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Map Representation: what is “saved” in the map
• Points (surface of objects, buildings): 2D or 3D 

• What: x,y or x,y,z coordinates; 
Optional: intensity; maybe RGB; maybe descriptor; 
temperature; …

• From range sensors (laser, ultrasound, stereo, RGB-
D): dense

• From cameras (structure from motion; feature points): 
sparse

• Variant: kd-tree
• Grid-map: 2D or 3D

• Option: probabilistic grid map
• Option: elevation map
• Option: cost map
• Option: Truncated Signed Distance Field
• Option: Normal Distributions Transform (NDT)
• Variant: Quad-tree; Oct-tree

• Higher-level Abstractions
• Lines; Planes; Mesh
• Curved: splines; Superquadrics

• Semantic Map
• Assign semantic meaning to entities of a map 

representation from above
• E.g. wall, ceiling, door, furniture, car, human, tree, 

…
• Topologic Map 

• High-level abstraction: places and connections 
between them

• Hierarchical Map
• Combine Maps of different scales. E.g.:
• Camus, building, floor

• Pose-Graph Based Map
• Save (raw) sensor data in graph, annotated with 

the poses; generate maps on the fly
• Dynamic Map

• Capture changing environment
• Hybrid Map

• Combination of the above
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k-d tree
• k-dimensional binary search tree
• Robotics: typically 3D or 2D
• Every level of tree:

• For a different axis (e.g. x,y,z,x,y,z,x,y,z) (=> split space with 
planes)

• Put points in left or right side based on median point (w.r.t. its 
value of on the current axis) =>

• Balanced tree

• Fast neighbor search -> ICP!
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Line Map
• Abstract from points =>
• Extract features (e.g. lines, planes)
• E.g. using RANSAC, Hough Transform
• E.g. region growing, e.g. via normals

• Finite lines (a)
• Infinite lines (b)

• Very compact
• Can do scan-matching (e.g.

against laser scan)
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Ground Truth Maps
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Grid Map (from vector map)

CAD drawing (STAR Center)
Vector format (lines, circles, …)



Bremen: 3D Point Cloud & 3D Plane Map

Robotics ShanghaiTech University – Sep 29 2020 6



ShanghaiTech University – Sep 29 2020

Plane map: 29 poses; each with several planes
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Vector Maps
• E.g. Open Street Maps
• Represented as OSM files (xml) or PBF (binary)

• Nodes in WGS 84 (vertices)
• Only entity with position
• Just for ways or
• Object (e.g. sign)

• Ways:
• Open polygon (street)
• Closed polygons
• Areas
• With tags (e.g. name, type, …)
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Mesh
• Often build via

Signed Distance Field

• Close relation to
3D reconstruction
from Computer
Vision

• Often with texture
(RGB information from
camera)
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Stereye: Mesh Simplification
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• Plane recognition via 
plane growing 
(add points with 
similar normals)

• Plane contour via alpha 
shape algorithm

• Planar intersections to 
make the model tight

• Mesh via Ear Clipping 
algorithm



Semantic Map
• Semantic Segmentation

• In room (e.g. detect furniture)
• Outdoors
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Semantic Annotation: Room Names
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Semantic Information
• Assign labels to data
• Segmentation: automatically group data (e.g. points) according to their 

semantic class

• Even save just very high level data; e.g. room at (x,y); Eiffel tower; …

• Applications:
• Human Robot Interaction (“go to kitchen”) 
• Scene understanding
• Navigation (detect road; detect door)
• Localization
• …
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Topologic Map
• A (undirected) graph
• Places (vertices) and their connections

(edges)
• E.g. subway map of Shanghai:

stations (vertices) and lines (edges)
• Do not have coordinates
• Topometric map: vertices and/ or edges

are attributed with coordinates
• Very abstract – e.g. no obstacles anymore
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Voronoi Diagram (-> Topology Graph)
• Voronoi Diagram (VD): partition space such 

that edge is always equidistant to 2 closest 
obstacles.

• Topology Graph: vertices at junctions and
dead ends

• Applications:
• Very fast path planning
• Human robot interaction (follow corridor, 

then go left)
• Map matching
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Map Matching
• Of 2D grid maps

based on
Topology Graph

• Left: ground truth map

• Right: Robot generated
map

• RoboCup Rescue 
environment!
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Area Graph: from 2D Grid Map to Topology Graph
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Topological Map in different Dimensions
• (2): 0D; (3): 1D; (4): 2D; (5): 3D
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Hierarchical Maps
• Higher abstracted maps

that contain lower ones
with more details

• E.g. Grid map & Topological Map

• Useful for very fast planning;
Human Robot Interaction; …

• Another form: image pyramid in GIS (different scale images)
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https://news.mit.edu/2020/robots-spatial-perception-0715

https://news.mit.edu/2020/robots-spatial-perception-0715


Pose Graph
• Graph structure
• Nodes are:

• Robot
• Landmarks/ observations

• Used for Simultaneous Localization and Mapping (more details later in course)

• Typically saves (raw) sensor data in robot nodes =>
• For most applications: needs to be rendered before using it:

put all sensor data in common frame in a point cloud or grid map or plane map 
or ... 
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Dynamic Map
• All map representations above assumed a static environment: nothing moves
• Dynamic Map: capture moving

objects (e.g. cars, humans)

• E.g: 3D Dynamic Scene Graphs:
• enables a robot to quickly generate 

a 3D map of its surroundings that 
also includes objects and their 
semantic labels

• Some can be dynamic (can move)
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Other Models of the Environment/ Map Representations
• Many different possibilities:

• A set of images

• All kinds of sensor data (e.g. smoke map; noise map; radiation map)

• Heat map (infrared readings)

• …
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MAPPING

Robotics ShanghaiTech University – Sep 29 2020 26



Mapping
• Process of building a map
• Basic principle:

1. Initialize the map with unknown or free
2. Take a sensor scan
3. Maybe pre-process it (e.g. plane detection)
4. Localize the robot w.r.t. the map frame (maybe difficult!)
5. Transform the (processed) sensor scan to the global frame
6. “Merge” the new data with the old map data, e.g.:

• Add scanned points to map point cloud
• Update cells in a probabilistic occupancy grid

7. Sometimes: Also do ray-casting to mark all cells from sensor to obstacle as free
8. Repeat for every new sensor scan

• Localization step may need the map (e.g. matching the scan against the map) => 
both should be done at the same time =>

• Simultaneous Localization and Mapping : SLAM
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Cyclic Environments
• Small local error accumulate to arbitrary large global errors!
• This is usually irrelevant for navigation
• However, when closing loops, global error does matter
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Raw Odometry

Courtesy of S. Thrun
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http://robots.stanford.edu/videos.html

• Famous Intel Research
Lab dataset (Seattle)
by Dirk Hähnel

http://robots.stanford.edu/videos.html


Scan Matching:
compare to 
sensor
data from 
previous scan

Courtesy of S. Thrun
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FastSLAM:
Particle-Filter
SLAM
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Courtesy of S. Thrun
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Problem: NOISE!
• Exteroceptive Sensor Noise

• Sensor noise is mainly influenced by environment 
e.g. surface, illumination …

• and by the measurement principle itself
e.g. interference two Kinects

• Sensor noise drastically reduces the useful information of sensor readings. 
The solution is:
• to model sensor noise appropriately
• to take multiple readings into account
• employ temporal and/or multi-sensor fusion 
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Effector Noise: Odometry, Deduced Reckoning

• Odometry and dead reckoning: 
Position update is based on proprioceptive sensors
• Odometry: wheel sensors only
• Dead reckoning: also heading sensors

• The movement of the robot, sensed with wheel encoders and/or heading 
sensors is integrated to the position.
• Pros: Straight forward, easy
• Cons: Errors are integrated -> unbound

• Using additional heading sensors (e.g. gyroscope) might help to reduce the 
cumulated errors, but the main problems remain the same.
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Odometry:Growth of Pose uncertainty for Straight Line Movement

• Note: Errors perpendicular to the direction of movement are growing much faster!
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Odometry:Growth of Pose uncertainty for Movement on a Circle

• Note: Errors ellipse in does not remain perpendicular to the direction of movement!
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Odometry:example of non-Gaussian error model

• Note: Errors are not shaped like ellipses!
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Odometry: Calibration of Errors
• The unidirectional square path experiment
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ADMIN
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Admin
• Project Proposal due Oct 1

• Best meet with advisor again!

• HW2 due today!

• Bachelor Thesis?
• Talk to Prof….
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LOCALIZATION METHODS

Robotics ShanghaiTech University – Sep 29 2020 41



Localization
• Based on control commands

=> Open Loop!
• Wheel odometry

• Compass, Accelerometer, Gyro => IMU
• Scan Matching of Range Sensors == 

Registration (rigid => no scaling or shearing)

• ICP: scan to scan or scan to map
• Needs good initial guess

• NDT registration
• Feature-based registration
• Direct/ optimization based registration

• Grid-based Localization
• Kalman Filter Based Localization

• Monte-Carlo Localization (MCL) == 
Particle Filter
• Adaptative MCL => AMCL

• Visual Odometry (VO)
• With IMU: Visual Inertial Odometry (VIO)

• SLAM techniques
• 3D Reconstruction

• Structure from Motion/ Bundle Adjustment
• Localization is by-product

• Absolute Localization:
• GPS
• Markers (e.g. QR code)
• Landmarks (e.g. ShanghaiTech Tower)
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Grid-based Localization - Multi Hypothesis
Probability of robot location saved in grid cells – based on combination of: 

1) cell values of previous step; 2) odometry; 2) scan matching

Courtesy of W.  Burgard

ShanghaiTech University – Sep 29 2020 43



Map based localization
?

• Odometry, Dead Reckoning
• Localization base on external sensors, 

beacons or landmarks
• Probabilistic Map Based Localization
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Monte Carlo Localization (MCL)
• Input: Global, known map and laser 

scan
• Particle filter: set of particles 

representing a 
robot state
• Here: robot pose (position & orientation)
• Particle filter SLAM (e.g. FastSLAM): also 

map!
• Particles are sampled based on probability 

distribution

• Assign weights (scores) to particles 
based on how well the scan matches to 
the map, given this pose

• Markov property: Current state only 
depends on previous state

• Algorithm:

1. For all particles:
1. Apply motion update (e.g. odometry)
2. Apply the sensor update (scan match) 

and calculate new weights
2. Re-Sample particles based on their 

weights

• Can solve the kidnapped robot problem 
(also wake-up robot problem)

• Problem: Particle of correct pose might 
not exist…
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Adaptive Monte Carlo Localization (AMCL)
• Sample particles adaptively

• Based on error estimate
• Kullback-Leibler divergence (KLD)
• => when particles have converged, have 

a fewer number of particles

• Sample size is re-calculated each 
iteration

• http://wiki.ros.org/amcl
• Used by the ROS Navigation 

stack
• Used in MoManTu -> HW 3
• Implement QR-Code based 

MCL by hand: HW 4
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MCL & 
Robot
Kidnapping
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AMCL in ROS – play with it in MoManTu!
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Scan Matching/ Registration
• Take one sensor scan
• Match against:

• Another sensor scan
• Against the map

• Output:
• The Transform (2D: 3DoF; 3D: 6DoF; each maybe with scale)
• Uncertainty about the result (e.g. covariance matrix) and/ or registration error/ fitting error

• Used for Localization

• Most famous algorithm: ICP (Iterative Closest Point)
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Registration Methods for Range Data

• ICP
• NDT
• Robust point matching (soft point correspondences)
• Coherent point drift
• Kernel correlation
• Approximations of the squared distance functions to curves 

and surfaces
• Direct Methods/ Optimization based (also for images)

• Feature extracting methods (also for images)
• Corners in point clouds
• Lines
• Planes
• Feature Descriptors/ also via Deep Learning

• Spectral methods (also for images)
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Fourier Mellin Transform
• Spectral based registration: detection of scaling, rotation and translation in 2 subsequent frames
• Processing spectrum magnitude decouples translation from affine transformations

• Detection of signal shift between 2 signals by phase information
• Resampling to polar coordinates → Rotation turns into signal shift !
• Resampling the radial axis from linear to logarithmic presentation

→ Scaling turns into signal shift !
• Calculate a Phase Only Match Filter (POMF) on the resampled magnitude spectra
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Aerial Map (Mosaic)
• Rubble pile and train
• 435 frames
• Real time generation of map
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3D Scan matching using Spectral Method
Flood Gate (sonar) Crashed car park

Disaster City  (3D LRF)
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Pose Estimation for Omni-directional Cameras using 
Sinusoid Fitting 
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SLAM using 
corner structures
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• 2D LRF Scan

• Detect corners in the scan

• Map corners, localization 
against corners


