoted as F. It can
be computed from the scenes image points without knowing the cameras internal
parameters or their relative poses. There introduces the fundamental matrix very
specifically in [38]. According to Figure 2-4, to every projection point x, there is the
only corresponding epipolar line I’. This mapping is denoted as x +— I/, which can
be described by F. For a space point X, if x is its projection on imagel and x’ is that

on image2, then their corresponding fundamental matrix satisfy the condition
XTFx =0 (2-1)

Its derivation will be showed in Section 2.4.4. Now let’s derived the fundamental

matrix from two directions.

%181

AERZBAFARENZHT G830

2.4.2 Geometric Derivation of Fundamental Matrix

As described above, fundamental matrix F is a mapping from a point on one
image to a line on another image. This mapping can be decomposed into two steps:
in the first step, there is a point x” on image2 corresponding to the point x, lying on
the epipolar line ’; in the second step, the epipolar line I’ is a line joining the points

x" and epipole ¢'.

LA\

Figure 2-6 The point transform through a plane H,

The first step is a point transform through a plane. As the Figure 2-6 illustrated,
suppose that the plane H; doesn’t through two camera centers C and C’, the line
passing C and x intersects the plane Hy at space point X. And the projection point
of X on image2 is x". This process is a point transform through plane. For every pair

of x and x/, there is a homography H,, then the mapping can be described as
x' = Hpx (2-2)

Then we construct the epipolar line I’ in the second step. Because the epipolar

line I’ join the point ¢’ and x’, it can be described as
I'=¢ xx' =[e]xx (2-3)

The cross product of ¢/ and x” can be written as [¢/] xx/, the definition of [¢/] x can
refer to [40].
Substitute the formula (2-2) into the formula (2-3), we have

! = [¢/|xHprx = Fx (2-4)
where F is defined as

F=[¢|xHy (2-5)

51971

AERZBAFARENZHT G830

The rank of [¢/]« is 2, and the rank of Hy is 3, thus the rank of F is two. In other

words, F is a mapping space from a 2D image point to a 1D epipolar line I’ passing
the epipolar point ¢/, so it is a matrix of rank 2.
2.4.3 Algebra Derivation of Fundamental Matrix

From the fundamental matrix F to the camera projection matrix P,P’ form can be
obtained from the algebraic derivation. The relationship of x and X can be described
as PX = x(it will be deduced in the Section 2.5.1). The solution of the ray can be

expressed as
X(A) =P x+AC (2-6)

where P is the pseudo-inverse of P (PP = I), and C is the camera center, which
is a null-vector. Thus, PC = 0. The equation (2-6) shows a ray parameterized by A.
There are two points: when A = 0, the point is PTx; when A = oo, the point is C(the
camera center). According to ¥’ = P'X, there are two corresponding points on the
ray back-projected from x’ by P’: P'P*x and P'C. The epipolar line I’ joining these

two point, which can be written as
I = (P'C) X (P'P+x) (2-7)

where P'C is the projection of the first camera center on the image2, denoted by ¢’

Thus, we have
I'=1[e]«(P'PTx) = Fx (2-8)
Then, we obtain the fundamental matrix
F = [P'C]«<P'Pt = [¢|xP'P" (2-9)
Compared the formula (2-9) with the formula (2-4),
H. =P'P*

which shows that the homography H; can be obtained from the two camera matri-
ces.

Assume there are two calibrated camera matrix

P=K[I|0] P =KI[R|t (2-10)

5 207

AERZBAFARENZHT G830

then we have

L[k 0
pt — C = (2-11)
of 1
Combine the equation (2-9) with the equations (2-10) and (2-11), F can be written

as

F = [P'C]«P'P"
= [K't]«K'RK™! = KTt} RK™! = K" TR[RT#] K1
— K'"TRKT[KRTt] (2-12)

Because the two epipoles are

—R't T / /
e=DP = KRt e = =K't (2-13)
1 1
Substitute the equation (2-13) into the equation (2-12), we can see that the funda-

mental matrix F can also be written as

F = K" TRK"[e] (2-14)

24.4 The Necessary and Sufficient Condition of Fundamental Matrix

A 3 x 3 matrix F is the fundamental matrix corresponding the transform between

x and x’ if and only if the matrix F satisfy the condition(2-1):
XTFx=0

We can verify that it is the necessary and sufficient condition of fundamental
matrix as follows.

If x is the correspondence epipole of x, and lies on the epipolar line I’. That
x'TI" = 0, combine with formula(2-8), we get x’"Fx = 0 as required. Conversely,
if the matrix F satisfies the condition (2-1), the back-projection rays from x and x’
is coplanar, thence it’s the necessary condition for the two points corresponding to
each other.

The significance of this conclusion is that it gives a expression of F without going
through the camera matrix P or P’ that F can be directly obtained from the corre-

sponding image point calculated.

5217

AERZBAFARENZHT G830

2.4.5 The Camera Matrix Obtained from the Fundamental Matrix

One of the important usefulness of fundamental matrix is that we can extract the
pair of camera matrices from it. However, the pair of camera matrix is not unique
due to the projection invariance of fundamental matrix. In this case, we can ob-
tain the canonical form of the pair of camera matrices from the fundamental matrix,
which is unique. Now, let me introduce the projection invariance of the fundamental
matrix F and the canonical form of the camera matrix to you.

As we can see from the formula x’’Fx = 0 and I’ = Fx, the fundamental matrix
F is the mapping from a image point to a image line or point, that means that F is
only measured by the image coordinate, but not any world units(such as meter or
degree). That is to say, the relationship between x and !’ is just projection relation-
ship, for which we can say the image relationship is projection invariance. When we
make a projection transform for x and x’: let # = Hx and x' = H'x’, there is their
corresponding mapping: I’ = F£, where F = H'"TFH™, it is a rank 2 matrix.

The camera matrix P does not only depend on the image coordinate frame mea-
suring, but also on world coordinate frame measuring for the reason that it connects
the image measuring and the world measuring forms. Different from the camera
matrix, the fundamental only depends on the projection property of the camera ma-
trices, which make it have no matter with the world frame measuring. For example,
a projection transform on camera matrices (P, P’) does not affect the fundamental
matrix F. More specifically, let’s suppose a 3D space projection transform H, which is
a 4 x 4 matrices, impose the projection transform H on the camera matrices (P, P’),
the fundamental matrix corresponding to the camera matrices (P, P’) and the camera
matrices (PH, P'H) are same.

In fact, different projection transform between camera matrix pairs is the only
ambiguity. For this ambiguity, we specify the canonical form of the camera matrix
pair (P, P') corresponding to the fundamental matrix F. In the canonical form, we
define P = [I|0], where I is a 3D identity matrix and 0 is a 3D null-vector, then the
pair of camera matrices corresponding to the F is unique.

To prove it is feasible, we can expand the camera matrix P to a 4 x 4 matrix P*,
let H = P*~!, then PH = [I]0] as required.

The projection invariance can be use in turn: if both camera matrices pairs (P, P’)
and (13, 2) correspond to the same fundamental matrix F, there must exists a 4 x 4
nonsingular matrix H such that P = PH andP’ = P'H.

52271

AERZBAFARENZHT G830

There is a useful theorem: Support a pair of camera matrices P = [I|0] and P’ =

[M|m], to which the fundamental matrix corresponds is F = [m]«M. If and only
if P'TFP is a skew-symmetric matrix, F is the fundamental matrix corresponding to
(P, P).

Camera matrix is a mapping from 3D world points to 2D image points, repre-
sented as x = PX[4!l. The specific definition of the camera matrix will be introduced
later. If the image points have been calibrated, P = [I|0] is the camera matrix of the
first image. If we use the image points calibrated in advance, we can compute the
essential matrix directly, and get the camera matrix in canonical form from the es-
sential matrix without doing projection transform(finding the transform matrix H).
Therefore, in my project, it’s necessary to calibrate the camera and use the calibrated
image points to compute the essential matrix, with no necessary to compute the fun-
damental matrix, then get the camera matrices in canonical form. I will introduce the
camera calibration and the relationship between the essential matrix and the funda-

mental matrix in the section 2.5.

2.5 The Essential Matrix

In the previous subsection fundamental matrix F have been derived according to
the epipolar geometry, which is calculated under the image uncalibrated case, as the
representation of transform between views. If we have calibrated the camera, and
use the calibrated image points (using normalized coordinates) to calculate the rel-
ative transformation between views, which can be represent as the essential matrix
E. Therefore, this subsection will focus on how to calibrate the camera, and the de-
duction of use normalized coordinates of the image points to get the essential matrix
E. After obtaining the essential matrix E, we’ll show you how to extract the rotation

matrix R and translation vector t from essential matrix.

2.5.1 Camera Calibration

The purpose of camera calibration in my thesis is to get the internal camera pa-
rameters matrix K, which can calibrate the image, and let us compute the essential

matrix directly. In detail, camera calibration can help us to find:

* The image center (xp, o). It is generally not the point at (%, @) of the

image, but should be the optical center of the camera.

* The focal length of the camera f.

% 23

AERZBAFARENZHT G830

* Different scaling factor of column pixels and row pixels (Figure differentscal-

ing.jpg), kx, ky. It is because the pixels maybe not square. Its imaging process
is shows in Figure 2-7, which is the reason why the scaling of pixels in columns

and rows is different.

* The skew factor s, imaging skew is shown at Figure ??. The scaling factor

transforms pixel units to length of image coordinate.
* The len distortion D, which results pin-cushion effect Figure 2-8, it happens

seriously on fish eye camera.

Monit
Camera——NTSC signal —* Digitizing—> ontor

display
Or —
000000
CCD/ pnnong S~
CMOS |[00000o0

S
I,

»
Ld

Figure 2-7 Scaling factor of column pixels and row pixels may be different!*?l: The
output from camera may be analog, then AD converter samples NTSC signal, and

digitizing may make the pixels not square.

Ibfore after

Figure 2-8 Distortion®®! and skew!*?]

If both image point and space point were represented in homogeneous vectors,
the cental projection is a linear projection(Figure 2-9).

According to the principle of similar triangles,
Xs Ys
Xi=f Ze yi=f 7 (2-15)

After camera calibration, we get the image center(xo, o), and the scaling factor ky,

ky. In general, the matched features coordinate we got from SiftGPU is in pixel units

5 2471

AERZBAFARENZHT G830

Image plane Scene point

A
center of

projection

A

Figure 2-9 Cental projection!®]

(xpix, ypix), its coordinate origin is the pixel at the lower left corner of the image,

and the scaling between the pixel and the cental projection coordinate of width and

height is k, and k, separately. Their relationship is shown in Figure 2-10.

& A =
V.. y ' o Image point
ptx (fo ,V,', ﬂ
Image|center X | ke
—— el
X =
plx
I

Figure 2-10 Transformation from pixel to image coordinatel#?]

Obviously, this transformation can be written as

Xpix = kxXj + Xo Ypix = kyYi + Yo

Combine (2-15) with (2-16), there is

xS + sto
Zs

Ys + ZsYo

Xpix = fhx z

Ypix = fky

let

% 2511

(2-16)

(2-17)

(2-18)

AERZBAFARENZHT G830

and
u v
Xpix = w Ypix = w (2-19)
written as the matrix form:
u _xs_
ay 0 xp
0 ys
=10 &, yo O (2-20)
w Zg
0O 0 1 0
1 1

Add the skew factor s into this transformation,

u Xs Xs
ay s xp9 O ay s xo| |1 0 0 O
(% s s
=10 ay yo O = o ay Yol |01 0 0 / (2-21)
w Zg Zg
0O 0 1 0 0 0 1 0010
1 1 1

then we get the calibration matrix K:

Ky S X
K=1{0 a 1o (2-22)
0 0 1

In our project, we don’t need to write a code to calibrate the camera, but just use
the cameracalibrator.py node of the camera _calibration package in ROS!*3l. The cam-
era_calibration’s cameracalibrator.py node is a convenient tool to calibrate a monoc-
ular camera with a raw image over ROS, with which we need a large checkerboard
with known size and number of its squares and th e camera output raw image
through ROS. In our calibration, we use a 8*6 squares checkerboard, and we should
move it to make it lie on different positions (as the Figure 2-11 shown) of the view.
Finally, it will output the internal parameters of camera K and some other calibration

parameters to us.

52611

AERZBAFARENZHT G830

Figure 2-11 Checkerboard lies on the camera’s left and right, top and bottom of field
of view(the 1-3th picture); toward /away and tilt from the camera(the 4-5th picture);
checkerboard filling the whole field of view(the 6th picture) 431

My camera calibration parameters is as follows:

D = [0.047492863768895464, —0.1038925599268795, 0.01385209245928748, —7.160814536273587¢ — 05, 0.0]
K = [545.9860520978382, 0.0, 314.44397065234756; 0.0, 546.773154836032, 259.894806022969; 0.0, 0.0, 1.0]

Generally speaking, we need to use D to correct imaging distortion in code. How-
ever, we needn’t due to the node will outputs another topic for calibrated images,
which is a image message, in which the images distortion has been corrected. And

we can use this topic directly and needn’t use the D vector in code.

2.5.2 The Essential Matrix

Essential matrix is the special form of the fundamental matrix under the case
of which is calculated in the normalized image coordinate form. In the history of
the development of computer vision, essential matrix was presented (by Longuet-
Higgins[44] in 1981) earlier than the fundamental matrix (by QT Luong[45]). Funda-
mental matrix shouldn’t need to consider the calibration of the image, which is a
generalization of the essential matrix. Compared with the fundamental matrix, the
essential matrix has fewer degrees of freedom and more properties. Its properties
will be given in the following description (the properties of the fundamental matrix
have been described in the previous parts).

To introduce the essential matrix, I will describe what normalized coordinates is

first. Consider a camera matrix P = [R|t], and x = PX is a point on the image. If

27

AERZBAFARENZHT G830

the calibration matrix K of this image is known, then we can make the x normalized

by premultiplying the inverse of K to x, there is £ = K~ 1x. Then we obtain £ =
[R|t] X, where £ is the image point x representing in the normalized coordinate form.
This expression can also be seen as £ is the point on the image imaging with the
camera matrix [R|t] corresponding to the space point X. That is to say, the calibration
matrix of it is a 3 x 3 identity matrix. The camera matrix P = K~'P = [R|¢] is called
normalized camera matrix, in which the necessity of the calibration matrix K has
been removed.

Let’s support that there is a pair of normalized camera matrices P = [I|0], P’ =
[R|t], the fundamental matrix corresponds to which is denoted as essential matrix E.

The form of the essential matrix is
E = [t]xR = R[RT#] (2-23)

According to the formula(2-1), the necessary and sufficient conditions of essential

matrix can be expressed as
X" E£=0 (2-24)

which is also the expression of the mapping between the corresponding points on the
two images in normalized coordinates. Substitute £ = K~1x to the formula (2-24),

then we have
XTK'"TEK 'x =0 (2-25)

Compared the formula (2-25) with (2-1), it’s easy to derive the relationship be-

tween the essential matrix E and the fundamental matrix F is
E=KTFK (2-26)

Essential matrix only has five degrees of freedom: the rotation matrix R and
translation vector t both have three degrees of freedom, but there is a scale ambi-
guity of it, and it is a matrix with homogeneous quantity. The reducing degree of
freedom is an additional condition the essential matrix should satisfy, compared to
the fundamental matrix.

A 3 x 3 matrix can be an essential matrix if and only if the two values of its
singular value decomposition are equal, and the third value is zero, the proof of
which can be found in [38].

5 2811

ARAXBAFEABENET (830
Therefore, in the SVD expression E = Udiag(1,1, O)VT, both U and V have three

degrees of freedom. However, since two values of its singular values are equal,

the SVD of E is a family of one-parameter SVD family, in the other word, which is
not unique. Thus, the singular value decomposition of the essential matrix can be

written as
E = (Udiag(Ryx2,1))diag(1,1,0)(diag(R1,,,1)) VT (2-27)

where Ry .7 can be any 2 x 2 rotation matrix.

2.5.3 Recovering R and t from E

When we get the essential matrix E (calculated according to the five-point
algorithml#® 471 the camera matrix (containing the rotation matrix and transla-
tion vector) can be extracted from the essential matrix. The camera matrix extracted
from the essential has four possible solutions, with a scaling ambiguity. Among
them, exactly only one camera matrix is correct, this will be mentioned later. Let us
assume that the first camera matrix is P = [— 0], in order to calculate the second
camera matrix, let E be decomposed into the product of a skew-symmetric matrix S
and a rotation matrix R. Support that the SVD of E is E = Udiag(1, 1,0)VT, which

can be decompose in two possibilities (including two probable R):

s=uzu® R=UWVT or R=UWTVT (2-28)
where
0 -1 0 0 10
W=11 0 0| Z=1|-10 0 (2-29)
0 0 1 0 00

It is easy to check that both of these two decompositions are true, and there is no
another disintegration except them.

Obviously, the decomposition (2-28) of E determines the t in the camera matrix
does not contain scales. Compare E = SR with (2-23), we get S = [t]«, and the
Frobenius norm of S is v/2, that the scaling factor included in S is ||t|| = 1, which
is simply normalized with the baseline between two camera matrix. Since St =
O(according to the property of cross product), the translation vector can be obtained

as

t =+U(0,0,1)T = +us (2-30)

52971

AERZBAFARENZHT G830

where u3 is the last column of the vector U. But the translation vector still can’t be

determined exactly due to the fact that the sign of the essential matrix can not be
determined.

In summary, for a given essential matrix E we can solve four possible camera
matrix P ’, which contains two different R solution and two different symbols for t.
Formally, for a given essential matrix E = Udiag(0,0,1)V7, assume the first camera

matrix is P = [I|0], there four possible solutions for the second camera matrix P’:

UWVT|u3)

[
T

[UWV | — u3] (2_31)

[

UWTVT |uj]
UWTVT| — us)

(P
P
P

| P

Obviously, in (2-31) the difference between the first two solutions is just the opposite
direction of the translation. And the relationship between the first and the third

solution is shown below:

VWIwWTyT
UWTVT 3] = [UWVT |u3] : (2-32)
where VWITWIVT = Vdiag(—1,—1,1)VT is a 180 degree rotation regarding the
8 g g g

baseline between two camera centers.

(a) (b)

(©) (d

Figure 2-12 The four solutions for the second camera matrix P’'1%!

% 30

AERZBAFARENZHT G830

Imaging significances of these four solutions represented are shown in Figure 2-

12: the space point X position reconstructed corresponding to the four camera matrix
solutions respectively. Only the reconstruction of point X in the Figure (a) is located
in front of two cameras (point A, B represents the two camera centers), in Figure
(d) the reconstruction of the X point behind two cameras, and in the corresponding
tigures at up and down made a 180 degrees rotation from each other. Therefore, only

the Figure (a) is the correct solution for camera matrix P’

2.5.4 Chapter Summary

In the first part of this chapter, the program running plat ROS and how to get the
images from the camera by Rviz over ROS are introduced, which actually the tool
for capturing frames. And then we introduce the SiftGPU, before which it introduces
something about features extracting and matching and the overview of SIFT feature
and GPU. It do the composition between SIFT feature and other feature detectors
and descriptors.

As we known from the first chapter, the five-point algorithm is a method to solve
the essential matrix between views with the corresponding image points, match-
ing features. This section then gives a detailed description of epipolar geometry,
in which a variety of mathematical relationships will be derived, and then a high-
light introduction of fundamental matrix and essential matrix, both of which can
be derived from the epipolar geometry. Especially, the essential matrix includes the

transform information of the camera.

% 311

AERZBAFARENZHT G830

3 Five-point Algorithm with RANSAC

This chapter is an introduction to the five-point algorithm and RANSAC. The
most important mainly algorithm in this project is five point algorithm, use to calcu-
late the essential matrix, that estimate the relative poses transformation through the
corresponding points between the images of the camera. Because in the previous
step matching feature points is not necessarily the real match points, even with the
real match points to calculated the essential matrix there is a certain probability of
error. As a result, simply calculating essential matrix E with five-point algorithm
is substantially not qualified. The RANSAC algorithm was used here as an opti-
mization algorithm of the five-point algorithm to improve the probability of getting

correct essential matrix E.
3.1 Five-point Algorithm

3.1.1 Basic Knowledge

If the pair of images have been calibrated, their camera matrices is P = [I|0] and

P’ = [R|t]. The essential matrix corresponds to this pair of camera matrices is

E = [t] <« R (3-33)
where
0 —t3 t
[t]x = | f3 0 —tf (3-34)
—t 4 0

Therefore, the form of the fundamental matrix is
F =K, T[t]«RK;? (3-35)

According to the epipolar constraint, the fundamental matrix should satisfy the con-

dition:
XTFx =0 (3-36)

A rank 2 real non-zero 3 x 3 matrix F must satisfy the following cubic singularity

condition!*8! which can be a fundamental matrix:

det(F) =0 (3-37)

% 321

AERZBAFARENZHT G830

For the calibrated image points (x,x’), assuming they have premultiplied the in-

verse of K, the essential matrix E should satisfy the epipolar constraint:
X'TEx =0 (3-38)

Compared with the fundamental matrix F, the essential matrix E should satisty
the additional condition, that its two non-zero singular values are equal, and the
third singular value is zero. It gives the following equation3! that the essential

matrix must satisfy:

1
EETE - Etmce(EET)E =0 (3-39)

3.1.2 The Method of Calculating the Essential Matrix

The most basic condition in this algorithm (3-38), the epipolar constraint, can be

written as
GTE=0 (3-40)

where (assume the image points (in homogeneous coordinates) are: x = (x1,y1,21)7,

x' = (x2,y2,22)7)

~ T
q= [x1x2 X2Y1 21X2 X1Y2 Viy2 21Y2 X122 Y122 2122]

(3-41)

E=[En Eqp Ei3 Ex Ex Ep; Ez Esp Es)T (3-42)

Compute g (3-41) for all pairs of image points (assume there are N pairs), we get
a N x 9 matrix Q. Assume there are four nine-dimensional Vector}ﬂf, ?, Z W, which
make up the right null space of the matrix Q. Since they correspond to the smallest
singular values of the matrix Q, they can be computed by doing SVD decomposition.
Then reshape them as four 3 x 3 matrix respectively: X,Y,Z, W. The expression of

E, expressed by these four matrix, can be obtained from (3-40):
E=xX+4+yY +zZ+wW (3-43)

where x, y, z, w are some scalars. This expression is derived as follows.
Since the four vector X, 17, Z, 1% span the right null-space of the matrix Q, this

relationship can be expressed as

Q(xff + le/ +2zZ + wW) =0 (3-44)

% 331

AERZBAFARENZHT G830

where x, y, z, w are some scalars. If E satisfies the constraint (3-40), according to the

knowledge of SVD, we obtain
E=xX+ le/ +zZ +wW (3-45)

where E is a nine-dimensional vector. Reshape E asa3 x 3 matrix E, correspondingly,
the formula (3-45) can be written as (3-43) E = xX + yY + zZ + wW as required.

The equation (3-39) gives nine equations on the elements of E, but of which only
two are independence on algebraic. Substituted E, expression (3-43), into the condi-
tion (3-37) can obtain another equation. Then we have enough equations to solve the
essential matrix E.

Since these four coefficients in the expression (3-43) can be defined on any arbi-
trary scale, in order to facilitate the calculation, let w = 1. The nine equations from
condition (3-39) gives form a coefficient matrix of 9 x 20, which corresponds to 20

terms (written as a vector space of the monomials):

3.3 ,2 2

[x3,y , 27, XY, xzz, xz, xyz, yzz, yz, XYz, Xy, Xz°, Xz, X, yzz, Yz, Y, zz,l] (3-46)

In the David Nistér’s 5-point algorithm, Nister use Gauss - Jordan elimination
method for the coefficient matrix of the equations system and form another coeffi-
cient matrix A (an upper triangular matrix). Then he performed some algebra oper-
ation on the matrix A and obtained two 4 x 4 (here we use CVPR version, because
CVPR version is easier to understand, in the PAMI version it obtains a 3 * 3 matrix).
Then he do a further elimination to give a ten-degree polynomial. Finally, solve the
roots of z (ten roots). After that another unknowns x and y can be solved by back
substitution method.

Gauss - Jordan elimination is really a complex method to solve the variables. The
code referencing to a more simple method!*”], which is based on hidden-variable
resultant*®! but not on Gauss - Jordan elimination such a cumbersome method, to
solve these three variables.

Hidden-variable resultant is a well-known algebraic elimination method, and
easy to implement. It can easily and quickly eliminate the variable from polyno-
mial equations. Its main principle is as follows. Given a equations system composed
of M homogeneous polynomial equations (in which every homogeneous polynomial
equation p; = 0, fori =1 ... M), containing N variables (x1, x2, ..., Xyy), we can see one

of the variables as a parameter (i.e. x1). Then the equation system can be rewritten

% 3471

AERZBAFARENZHT G830

as
C(x1)X =0 (3-47)

where C(x1) is the coefficient matrix of X. X is the vector space only concluding the
terms of the other N — 1 variables. And the coefficients in the matrix C(x;) includes
a parameter x.

If in the rewritten equation system, the number of equations is equal to the num-
ber of the terms in the X (i.e. C(x1) is a square matrix), then if and only if the deter-
minant of C(x1) is zero the equation systems has non-trivial solutions. The condition

gives a equation
det(C(x1)) =0 (3-48)

By solving the equation (3-48), we can get the roots of the variable x, that can be
seen as we eliminate the other N — 1 variables at once.

We can apply this method on solving the variables x,v,z*’]. We can obtain 9
equations from condition (3-39). Adding another equation obtained from condition
(3-37), there are totally 10 equations in the equation system. Let’s make the variable

z as a parameter, the equations system can be rewritten as
C(z)X(x,y) =0 (3-49)

where X(x,) is the vector space consisting of the homogeneous monomial terms of

variables x and y

(3,3, %y, 22, xy?, %, xy, x, v, 1] (3-50)

Obviously, the rewritten equations only has 10 terms, then the number of equations
equal to the number of terms in X. For making this equation system have non-trivial

solutions, it must satisfy the equation
det(C(z)) = 0. (3-51)

The equation (3-51) is an univariate polynomial, which only consist the variable z.
Therefore, we can easily solve the roots of z by solving this equation. Obviously,
there are only at most 10 roots for z, so the five-point problems can have at most 10
solutions.

Next, we can use the substitution method to obtain the rest of the unknowns. But

the substitution step will be done for many times, due to the fact that there are many

% 351

AERZBAFARENZHT G830

z solutions, that’s why it is somewhat cumbersome. We can use a more convenient

way to get other variables, that is doing SVD decomposition for C(z). The vector
space X(x,y) has included all the combinations of variables x and y up to degree
three. Thus, from the equation (3-49), it’s obviously that the solutions of x and y
are the right null-space of C(z). In the other words the solutions of x and y can be
conveniently computed by doing a SVD decomposition for C(z).

After computing the coefficients x,y,z, combining with the vectors X,Y,Z, W
known before, we can obtain the solutions of the essential matrix E. Finally, we
can recover the motion information, rotation matrix R and the translation vector t,

from the essential matrix E.

3.1.3 The Flowchart of the Five-point Algorithm

For every pair of matching features (x = [x1,y1,1], X' = [x2,y2,1]),
compute the x vector to get a N x 9 matrix Q

I
[U, S, V]=svd(Q), X,Y, Z, W are the last four columns of V

I

Substitute the expression of E (3-43) into equation (3-37) and (3-39) to obtain 10 equations

I

Treat z as a parameter, rewrite the equation system as C(z)X(x,y) =0

|

Solve equation det(C(z)) = 0 to get the roots of z

|
Do SVD decomposition of C(z).
The solutions of x and y are the right null space of C(z).

I
End
Figure 3-1 Flowchart of five-point algorithm

3.1.4 Result of Five-point Algorithm

Since the process of solving E is actually solving a ten-degree polynomial, the
determinant of the coefficient matrix equation (3-51) with z as the parameter. There-
fore, the roots of the E have wrong solutions (these solutions are not true represents
of the camera pose). Here the results of a single five-point calculation with two fixed

images (corresponding to Roll movement) are shown.

% 361

AERZBAFARENZHT G830

Figure 3-2 The results of a single five-point calculation with two fixed images.

% 371

AERZBAFARENZHT G830

Obviously, only the fourth solution is correct, the rest are spurious solutions,

which happen in the case that the inputs are well enough, or all the solutions should
be wrong. Visible, use a single five-point algorithm to obtain the correct essential

matrix is unrealistic, so we use RANSAC to exclude spurious solutions.

3.2 RANSAC
3.2.1 Overview of RANSAC

Though we got match features from SiftGPU, they are not all the exact matches.
That’s say, there are some outliers. To solve the problem, we can use RANdom SAm-
ple Consensus (RANSAC) algorithm, which can help us reject outliers!®! in visual
odometry computation well.

RANSAC is short for RANdom SAmple Consensus!®!l. It is an algorithm to com-
pute the math model according to a dataset including outliers, and obtaining the
effective sample data (inliers). It was first proposed by the Fischler and Bolles!>?!
in 1981. The RANSAC algorithm is often applied in robotics, for instance, extract-
ing line from 2D image, extracting plane from 3D structure, and extracting structure
from motion.

The basic assumption of the RANSAC algorithm is that a sample contains the cor-
rect data (inliers, can be described by the data model), but also contains abnormal
data (outliers, deviation from the normal range very far, unable to adapt to the math-
ematical model of the data), that the dataset contains noise. And it also assumes that
there exists a method that can calculate the model parameters which are consistent
with this data. RANSAC is an iterative, non-deterministic algorithm. It estimates
the model parameters by iterations. As far as to its non-determinacy, it gets different
model in each iteration, and it has a possibility to get a reasonable model. For getting
a good enough model, the number of iterations should be improved.

RANSAC is a learning algorithm, it gets model parameters through sampling
points randomly. Given a dataset, which including inliers and outliers, RANSAC
use vote scheme to find the optimal model. To put it simply, the elements in the data
set vote for the models. There are two assumptions about the vote scheme. First, any
outlier is impossible to vote for a single model all along. Second, there are enough

features to fit a good model.

% 38

ARAXBAFEABENET (830
3.2.2 Fundamental of RANSAC

The RANSAC algorithm is given a set of observed data, the method to obtain a
titting model, and some reasonable parameters of the algorithm as its inputs. Then

RANSAC repeats the steps as follows to get enough inliers in consensus set:

a) Choose minimal points from the observed data set to compose a subset, called

hypothetical inliers.
b) Fit a model from the subset(compute its model parameters).

c) Test each point in the observed values data set to see whether they are consistent
to the fitting model we got in step one. When the error between the testing point
and the model is less than the threshold we set, add the point as an inlier of this
model. If a point does not fit the fitting model and away from it more than a

certain threshold we setted, it will be regard as a outliers, belong to noise.

d) We get a set of inliers from the fitting model, which was called ”consensus set”.
If there are enough points in the consensus set, the model will be regarded as a

good model.

e) Then we use all points in consensus set to compute a better model.

The algorithm repeats the steps above until there are enough inliers in the con-
sensus set in certain iteration. In every iteration, a model with too less inliers will be
throw out, or it can be insteaded by the model with more inliers in other iterations,
which make us get the best model.

We can get a Matlab implementation of some kinds of model fitting and robust
estimation using RANSAC algorithm from [53]. And some C++ implementations
code also can be found in [54] and [55].

3.2.3 Parameters

Some important parameters we should set at the code beginning is as follows!>!.

K is the maximum number of iterations. It can be caculated in section below
(Algorithm Complexity Analysis of RANSAC),which is determined by how high
the possibility we want to find the best model, the number of elements in the input
dataset, and the number of inliers for the best model.

N is the minimum number of points to fit the model required.It is decided by

what model you want to fit. For fitting a 2D line, we need at least 2 points. Therefore,

% 397

AERZBAFARENZHT G830

for this example, N is 2. In this thesis, we need to use 5-point algorithm to fit a

essential matrix, thus, N equal to 5 here.

T is the threshold measuring if the point fit the model. If the error between the
point and the model less than T, the point can be add as a inliers to consensus set.

D is a threshold to decide whether a model is a good model. If the number of
inliers in consensus set reachs the threshold, the model will be regarded as a good
model. It also can be a rate of the numbers of inliers and all points.

The inputs and outputs of the algorithm is listed as follow:

Input:

InputData (A set of observed datas(points)),

K,N,T,D,

FittingFunction (A function can fitting a model with least points).

Output:
BestModel (Finally RANSAC returns a best model (it is possible to return NULL

if it can not find any good model)).

54071

AERZBAFARENZHT G830

Input D(decide is a model a good model), K(number of iterations),
T(decide if a point fit the model), N(minimum number of points for fitting a model),
BestModel=Null, BestError(a very large number)

L

1

Yes

iterations > K

Sample N points randomly as a subset
N

Fit a model with the subset
[
Check every point,if the point fit the model,add it to consensus set(Conselnliers)

|

Conselnliers>D

No

Yes

< BetterModel = this model <
I
Compute ModelError(how well the model is)

|

ModelError<BestError

< BestModel = this model, BestError = ModelError <

L
L

increase iteration

End

Figure 3-3 Overall flowchart of RANSAC

4171

ARAXBAFERRENRT GE30
3.2.4 Algorithm Complexity Analysis of RANSAC

In the RANSAC algorithm, the first layer of loop is K times iterations for all steps,
besides initialization. Therefore, how large the K is really effecting how long the
program runs. K can be decided according to our conputation.

When we get a dataset of observed data point, We can estimate the proportion of
the inliers in this set based on experience. Assuming that there are 70 inliers in this
input dataset, and 7 points in the dataset in total. Let W be the probability to choose
an inlier in the dataset each time select a single point: W = n0/n.

In each iteration, we need to select N points to fit a model. Obviously, the pos-
siblility Wy that we select N points and all of them are inliers is Wy=W". It is easy
to infer, the probability of we get at least one outlier from these selected N points is
1 — WN. When this happened, the model fitting function will fit a bad model, and it
is hard to get a good model in this iteration, not to mention a best model. If we get
at least one outliers from N selected points in all K iterations, there is no doubt that
the output of the algorithm, BestModel, will be null. The possibility to happen this
thing is

P=(1-wh>~k (3-52)

Therefore, the possibility of getting a good model is 1 — P.
In summary, a reasonable K can be computed below:

_ log(P) i
K= oG~ W) (3-53)

It’s really not a large number. As to my RANSAC for fitting a essential matrix,
N =5, it has a 99 percent probability of the model can be obtained(P = 0.01), and,
according to experiment, there are about 60 percent of the input match features are

inliers(W = 0.5). Then K can be computed:

log(0.01)

= ————2— = (int)145.05072 = 14
Tog(1— 0.5 (int)145.050 6

where the K = 146 will be used in the code, we can seen from the experimental (in
the section 4.2) that these group of parameters are good enough in most cases.
As was described above, the parameter K can be decided by the inliers number

and the possibility of getting good results, both of which are decided by experiment.

54271

ARAXBAFERRENRT GE30
3.3 Five-point Algorithm with RANSAC

Input D(decide is the E a good essential matrix),K(number of iterations),
T(decide if the pair of image points fit the essential),
N(minimum number of points for fitting a E: 5),Best_E=Null, Best_error(a very large number)

X

Yes

iterations > K

Sample 5 points randomly

[
Fit a essential matrix E with these 5 pairs of image points

Check every pair of image points, if the pair of image points fit the E,
padd it to consensus set(Elnliers)

J

Elnliers>D

No

Yes

< Better_E = this E <

Compute how well the E is (ModelError)

|

ModelError<Best_error

YTS

< Best_E = this E, Best_error = ModelError <

L
L

increase iteration

End

Figure 3-4 Overall flowchart of five-point algorithm with RANSAC

% 43T

AERZBAFARENZHT G830

3.3.1 Description of the Algorithm

In the previous two subsections, respectively, we described the five-point algo-
rithm and RANSAC algorithm. In our project, we use the five-point algorithm with
RANSAC algorithm. In the description we know, RANSAC requires some algorithm
to build the model (get the model parameters). This model is in fact to find the es-
sential matrix E, and we use five-point algorithm to find the matrix E. The algorithm
requires the minimum number of points is five. So in each iteration of the algorithm,
we need a minimum of sampling points is five. Then use the five-point algorithm to
calculate the essential matrix E, and then use the E to test each pair of image points.
For a pair of corresponding points, there are two method to check the inliers in my
code. First is using the epipolar constraint (x'TEx). If the differential of x’TEx and
0 less than a threshold T, then the points are considered as a inlier for this essential
[56]

matrix. Second is using the Sampson distance

i i (x/TEx;)?
= (Ex;)1 + (Ex;); + (ETx))] + (ETx})3

1

(3-54)

Then we add all the well-fitting points of this essential matrix to the consensus
set. If the number of points in the consensus set is bigger than a certain threshold
D, this essential matrix can be seen as a good solution. During this process, we need
to calculate how well the image points fit the essential matrix E. When the deviation
of the points and the fitting model is less than the Best_error (the initial value of this
variable is a very large number), we give the E to the Best_E variable. After all times

of iteration, the finial Best_E is the best essential matrix.

3.4 Chapter Summary

My code is mainly according to this chapter. First it introduce the five-point al-
gorithm, then the RANSAC, which is a outliers rejecting algorithm. As a combine, it
introduces how to use five-point algorithm with RANSAC to select the inliers among
the matching features to calculate the essential matrix finally. After that, it tells how

to recover rotation and translation information from the essential matrix.

5 4471

AERZBAFARENZHT G830

4 Experimtal Setup and Results

4.1 Experimental Steps for Each Part

For testing the code, it uses the fixed images to collect data, in which all groups

(two images as a group) of image include the following relative motions:
a) Pure rotation: yaw.

b) Pure rotation: pitch.

¢) Pure rotation: roll.

In addition, do experimental of the algorithm under different configuration pa-
rameters, and compare the calculate speed (time) and the correct rate.
For each set of relative movement (with fixed image), do the following steps re-

spectively:

1) Capture two images and save them as the input when the camera do the desig-

nated motion.
2) Do feature extraction and matching for these two images.

3) Use five-point algorithm with RANSAC (with the set of parameters having higher
correct rate) to calculate the essential matrix between two images, then extracts

the rotation matrix R and translation vector t.

4) Use five-point algorithm implemented by OpenCV to calculate the essential ma-
trix between two images, then extracts the rotation matrix R and translation vec-

tor t.

5) Draw the inliers and outliers of matches outputted by my code and OpenCV re-
spectively.

After completing the above experiments, pick a group of fixed images as input,
change RANSAC algorithm parameters for several times, and record the correct rate

and the time of the calculation process.

5 45T

AERZBAFARENZHT G830

4.2 The Verification Experiment with Different Groups of Relative
Motion

Now, let’s begin the first experiment, verify the code with different relative mo-
tions.

In this testing experiment, the parameters of the RANSAC algorithm are set as
follows:
T=1e-04(To test if the pair of image point fit the essential matrix),
D=0.5*Match_Num (If there are 0.5 image points fit the essential matrix, which can
be seen as a good essential matrix),
K=146(Through K iterations to find the best essential matrix), it means 99% proba-
bility of finding a reasonable essential matrix if there are more than 0.5 points are

inliers.

4.2.1 Experiment with Images At Same Position

First, capture two frames when the camera stay at the same position:

_ i & —

S gl N NPT S
A P S S - =
oy

Figure 4-1 Two images at the same position

Secondly, extract and match the features between two images:

46T

Figure 4-2 Extract and match the features between two images (Same position)

From the output of the code, SIFT extracts 673 features in the first image and 66
features in the second image. And there are 575 matches between these two images.
The code with RANSAC selects the inliers to compute the essential, the code are
run for one time and the inliers (green lines) and outliers (black lines) are drawn

below:

Figure 4-3 The inliers and outliers selected by RANSAC (No motion)

SiftGPU outputs 575 pairs of matches between the two images, which are used
to calculate the essential matrix. After running the code for 50 times, there are 50
groups of results are correct. And the top ten sets of results of my code (5-point
algorithm with RANSAC) and a group of result of the openCV implement are as

follows:

4771

AERZBAFARENZHT G830

Table 4-1 Result of no motion groups (rotation unit: degree)

X-axis | Y-axis | Z-axis Yaw Pitch Roll Inliers | Time (s) Code
1 | -1.71e-13 -1 1.87e-13 | -1.75e-14 | 2.45e-15 | -9.76e-15 | 573 7.6604 | My code
2 | -5.15e-14 -1 2.88e-14 | -5.91e-12 | -8.52e-26 | 3.29¢-12 489 8.4228 | My code
3 | -1.71e-13 -1 -8.51e-13 | -1.96e-11 | 2.82e-15 | -9.75e-11 | 538 7.1157 | My code
4 | -1.65e-13 -1 2.95e-12 | -1.89e-11 | 1.08e-15 | 3.38e-10 445 7.6277 | My code
5 | 7.48e-14 -1 -2.31e-13 | 8.58e-12 | 5.38e-16 | -2.64e-11 | 398 7.3972 | My code
6 | 1.61e-13 -1 -3.37e-13 | -2.71e-15 | 3.12e-24 | -2.39e-15 | 572 6.7222 | My code
7 | 1.21e-13 -1 -3.60e-14 | 1.39e-11 | -3.62e-16 | -4.13e-12 | 550 7.3098 | My code
8 | 1.06e-13 -1 -2.84e-13 | -7.67e-15 | 1.74e-24 | -7.55e-16 | 558 6.7453 | My code
9 | 5.59%-14 -1 -1.83e-13 | -1.00e-14 | 1.33e-15 | -6.17e-15 | 509 7.6162 | My code
10 | -1.37e-14 -1 -1.19e-13 | 3.18e-15 | -2.02e-15 | -1.58e-15 | 572 6.9295 | My code
11 0.297 -0.028 0.954 -178.827 | -34.570 -3.761 78 0.8051 | OpenCV

In the table we can see that the rotation and translation values are all very very

near to zero. Notice that the scaling factor ||¢|| = 1, so the translation values can not

be all zero. The inliers in most group are more than 0.8 of the number of all matches.

In fact, more than 90% of the matches are correct. Then we can find the reason why

its computation time is very long. It is because the number of matches between these

two images is quite big, and most of them are inliers, which make it easy to obtain

a correct E from random 5 points. So most of E enter the following computations,

computing a better essential matrix and recovering camera matrix P, and even join

the comparing step. Obviously, if every iteration takes a long time, the total time will

be very long.

In the second experiment, the number of iterations is reduced to 8 (when the

inliers are more than 90%, it means 99% chance to get a correct essential matrix).

4.2.2 First Rotation: Pitch

a) Pitch: The First Group

First, capture two frames when the camera do the motion pitch:

5 48T

AERZBAFARENZHT G830

St SEY
e s S

Figure 4-4 Two images of pitch

Secondly, run the code to extract and match the features between two images:

Figure 4-5 Extract and match the features between two images (Pitch)

From the output of the code, SIFT extracts 722 features in the first image and 677
features in the second image. And there are 285 matches between these two images.
The code with RANSAC selects the inliers to compute the essential, the code are
run for one time and the inliers (green lines) and outliers (black lines) are drawn

below:

54971

AERZBAFARENZHT G830

—_
i ————

Figure 4-6 The inliers and outliers selected by RANSAC (Pitch)

SiftGPU outputs 285 pairs of matches between the two images, which are used
to calculate the essential matrix. the parameters of the RANSAC algorithm are set as
follows: T=1e-04, D=0.3*Match_Num, K=146. After running the code for 50 times,
there are 49 groups of results are correct. And the top ten sets of results of my code
(5-point algorithm with RANSAC) and a group of result of the openCV implement

are as follows:

Table 4-2 Result of pitch

X-axis | Y-axis | Z-axis | Yaw | Pitch | Roll | Inliers | Time (s) Code
1]-0999 | 0.009 | 0.042 | 0.959 | 12.806 | -0.323 88 49197 | My code
2 | -0.999 | 0.009 | 0.046 | 0.991 | 12.929 | -0.309 | 102 5.1579 | My code
3 |-0.999 | 0.009 | 0.046 | 0.985 | 12.998 | -0.292 | 103 49039 | My code
4 1 -0.999 | 0.007 | 0.047 | 1.028 | 12.956 | -0.324 92 4.8772 | My code
5 | -0.999 | 0.010 | 0.047 | 1.006 | 12.936 | -0.292 97 51170 | My code
6 | -0.999 | 0.007 | 0.050 | 1.135 | 13.383 | -0.293 86 5.3559 | My code
7 | -0.999 | 0.007 | 0.046 | 0.986 | 12.939 | -0.337 94 49777 | My code
8 | -0.999 | 0.010 | 0.046 | 0.993 | 12.876 | -0.286 96 5.3071 | My code
9 | -0.999 | 0.006 | 0.043 | 0.979 | 12.821 | -0.276 86 5.3168 | My code
10 | -0.999 | 0.009 | 0.048 | 1.015 | 12.951 | -0.292 87 49576 | My code
11 | -0.581 | 0.151 | -0.799 | 0.257 | 12.091 | -0.545 | 135 0.8273 | OpenCV

Set D = 0.4 x Match_Num for other groups but set D = 0.3 x Match_Num for
this two images. It's because when setting D = 0.4 * Match_Num for these group,

the most results are wrong. Observe the inliers numbers selected by RANSAC in the

% 501

AERZBAFARENZHT G830

table, we find in most time it’s less than 0.4*Match_Num. Therefore it’s hard to obtain

a good E when D = 0.4 x Match_Num. Meanwhile, it leads to the long computation
time (about 5 seconds). It is hard to get 5 inliers in the 5 random sampling points,

which make it take a long time to find all-inlier sampling points.

b) Pitch: The Second Group

First, capture two frames when the camera do the motion pitch:

Figure 4-7 Two images of pitch

Secondly, run the code to extract and match the features between two images:

Figure 4-8 Extract and match the features between two images (Pitch)

From the output of the code, SIFT extracts 757 features in the first image and 854
features in the second image. And there are 240 matches between these two images.
The code with RANSAC selects the inliers to compute the essential, the code are

run for one time and the inliers (green lines) and outliers (black lines) are drawn

517

AERZBAFARENZHT G830

Figure 4-9 The inliers and outliers selected by RANSAC (Pitch)

SiftGPU outputs 240 pairs of matches between the two images, which are used
to calculate the essential matrix. Set the parameters of the RANSAC algorithm as
follows: T=1e-04, D=0.2*Match_Num, K=146. After running the code for 50 times,
there are 50 groups of results are correct. And the top ten sets of results of my code
(5-point algorithm with RANSAC) and a group of result of the openCV implement

are as follows:

Table 4-3 Result of pitch

X-axis | Y-axis | Z-axis | Yaw | Pitch | Roll | Inliers | Time (s) Code
1 |-0999 | 0.016 | 0.044 | -3.627 | 18.317 | -1.645 53 4.8628 | My code
2 1 -0.999 | 0.014 | 0.045 | -3.588 | 18.365 | -1.652 58 41036 | My code
3 1-0.999 | 0.015 | 0.049 | -3.581 | 18.470 | -1.646 64 49039 | My code
4 1-0999 | 0.013 | 0.042 | -3.625 | 18.244 | -1.691 70 4.0905 | My code
5 1-0.999 | 0.015 | 0.043 | -3.626 | 18.262 | -1.667 52 4.3203 | My code
6 | -0.999 | 0.016 | 0.043 | -3.619 | 18.282 | -1.648 50 4.4061 | My code
7 | -0999 | 0.016 | 0.042 | -3.617 | 18.126 | -1.633 49 4.4866 | My code
8 | -0.999 | 0.016 | 0.043 | -3.602 | 18.289 | -1.649 59 4.6820 | My code
9 | -0.999 | 0.015 | 0.043 | -3.609 | 18.341 | -1.653 49 4.3048 | My code
10 | -0.999 | 0.016 | 0.042 | -3.684 | 18.144 | -1.645 53 42936 | My code
11 | -0.952 | -0.168 | -0.252 | -2.894 | 15.043 | -1.012 | 137 0.7963 | OpenCV

Set D = 0.3 x Match_Num for last group but set D = 0.2 * Match_Num for this

group. It's because when setting D = 0.3 * Match_Num, the most results are wrong.

% 521

ARAXBAFEABENET (830

Observe the inliers numbers selected by RANSAC in the table, we find in most time
it’s less than 0.3*Match_Num. Therefore it’s hard to obtain a good E when D =

0.3 * Match_Num. Therefore, it also take a long time (about 4 seconds) to obtain a

good E.

4.2.3 Second Rotation: Roll

a) Roll: the First Group

First, capture two frames when the camera do the motion pitch:

Figure 4-10 Roll

Secondly, run the code to extract and match the features between two images:

Figure 4-11 Extract and match the features between two images

From the output of the code, SIFT extracts 704 features in the first image and 542

features in the second image. And there are 234 matches between these two images.

%5 5371

AERZBAFARENZHT G830

The code with RANSAC selects the inliers to compute the essential, the code are

run for one time and the inliers (green lines) and outliers (black lines) are drawn

below:

Figure 4-12 The inliers and outliers selected by RANSAC (Roll)

SiftGPU outputs 234 pairs of matches between the two images, which are used
to calculate the essential matrix. After running the code for 50 times, there are 48
groups of results are correct. And the top ten sets of results of my code (5-point
algorithm with RANSAC) and a group of result of the openCV implement are as

follows:

Table 4-4 Result of roll

X-axis | Y-axis | Z-axis | Yaw Pitch Roll Inliers | Time (s) Code
1 | -0.877 | 0.408 | -0.250 | 0.158 3.382 | 12.721 118 3.6170 | My code
2 | -0956 | 0.256 | -0.142 | 0.338 5472 | 12.6581 | 131 29162 | My code
3 | -0.882 | 0.238 | -0.406 | 0.290 2965 | 11.947 121 29411 | My code
4 |-0977 | 0119 | -0.172 | 1.031 6.129 | 11.960 96 2.8901 | My code
5 1 -0.882 | 0.442 | -0.156 | 0.210 | -3.647 | 12.994 124 2.8490 | My code
6 | -0.892 | 0.305 | -0.331 | 0.150 3.768 | 12.424 128 2.6903 | My code
7 | -0.845 | 0.154 | -0.510 | 0.339 2921 | 11.599 123 2.8021 | My code
8 | -0.485 | 0.137 | -0.863 | 0.012 0.820 | 11.300 95 2.8945 | My code
9 | -0.846 | 0.140 | -0.512 | 0.670 2.748 | 11.542 111 2.7527 | My code
10 | -0.894 | -0.232 | 0.381 | -32.957 | -47.833 | 26.408 124 2.6364 | My code
11 | 0468 | 0.811 | -0.347 | -0.456 | -1.767 | 12.927 166 0.8150 | OpenCV

The computation time is about 2.8 second, which is not a short time. The table

% 547

AERZBAFARENZHT G830

tells us that the inliers are about 0.5 of the number of matches. Therefore it is also

not easy to obtain a good E that can fit 0.4 of the matches. In general, the results are
good enough so far. And if we reduce the parameter D, the rotation values can be

more precise.

b) Roll: the Second Group

First, capture two frames when the camera do the motion pitch:

Figure 4-13 Roll

Secondly, run the code to extract and match the features between two images:

Figure 4-14 Extract and match the features between two images

From the output of the code, SIFT extracts 704 features in the first image and 353
features in the second image. And there are 125 matches between these two images.
The code with RANSAC selects the inliers to compute the essential, the code are

run for one time and the inliers (green lines) and outliers (black lines) are drawn

%5 55171

AERZBAFARENZHT G830

below:

Figure 4-15 The inliers and outliers selected by RANSAC (Pitch)

SiftGPU outputs 125 pairs of matches between the two images, which are used
to calculate the essential matrix. After running the code for 50 times, there are 49
groups of results are correct. And the top ten sets of results from my code (5-point
algorithm with RANSAC) and a group of result from the openCV implement are as

follows:

Table 4-5 Result of roll

X-axis | Y-axis | Z-axis | Yaw | Pitch | Roll | Inliers | Time (s) Code
1 | 0791 | 0290 | -0.537 | -0.292 | -4.186 | 25.267 75 2.3513 | My code
2 | 0910 | 0.379 | -0.162 | -1.352 | -6.423 | 27.012 70 1.9119 | My code
3 1-0.998 | 0.031 | 0.035 | 4.279 | 8.828 | 25.552 53 1.8509 | My code
4 | 0730 | 0.313 | -0.606 | -0.040 | -3.338 | 25.175 95 1.6796 | My code
5 1-0.998 | 0.058 | -0.019 | 3.816 | 8.004 | 25.505 53 1.6932 | My code
6 | -0.995 | 0.085 | -0.030 | 3.160 | 6.817 | 25.513 63 1.8197 | My code
7 | -0980 | 0.116 | -0.159 | 2.686 | 5.587 | 25.287 63 1.7493 | My code
8 | -0975 | 0.136 | -0.170 | 2.690 | 6.153 | 25.430 61 1.5259 | My code
9 | -0.994 | 0.094 | -0.045 | 3.078 | 6.695 | 25.525 64 1.7111 | My code
10 | -0.998 | 0.042 | 0.017 | 4.211 | 8.786 | 25.586 54 1.7188 | My code
11 | -0.410 | -0.137 | 0.901 | 0.032 | -3.000 | 24.152 61 0.8215 | OpenCV

The computation time is around 1.7 second, which is a shorter time. Because
there are more than 0.5 of the matches are inliers. Therefore it is easy to obtain a

good E that can fit 0.4 of the matches. In general, the results are good enough so far.

% 5611

ARAXBAFEABENET (830

And if we reduce the parameter D, the rotation values can be more precise.

4.2.4 Third Rotation: Yaw

a) Yaw: The First Group

First, capture two frames when the camera do the motion pitch:

Figure 4-16 Roll

Secondly, run the code to extract and match the features between two images:

Figure 4-17 Extract and match the features between two images

From the output of the code, SIFT extracts 767 features in the first image and 818
features in the second image. And there are 296 matches between these two images.
The code with RANSAC selects the inliers to compute the essential, the code are
run for one time and the inliers (green lines) and outliers (black lines) are drawn

below:

5 57171

AERZBAFARENZHT G830

Figure 4-18 The inliers and outliers selected by RANSAC (Yaw)

SiftGPU outputs 296 pairs of matches between the two images, which are used
to calculate the essential matrix. After running the code for 50 times, there are 49
groups of results are correct. And the top ten sets of results of my code (5-point
algorithm with RANSAC) and a group of result of the openCV implement are as

follows:

Table 4-6 Result of yaw

X-axis | Y-axis | Z-axis | Yaw | Pitch | Roll | Inliers | Time (s) Code
1 |-0997 | 0.011 | 0.079 | 13.931 | 6.730 | -2.348 | 172 1.1087 | My code
2 | -0.999 | 0.037 | 0.021 | 14.039 | 6.899 | -2.181 | 157 1.0750 | My code
3 |-0.999 | 0.026 | 0.014 | 13.856 | 7.775 | -1.970 | 159 1.0970 | My code
4 1-0993 | 0.009 | 0.114 | 13.764 | 5933 | -2.547 | 171 1.1244 | My code
5 1-0.999 | 0.036 | -0.003 | 13.965 | 7.735 | -1.949 | 157 1.1077 | My code
6 | -0.996 | 0.018 | 0.080 | 13.826 | 5.926 | -2.510 | 209 1.2098 | My code
7 | -0995 | 0.013 | 0.092 | 13.853 | 6.463 | -2.406 | 155 1.2474 | My code
8 | -0.998 | 0.023 | 0.058 | 13.822 | 6.091 | -2.453 | 158 1.1432 | My code
9 | -0.997 | 0.021 | 0.063 | 13.811 | 6.084 | -2.460 | 167 1.1928 | My code
10 | -0.993 | -0.006 | 0.114 | 14.160 | 7.101 | -2.346 | 152 1.1214 | My code
11 | -0.481 | -0.335 | 0.809 | 14.444 | 8.246 | -2.173 | 127 0.8090 | OpenCV

Observe the inliers numbers selected by RANSAC in the table, we find in most
time it’s more than 0.5 of the matches. Therefore it’s easy to obtain a good E when

D = 0.4 x Match_Num. Therefore, it needn’t take a long time to obtain a good E.

% 581

AERZBAFARENZHT G830

b) Yaw: The Second Group

First, capture two frames when the camera do the motion pitch:

Figure 4-19 Roll

Secondly, run the code to extract and match the features between two images:

Figure 4-20 Extract and match the features between two images

From the output of the code, SIFT extracts 767 features in the first image and 773
features in the second image. And there are 205 matches between these two images.
The code with RANSAC selects the inliers to compute the essential, the code are
run for one time and the inliers (green lines) and outliers (black lines) are drawn

below:

5 5971

AERZBAFARENZHT G830

o

Figure 4-21 The inliers and outliers selected by RANSAC (Yaw)

SiftGPU outputs 205 pairs of matches between the two images, which are used
to calculate the essential matrix. After running the code for 50 times, there are 42
groups of results a