M RKRF

ShanghaiTech University

CS283: Robotics Fall 2020: SLAMII

Qingwen Xu  Soren Schwertfeger

ShanghaiTech University



Robotics ShanghaiTech University - SIST - Oct 22, 2019

Admin

- HW3 is postponed to October 18, Sunday, 10pm

- The demo is now a video:
- Video upload: https://star-center.shanghaitech.edu.cn/seafile/u/d/922df19bd14d40b88af2/
- Only upload once! Once it is uploaded you cannot see/ change it anymore.

- Maximum file size: 50MB (use good compression - but not too low quality) - you will loose
points if your video is too big.

- Naming convention: hw3_<email>.mp4 (replace <email> with your email user name).

- Paper presentation due: Thursday, Oct 15

- Meet with your advisor this week! It is the groups responsibility to make the
appointment! You lose points if the meeting is not documented in meetings.txt


https://star-center.shanghaitech.edu.cn/seafile/u/d/922df19bd14d40b88af2/
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KALMAN FILTER OVERVIEW

Following Material:
Michael Williams, Australian National University
Cornelia Fermuller, University of Maryland
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The Problem
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System error . SyStem state cannot be
S"‘;m measured directly
— S n - Need to estimate “optimally”

from measurements

System state
(desired but

not known)
Observed Optimal estimate of
Measurmg measurement system state
devices "
Measurement

error sources
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Robotics

What is a Kalman Filter?

- Recursive data processing algorithm

- Generates optimal estimate of desired quantities
given the set of measurements

- Optimal?
- For linear system and white Gaussian errors, Kalman
filter is “best” estimate based on all previous
measurements

- For non-linear system optimality is ‘qualified’

- Recursive?
- Doesn’t need to store all previous measurements and
reprocess all data each time step
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Conceptual Overview

- Lost on the 1-dimensional line
- Position — y(t)
- Assume Gaussian distributed measurements
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Conceptual Overview
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« Sextant Measurement at t;: Mean = z, and Variance = c,,
« Optimal estimate of position is: y(t) = z,

« Variance of error in estimate: ¢, (t1) = 62,4

« Boat in same position at time t, - Predicted position is z,
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Conceptual Overview
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So we have the prediction y-(t,)

GPS Measurement at t,: Mean = z, and Variance = c,,

Need to correct the prediction due to measurement to get y(t,)
Closer to more trusted measurement — linear interpolation?
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Conceptual Overview

prediction y-(t,)

0.16
0.14L corrected optimal
estimate y(t,)

0.12L
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0.02
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« Corrected mean is the new optimal estimate of position
 New variance is smaller than either of the previous two variances
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Conceptual Overview
- Lessons so far:

Make prediction based on previous data - y-, o

v

Take measurement — z,, o,

v

Optimal estimate (y) = Prediction + (Kalman Gain) * (Measurement - Prediction)

Variance of estimate = Variance of prediction * (1 — Kalman Gain)
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Robotics

Conceptual Overview
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« Attime t;, boat moves with velocity dy/dt=u
« Naive approach: Shift probability to the right to predict
« This would work if we knew the velocity exactly (perfect model)
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Robotics

Conceptual Overview

Naive Prediction
f ~ y-(tS) ﬂ
() |

014 | Y,

¢

0.11

0.16 -

0.08 L f
0.06 | )

0.04 +

0.02} l’ 1

« Better to assume imperfect model by adding Gaussian noise

e dy/dt=u+w
 Distribution for prediction moves and spreads out
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Conceptual Overview

0.16 -

014l Corrected optimal estimate y(t,)

0.12L

o1l Measurement z(t)

0.08 |-
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 Now we take a measurement at t;
* Need to once again correct the prediction
« Same as before
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Conceptual Overview

- Lessons learnt from conceptual overview:
- Initial conditions (y,., and c,_4)

- Prediction (y, o)
- Use initial conditions and model (eg. constant velocity) to make prediction

- Measurement (z,)
- Take measurement

- Correction (Y, o)

- Use measurement to correct prediction by ‘blending’ prediction and residual — always a
case of merging only two Gaussians

- Optimal estimate with smaller variance
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Theoretical Basis

- Process to be estimated:

Vi = Ayiq + Bug + Wi Process Noise (w) with covariance Q

Z = Hyy + vy Measurement Noise (v) with covariance R
« Kalman Filter

Predicted: y is estimate based on measurements at previous time-steps
Yk = Ayx.q + Bug
P'k - APk_1AT + Q

Corrected: y has additional information — the measurement at time k

Y=Yk *+Kzc-HYw)
K=PHT(HPHT + R)"

Pk= (l - KH)P'k
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Blending Factor

 If we are sure about measurements:
— Measurement error covariance (R) decreases to zero
— K decreases and weights residual more heavily than prediction

 |If we are sure about prediction
— Prediction error covariance P-, decreases to zero
— Kincreases and weights prediction more heavily than residual
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Theoretical Basis

& @ I

Correction (Measurement Update)

Prediction (Time Update)

(1) Compute the Kalman Gain

1) Project th h
(1) Project the state ahead K = P~ HT(HP-HT + R)*

Yk = Ayk.1 + Bu
(2) Update estimate with measurement z,
(2) Project the error covariance ahead
Y=Ykt Kzc-Hyy)
P-k = APk_1AT +Q
(3) Update Error Covariance

Pk= (l - KH)P_k

—_— &
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KALMAN FILTER DETAILS

19

Following Material:
Michael Williams, Australian National University
Cornelia Fermuller, University of Maryland
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Bayes Filter

Bel(x,) =1 P(z, | xt)fP(xt |u,,x, ) Bel(x,_,) dx,_

Algorithm Bayes_filter( Bel(x),d ):
n=0
If d is a perceptual data item z then
For all x do
Bel'(x) = P(z| x)Bel(x)
n=n+Bel'(x)
For all x do
Bel'(x) =n"'Bel'(x)

NI AWNE

\0

Else if d is an action data item u then

10. For all x do
11. Bel'(x) =fP(x|u,x’)Bel(x')dx'

12. Return Bel’(x)
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Bayes Filter Reminder

® Prediction

b_el(xt) =fp(xt | u,,x,_;) bel(x,_,) dx,_,

® Correction
bel(xz) = 7717(2; ‘ x,)b_el(xt)
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Kalman Filter

® Bayes filter with Gaussians
® Developed in the late 1950's
® Most relevant Bayes filter variant in practice

® Applications range from economics, wheather forecasting,
satellite navigation to robotics and many more.

® The Kalman filter "algorithm" is a couple of matrix
multiplications!
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Gaussians

p(x) ~ N(p,0%):

_ l(x—,u)2
0= 7= 7
P\X) =
2To

Univariate

P(x)~N(pX):
] Lk =7 (x-p)

(%)= e’

P (2.71')“”2‘2‘1/2

Multivariate
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Gaussians

34.199 34.1%

0.020 0.013
C =

0.013  0.020
7L1 = 0.007
A, = 0.033

p = GXY/O'XGY = 0.673
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Properties of Gaussians

* Univariate
X ~N(u,o’
(n.07) = Y ~N(au+b,a’c?)
Y=aX+b
X ~N(‘u,a2 o, o’
TN ) p) ~ N D —
X, ~N(u,,0,7) O, $+0, o, $+0, g,

* Multivariate
X ~N(u,2)

— Y ~N(Au+B,A34")
Y=AX +B

Xl ~ N(lul:zl)
Xz NN(‘“zaZz)

22 21
u, +
2 +2, 2 +2,

}:p(XJ'p(Xz)NN( U, .

*We stay in the “Gaussian world” as long as we start with
Gaussians and perform only linear transformations

|

DI Y

|
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Introduction to Kalman Filter (1)

 flg)
- 41\ 0= exp[—(j;’jl]
e Two measurements no dynamics om | 20
A . . 2 o
¢, = ¢, with variance o i
~ : . 2 8 Sl
4, = ¢, with variance G5 et L,
e \Weighted least-square i e
n . e :
n 2
§ =Y wlqg-q,)
i:] .........
e Finding minimum error - wd n. &

aS a n n
~ 2 ~
= ==Y w(qg—¢q,)" =2» w(qg—q,) =0
aq aqlzzl fgl
e After some calculation and rearrangements

~ (;2

q9=aq,+5——=—q)

o]+ 05

e Another way to look at it — weighted mean
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Discrete Kalman Filter

*Estimates the state x of a discrete-time controlled process
that is governed by the linear stochastic difference equation

X, = Atxt |+ Btut +¢g, < Processdynamics

« with a measurement

zZ, = Ctxt + 51 <—— Observation model

Matrix (nxn) that describes how the state evolves from ¢ -
A : .
! 1 to ¢ without controls or noise.
Bt Matrix (nxl) that describes how the control u, changes

the state from 1 to +.

C, Matrix (kxn) that describes how to map the state x, to
an observation z,.

E, Random variables representing the process and
measurement noise that are assumed to be
5 independent and normally distributed with covariance

t R, and Q,respectively.
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Robotics
Kalman Filter Updates in 1D
.| prediction measurement |
w/ It's a weighted mean!
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Kalman Filter Updates in 1D
L gaiﬂ/ innovation

= +K(z - G’
bel(xt) — Iut zlut t(Zt _;ut) Wlth Kt — — Gt_z
Gt =(1_Kt)at Ot +Oob.5',t
=u+K (z,-C.u = =
bel(xt) _ u, = U, t(Zt _nut) with Kt _ ZtC,T(CtZrCIT +Qt)_1
S =(I-K,C)Z

azs

azr

Q15

QoS -
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Kalman Filter Updates in 1D

— (U =a +b.u
bel(xt)=< fé Z‘Mt—l tzt

2 2
o, = d, Ot + Oact,t

r_tl'_lt =Au,_, +Bu,

bel(x,) =4
!
S =A% A +R




Robotics

Kalman Filter Updates

oz

azr

ais

LR

Q05 |-

o

Az

azr

Q15

LR

Q05 |
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0z

oz

Qs
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Linear Gaussian Systems: Initialization

e Initial belief is normally distributed:

bel(x,) = N(xo;l/‘()azo)
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Linear Gaussian Systems: Dynamics

® Dynamics are linear function of state and control
plus additive noise:

x =Ax_ +Bu, +¢,

p(xt |ut9xt—1) = N(xt;Atxt—l + Btuth)

@(Xt) =fp(X, | u;ax;_1) bel(xt—l) dxt—l

J J
~ N(xt;Atxt—l + Btut9Rt) ~ N(xt—l;:ut—lazt—l
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Linear Gaussian Systems: Dynamics
bel(x,) = [p(x, |u,.x,.) bel(x,.,) dx,

J U
~ N(‘xt;Atxt—l + Btut’Rt = N(xt—l;lut—l’zt—l)

U

— | _
bel(xt) = ﬂfexp{— E(xt - Atxt—l —Btut)TRt l(xt - Atxt—l - Btut)}

1 _
exp{— E (xt—l - U, )th—]l ('xt—l - nut—l)} dxt—l

Aat = Atlut—l + Btut

bel(x,) = {E, A4S AT +R

1= t-1
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Linear Gaussian Systems: Observations

® Observations are linear function of state plus
additive noise:

z, =Cx, +0,
p(z,1x)=N(z:Cx,.0,)
bel(x)= n p(z,|x) b_ez<x>

J
NN(Z t z»Q) NNGt»xut? ]



Robotics ShanghaiTech University - SIST - Oct 13, 2020

Linear Gaussian Systems: Observations

bel(xt)= n plz |xt) b_el(xz)
U U
NN(ZI;Ctxti’Qt) NNGt;;tﬁif
J

1 T -l 1 TS -
bel(xt) =N eXp{—E(Zt - Ctx;) Q; (Zt —C,x,)}exp{—g(xt - Iut) 2t (xt - Mt)}

U, = /'—‘t +Kt(Zt - Ctﬁt)

~ with K, =3C'(CZC"+0)"
S =(I-K,C)3

bel(x,) = {
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Kalman Filter Algorithm

1.

B W

O N O U

Algorithm Kalman_filter( us-1, X¢t-1, Us Z¢):

Prediction:
ALLt = Anut—l +Btut
S =A4%,_ A +R,

1=t-1

Correction:
K =xCl(CzC +0)"'

U, =u, +Kt(Zt__CtAut)
Zt = (I_Ktct)zf

Return g 2t
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The Prediction-Correction-Cycle

& |

— u =a +bu
bel(xt)= f; tMt—l 7t

2 2 2
Ot = at Ot + Oact,t

ﬁt = Anut—l + Btut

bel(x)=J-
e (xt) {2[ = AZ A[T +Rt

t“t-1
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The Prediction-Correction-Cycle

0z

=u, K(z, ) o’

bel(x,) = { R

=u +K,(z C,u,) . s ]
bel(xt)= K, Z,C (C, Z,C £0)'
2 =(/-KC )21 L e .

O W
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The Prediction-Correction-Cycle

2 R

| w=u+KI(z-u) o, — =au  +bhu
belx) =4 L K e bel(x) =1 5~
O't _( - t)at (')'I + O'ol)x.f Jl = af Of + O‘;C" !
, / =‘_lr+Kr Z,—C,‘Ll_, N N - 1] u, =4 +8
bel(x,) = md ( - )9Kt = z’crr(sz’C/T +Q/) 1 bel(xt) = 5 ftt M T tut
S, =(1-KC)S) S, =43, AT +R
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Kalman Filter Summary

® Highly efficient: Polynomial in
measurement dimensionality k
and state dimensionality n:

O(k2-376 + n2)
® Optimal for linear Gaussian systems!

® Most robotics systems are nonlinear!



EXTENDED KALMAN FILTER (EKF)
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Nonlinear Dynamic Systems
® Most realistic robotic problems involve nonlinear functions
xt :g(uth—l)
Zy :h(xt)

e Extended Kalman filter relaxes linearity assumption
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Other Error Prop. Techniques

e Second-Order Error Propagation

Rarely used (complex expressions)

e Monte-Carlo

Non-parametric
representation of
uncertainties

1. Sampling from p(X)
2. Propagation of samples

3. Histogramming

4. Normalization

4

p(y)
— Gaussian of p(y)

X Mean of p{y)

-4

¥=g(x)

— Function g{x)
= Meanp

O oW

0.5

P(x)
= Meanp
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First-Order Error Propagation

X,Y assumed to be Gaussian

Y=1X

X——» System i

Taylor series expansion

Yzf(MX)-l_g_];(X:uX(X_uX)

Wanted: u,, cy?,
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Jacobian Matrix

e It's a non-square matrix n x m in general

f1(x) ]

* Suppose you have a vector-valued function f(x) = [ Fa(x)
2

* Let the gradient operator be the vector of (first-order)
partial derivatives

_ 0 0 0
VX_ [ Ox1 oz,

8332

* Then, the Jacobian matrix is defined as

9f1 of1
fl (X) ] 5 5 0x1 .. D

F, — 2 L 2=
[ f2(x) [ 3 ol 9 0




Robotics ShanghaiTech University - SIST - Oct 13, 2020

Jacobian Matrix

* It’ s the orientation of the tangent plane to the vector-
valued function at a given point

* Generalizes the gradient of a scalar valued function
* Heavily used for first-order error propagation...
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First-Order Error Propagation
Putting things together...

2
GX[ GXIXZ . GXan
: R I G, ©
X, Y, Y Y,Y
CX = GX2X1 GXZ e GXZXn Xg————» System Y1 CY = 1 172
: : = 2 2
X,———
GYZYI GYZ
2
GXnXl Ganz . GXn

with o = 3(5) o1+ 33(5) ()

=3 (3) (%) 3.3 (53 G

—> “Is there a compact form?...”



Robotics ShanghaiTech University - SIST - Oct 13, 2020

First-Order Error Propagation

® Input covariance matrix Cy
® Jacobian matrix Fy

the Error Propagation Law

C, = F,C,Fy

computes the output covariance matrix Cy
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Landmark-based Localization

EKF Localization: Basic Cycle

Odometry State Prediction
or IMU
- Measurement Data
Prediction Association

Feature/Landmark
Extraction

: Sensors /
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Landmark-based Localization

EKF Localization: Basic Cycle

posterior
encoder measurements state

: Og?melgry ’L_> State Prediction

predicted
state

Update

innovation from
matched landmarks
landmarks in global

coordinates
> Measurement >
Prediction
predicted
measurements in
sensor coordinates
landmarks

Feature/Landmark
Extraction

Data
Association

raw sensory data

Sensors

Uy
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Robotics

Landmark-based Localization

State Prediction (Odometry)
Xt = f(Xk—1,uk)
Cr = Fy Cy FX + F, Uy FT

Control u,: wheel displacements s, s,

2
u, = (s; s,)7 Uk:[%l 002]

Error model: linear growth

(o)) = kl |Sl|

G L A

or = ky|s;|

Nonlinear process model f:
Tk—1 Zlffifl (—sin Og—1 + sin(fx—1 + *=54))
Xp= | ypo1 | + SLESe ( cos Ok—1 — cos(fk—1 + 2252L))
Or—1 Se bl

N[N | o

Sr—38;
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Robotics

Landmark-based Localization

State Prediction (Odometry)
Xt = f(Xk—1,uk)
Cr = Fy Cy FX + F, Uy FT

Control u,: wheel displacements s, s,

2
ur = (87 8,)7 — | Y% 0
k= (81 8r) Us 0 o
Error model: linear growth O )
(o)) = kl |Sl| B
or = ky|s;|

Nonlinear process model f:
Tk—1 Zlffifl (—sin Og—1 + sin(fx—1 + *=54))
Xp= | ypo1 | + SLESe ( cos Ok—1 — cos(fk—1 + 2252L))
Or—1 e

NS N |

Sr—38;
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Landmark-based Localization

y [m]

) | ! U 1
o o w N — o - N w o o

Landmark Extraction (Observation)

Raw laser Extracted
range data lines
— &t & & 3 A A |
5 :
4 \\\
3 t
2 \
E' o
N >0 ~ '.:_‘a."' 2
_1,/ :., ‘\/’ -
_3_
_4, ¥
S R EERER R R
x[m] x[m]

Hessian line model
z cos(a) +y sin(a) —r =0

Extracted lines
in model space

line j

=
&
R

v
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Landmark-based Localization

Measurement Prediction

® ...is a coordinate frame transform world-to-sensor

e Given the predicted state (robot pose),
predicts the location Z; and location . model space
uncertainty H Ci H' of expected r
observations in sensor coordinates %

Zk = h(f(k, m)
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Robotics

Landmark-based Localization

Data Association (Matching)

* Associates predicted measurements 2%

with observations z~l7€
% p , . model space
ij j i A iT
e Innovation and No match!!
innovation  ;; Wall was not
observed.

covariance Yk @

match j,i
I
nm¥e ¥

|
- 00 0 T

—

v

Green: observation
Magenta: measurement prediction
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Landmark-based Localization

Update

e Kalman gain

Ky =Cy HTS.! \
e State update (robot pose)

X = X + K vy
e State covariance update

Cr = (I — Ky, H) Cj,

Red: posterior estimate



Material

- Kalman, R. E. 1960. “A New Approach to Linear Filtering and Prediction Problems”,
Transaction of the ASME--Journal of Basic Engineering, pp. 35-45 (March 1960).

- Welch, G and Bishop, G. 2001. “An introduction to the Kalman Filter”,

http://www.cs.unc.edu/~welch/kalman/

- Thrun, S. and Burgard, W. and Fox, D. “Probabilistic Robotics” MIT Press 2006


http://www.cs.unc.edu/~welch/kalman/
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PARTICLE FILTER

59

Following Material:
Wolfram Burgard, University of Freiburg
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Particle Filter SLAM: FastSLAM

- FastSLAM approach

- Using particle filters.

- Particle filters: mathematical models that represent
probability distribution as a set of discrete
particles that occupy the state space.

- Particle filter update probability distribution (ellipse) as particle set (red dots)
- Generate new particle distribution using motion
model and controls

a) For each particle:

1. Compare particle’s prediction of measurements with actual measurements

2. Particles whose predictions match the measurements are given a high weight
b) Filter resample:

- Resample particles based on weight

- Filter resample

+ Assign each particle a weight depending on how well its estimate of the state agrees with the measurements and
randomly draw particles from previous distribution based on weights creating a new distribution.
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Motivation

- Particle filters are a way to efficiently represent non-Gaussian distribution
- Basic principle

- Set of state hypotheses (“particles”)

- Survival-of-the-fittest
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Mathematical Description

- Set of weighted samples
s={<slthwll>|i=1,.., N}

/

State hypothesis | | Importance Weight

- The samples represent the posterior

PG = ) Wi+ 8,0 (x)
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Robotics

Function Approximation

- Particle sets can be used to approximate functions

f(x)
samples

f(x)
samples

probability / weight
probability / weight

/\

UL A AEAARERRT MR

- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples from a function/distribution?
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Rejection Sampling
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- Let us assume that f(x) < a for all x
- Sample x from a uniform distribution
- Sample ¢ from [0, a]

-if f(x) >c
- otherwise

keep the sample
reject the sample

probability / weight

f(x)

samples

(x7)

Ce o
OK
7(x)

T
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Importance Sampling Principle

- We can even use a different distribution g to generate samples from f

- By introducing an importance weight w, we can account for the “differences

between g and f ”
"w=f/g
- f is called target
- g Is called proposal

- Pre-condition:
cf(x)>0 - g(x)>0

probability / weight

proposal(x) ——
target(x)
samples

.mljmnlllﬂllunmjl”w e

X
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Importance Sampling with Resampling

Weighted Samples After Resampling
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Particle Filter Algorithm

- Sample the next generation for particles using the proposal
distribution

- Compute the importance weights :
weight = target distribution / proposal distribution

- Resampling: “Replace unlikely samples by more likely ones”
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Particle Filter Algorithm

1. Algorithm particle_filter( S;_1, us, z¢):

2. S=0,n=

3. Fori=1,..,n Generate new samples

4 Sample index j(i) from the discrete distribution given by w;_;

5. Sample x; from p(x|xe—1 , ur) using x/) and u,

6 wi = p(z¢|x}) Compute importance weight
7 n=n+w Update normalization factor
8 Sy = S, U {< xt,wi >) Add to new particle set

9. Fori=1,..,n

10. wt = wi/n Normalize weights
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Particle Filter Algorithm

-bel(xe) = np(z¢|xe) | p(xelxe—1, u)bel(xp_q)dx,_4
“ “ 1

Draw x}_, from bel(x;_1)

Draw x} from p(x;|x,—q, Us)

Importance factor for x}
target distribution

we = ——
Y proposal distribution

np(ztlxt)p(xt|xt_1, ut)bel(xt—1)
p(X¢|X¢—1, Ut )bel(x;—q)
< Np(Z¢|xt)
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Resampling

- Given: Set S of weighted samples.

- Wanted : Random sample, where the probability of
drawing x; Is given by w;.

- Typically done n times with replacement to generate new
sample set S’.
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Resampling

Stochastic universal sampling
Systematic resampling

Linear time complexity

Easy to implement, low variance

* Roulette wheel
* Binary search, n logn
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Mobile Robot Localization

- Each particle is a potential pose of the robot
- Proposal distribution is the motion model of the robot
(prediction step)

- The observation model is used to compute the importance
weight (correction step)
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Motion Model Reminder

End Pose

Start Pose @

According to the estimated motion
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Motion Model Reminder

translation

_rotation

—
\\

Decompose the motion into
e Traveled distance

e Start rotation

* End rotation

/
/
/

‘rotation

-
—
— -
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Motion Model Reminder

Uncertainty in the translation of the robot:
Gaussian over the traveled distance

* Uncertainty in the rotation of the robot:
Gaussians over start and end rotation

* For each particle, draw a new pose by
sampling from these three individual normal
distributions
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Mobile Robot Localization Using Particle Filters (1)

- Each particle is a potential pose of the robot

- The set of weighted particles approximates the posterior
belief about the robot’'s pose (target distribution)
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Mobile Robot Localization Using Particle Filters (2)

- Particles are drawn from the motion model (proposal
distribution)

- Particles are weighted according to the observation model
(sensor model)

- Particles are resampled according to the particle weights
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Mobile Robot Localization Using Particle Filters (3)

-Why is resampling needed?
- We only have a finite number of particles

- Without resampling: The filter is likely to loose track of
the “good” hypotheses

- Resampling ensures that particles stay in the meaningful
area of the state space
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MCL &
Robot
Kidnapping
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AMCL in ROS - play with it in MoManTul!
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+ @ Global Options
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SLAM Using Particle Filters — Grid-based SLAM

- Can we solve the SLAM problem if no pre- defined
landmarks are available?

- Can we use the ideas of FastSLAM to build grid maps®?

- As with landmarks, the map depends on the poses of the
robot during data acquisition

- If the poses are known, grid-based mapping is easy
(“mapping with known poses”)
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Rao-Blackwellization

Poses Observations

\ Map Movements

| /

‘ p(x1;t;m|21;t; uO:t—l) — p(xl:t' |Zl:t1 uO:t—l) ) p(mlxl;t; Zl:t)

I

SLAM posterior

Robot path posterior

Mapping with known poses
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Rao-Blackwellization

‘ p(xl:bm Z1:t» uO:t—l) — p(xl:t! |Zl:t1 uO:t—l) ) p(mlxl:t) Zl:t)




A Graphical Model of Mapping with Rao-Blackwellized PFs
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Mapping with Rao- Blackwellized Particle Filters

- Each particle represents a possible trajectory of the robot

- Each particle
- maintains its own map and
- updates it upon “mapping with known poses”

- Each particle survives with a probabillity proportional to the
likelihood of the observations relative to its own map
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Particle Filter Example

];ﬁ__\ b < 3 particles
i S\ N
! ] :
=\
- |. ' —::__—-—- y  — . "~ g —— —_
‘.,__ ™ ’ ) ‘. 2 4 1'- “'; :._‘- e

map of particle 3

map of particle 2 ¥y ‘Al &
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Problem

- Each map is quite big in case of grid maps
- Each particle maintains its own map, therefore, one needs
to keep the number of particles small

- Solution:
Compute better proposal distributions!

-ldea:
Improve the pose estimate before applying the particle
filter



Robotics ShanghaiTech University - SIST - Oct 13, 2020

Pose Correction Using Scan Matching

- Maximize the likelihood of the i-th pose and map relative to the (i — 1)-th pose
and map

Xe = argmaxxt{p(zt|xt,ﬁ1t_1) P U1, Xe—1)}

/ \

current measurement robot motion

map constructed so far
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FastSLAM with Improved Odometry

- Scan-matching provides a locally consistent pose
correction

- Pre-correct short odometry sequences using scan-
matching and use them as input to FastSLAM

- Fewer particles are needed, since the error in the input is
smaller



Graphical Model for Mapping with Improved Odometry
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Raw Odometry

« Famous Intel Research
Lab dataset (Seattle)
by Dirk Hahnel

Courtesy of S. Thrun

http://robots.stanford.edu/videos.html
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http://robots.stanford.edu/videos.html

Robotics

Scan Matching:
compare to
sensor

data from
previous scan

Courtesy of S. Thrun
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97
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FastSLAM:
Particle-Filter
SLAM

Courtesy of S. Thrun
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Conclusion (thus far ...)

- The presented approach is a highly efficient algorithm for
SLAM combining ideas of scan matching and FastSLAM

- Scan matching is used to transform sequences of laser
measurements into odometry measurements

- This version of grid-based FastSLAM can handle larger
environments than before in “real time”
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What's Next?

- Further reduce the number of particles
- Improved proposals will lead to more accurate maps

- Use the properties of our sensor when drawing the next
generation of particles



