M RKRF

ShanghaiTech University

CS283: Robotics Fall 2020: Path Planning

Séren Schwertfeger / JfiiE{Z

ShanghaiTech University



Robotics ShanghaiTech University - SIST - 24 Sep 2019 p
-

PLANNING




Robotics ShanghaiTech University - SIST - 24 Sep 2019

General Control Scheme for Mobile Robot Systems
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The Planning Problem

- The problem: find a path in the work space (physical space) from the initial
position to the goal position avoiding all collisions with the obstacles

- Assumption: there exists a good enough map of the enwronment for
navigation. '
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The Planning Problem

- We can generally distinguish between
- (global) path planning and
- (local) obstacle avoidance.

- First step:
- Transformation of the map into a representation useful for planning
- This step is planner-dependent

- Second step:
- Plan a path on the transformed map

- Third step:
- Send motion commands to controller
- This step is planner-dependent (e.g. Model based feed forward, path following)
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Work Space (Map) - Configuration Space

- State or configuration q can be described with k values g,
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Configuration Space:
the dimension of this

- What is the configuration space of a mobile robot?  spaceis equal to tg‘: t[r’]zg:jsgt"f Freedom (DoF)



Robotics ShanghaiTech University - SIST - 24 Sep 2019

Configuration Space for a Mobile Robot

- Mobile robots operating on a flat ground (2D) have 3 DoF: (x, y, 0)

- Differential Drive: only two motors => only 2 degrees of freedom directly controlled (forward/ backward +
turn) => non-holonomic

- Simplification: assume robot is holonomic and it is a point => configuration space is reduced to 2D (x,y)
- => inflate obstacle by size of the robot radius to avoid crashes => obstacle growing
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Typical Configuration Space: Occupancy grid

- Fixed cell decomposition: occupancy grid example: STAR Center
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Path Planning: Overview of Algorithms

1. Optimal Control

- Solves truly optimal solution

- Becomes intractable for even moderately
complex as well as nonconvex problems
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Source:
http://mitocw.udsm.ac.tz

2. Potential Field

- Imposes a mathematical function over the
state/configuration space

- Many physical metaphors exist

- Often employed due to its simplicity and
similarity to optimal control solutions
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3. Graph Search

- |ldentify a set edges between nodes within the
free space
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- Where to put the nodes?
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Potential Field Path Planning Strategies
- Robot is treated as a point under the
influence of an artificial potential field.
f ‘ - Operates in the continuum
- Generated robot movement is similar to a
ball rolling down the hill
g.w A - Goal generates attractive force
- Obstacle are repulsive forces
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Robot Path Planning and Obstacle
Avoildance using Harmonic Potential Fields
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Potential Field Path Planning: Potential Field
Generation

- Generation of potential field function U(q)

- attracting (goal) and repulsing (obstacle) fields
- summing up the fields
- functions must be differentiable

- Generate artificial force field F(q) oU

F(q)=-VU(9)=-VU,(9)-VU,,(9) = g(x]

R

- Set robot speed (v,, v,) proportional to the force F(q) generated by the field
- the force field drives the robot to the goal

- if robot is assumed to be a point mass
- Method produces both a plan and the corresponding control
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Potential Field Path Planning: Attractive Potential Field

- Parabolic function representing the Euclidean distance 2., =Hq—qg0a;
to the goal

1

Uatt (@) = E katt ' pgzoal (9)

1

- 5 att'(q_qgoaz)z

- Attracting force converges linearly towards 0 (goal)

Fatt (Q) — o V Uatt (Q)
= katt ) (q - qgoal)
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Potential Field Path Planning: Repulsing Potential Field

- Should generate a barrier around all the obstacle
- strong if close to the obstacle
- not influence if far from the obstacle

P | | 1\ .
k., (-———) if p(q) <
U@) =1 277(3(g) py) PP

0 if p(q)2p,

. P(4) - minimum distance to the object

- Field is positive or zero and fends to infinity as q gets closer to the
object
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ROS Grld Map PaCkage http://wiki.ros.org/grid_map
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https://www.youtube.com/redirect?redir_token=QUFFLUhqbEFTb1RVenFNNGZ2VjdmZ1JwU3AxZlp5U3Ftd3xBQ3Jtc0tuYmloaGtybmFmdGhDeV9Yc1FWUzRDU3M4VTktTUZhbC1hWlVjVllKZVRhdV9IMVgyUVVxS1VpZmlfMWUwYzJNWjBLTmZ6Y3lQbU91M2NhODdZNzdkN2FQbVlRRXN3SXE1NFJwOWxSYWRWWVVrSWFoQQ%3D%3D&v=BDzufMACM2M&q=http%3A%2F%2Fwiki.ros.org%2Fgrid_map&event=video_description
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Potential Field Path Planning:

- Notes:
- Local minima problem exists

- Problem is getting more complex if the robot is not considered as a point mass

- If objects are non-convex there exists situations where several minimal distances exist —
can result in oscillations
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Potential Field Path Planning: Extended Potential Field Method

- Additionally a rotation potential

field and a task potential field is
iIntroduced

- Rotation potential field

- force is also a function of robots orientation relative

a) Classical Potential

to the obstacles. This is done using a gain factor that

reduces the repulsive force when obstacles are
parallel to robot’s direction of travel

- Task potential field

- Filters out the obstacles that should not influence

the robots movements, i.e. only the obstacles in the
sector in front of the robot are considered

b) Rotation Potential
with parameter 3

Khatib and Chatila
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Graph Search

- Overview

- Solves a least cost problem between two states on a (directed) graph
- Graph structure is a discrete representation

- Limitations
- State space is discretized - completeness is at stake
- Feasibility of paths is often not inherently encoded

- Algorithms
- (Preprocessing steps)
- Breath first
- Depth first
- Dijkstra
- A* and variants
- D* and variants
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Graph Construction: Visibility Graph

- Particularly suitable for polygon-like obstacles
- Shortest path length
- Grow obstacles to avoid collisions
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Graph Construction: Visibility Graph

- Pros
- The found path is optimal because it is the shortest length path
- Implementation simple when obstacles are polygons

- Cons

- The solution path found by the visibility graph tend to take the robot as close as possible to
the obstacles: the common solution is to grow obstacles by more than robot’s radius

- Number of edges and nodes increases with the number of polygons
- Thus it can be inefficient in densely populated environments
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Graph Construction: Voronoi Diagram

- Tends to maximize the distance between robot and obstacles



Topology Graph
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Graph Construction: Voronoi Diagram

- Pros

- Using range sensors like laser or sonar, a robot can navigate along the Voronoi diagram
using simple control rules

- Cons

- Because the Voronoi diagram tends to keep the robot as far as possible from obstacles, any
short range sensor will be in danger of failing

- Voronoi diagram can change drastically in open areas
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Graph Construction: Exact Cell Decomposition (2/4)
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Graph Construction: Approximate Cell Decomposition (3/4)
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Graph Construction: Adaptive Cell Decomposition (4/4)

start
»

e goal

- Close relationship with map representation (Quadtree)!
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Graph Construction: State Lattice Design (1/2)

= Enforces edge feasibility

Offline:
Motion Model
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Graph Construction: State Lattice Design (2/2)

Martin Rufli
- State lattice encodes only kinematically feasible edges

velocity [m/s]
o
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Deterministic Graph Search

- Methods
- Breath First
- Depth First
- Dijkstra
- A* and variants
- D* and variants

. obstacle cell

12 cell with
distance value
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Admin

- Paper presentation ppt/ pdf due today!

- HW3:

- Bug was found regarding the mirrored maps!
- Check for the solution on piazza.



DIJKSTRA'S ALGORITHM
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EDSGER WYBE DIJKSTRA

"Computer Science is no more about computers than
astronomy is about telescopes."

http://www.cs.utexas.edu/~EWD/
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SINGLE-SOURCE SHORTEST PATH PROBLEM

- Single-Source Shortest Path Problem - The problem of finding shortest
paths from a source vertex v to all other vertices in the graph.

- Graph
- Set of vertices and edges
- Vertex:
- Place in the graph; connected by:

- Edge: connecting two vertices
- Directed or undirected (undirected in Dijkstra’s Algorithm)
- Edges can have weight/ distance assigned

Dijkstra material from http://www.cs.utexas.edu/~tandy/barrera.ppt
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Diklstra’s Algorithm

- Assign all vertices infinite distance to goal
- Assign 0 to distance from start
- Add all vertices to the queue

- While the queue is not empty:
- Select vertex with smallest distance and remove it from the queue
- Visit all neighbor vertices of that vertex,
- calculate their distance and
- update their (the neighbors) distance if the new distance is smaller
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Diklstra’s Algorithm - Pseudocode

dist[s] < o (distance to source vertex is zero)
for all v e V-{s}
do dist[v] < o (set all other distances to infinity)
S—0 (S, the set of visited vertices is initially empty)
Q—V (Q, the queue initially contains all vertices)
while Q =0 (while the queue is not empty)
do u < mindistance(Q, dist) (select the element of Q with the min. distance)
S«—Su{u} (add u to list of visited vertices)
for all v € neighbors|u]
do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
then d[v] «d[u] + w(u, v) (set new value of shortest path)

(if desired, add traceback code)
return dist
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Dijkstra Example

Initialize: =
A

0-4 B CDE =~ Y
Q0

0 o oo o o
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example

7 11
B
0 1 4 7 9
0: * B (D CfF—=F
0 _oo 0 00 O 3 5
10 3 o
7 11 5 . .
7 11 S: {A, (,E}
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Dijkstra Example

7
B,
1 4
©

3

0 oo o o ® 5
10 3 o o
7 11 5 .
7 11 S {A, (, E, B }
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Dijkstra Example

9 S {4 CEB)
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Dijkstra Example

9 S {4 CEBD}
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APPLICATIONS OF DIJKSTRA'S ALGORITHM

- Navigation Systems
- Internet Routing
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Router A
Routing Table

Togoto Routewvia

network: port #:
10.0.0.0 1
20.0.00 2
30.0.00 3
40.0.0.0 1

Port 1

=

_ Router A

Port 2

g =

20.0.0.0

Port 3

From Computer Desktop Encyclopedia
© 1998 The Computer Language Co. Inc.

JFZ: n}? /nm\"?

a

= | g 2

30.0.0.0 40.0.0.0
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Dijkstra’s Algorithm for Path Planning: Topological Maps

- Topological Map:
- Places (vertices) in the environment
(red dots)

- Paths (edges) between them
(blue lines)

- Length of path = weight of edge

- => Apply Dijkstra’s Algorithm to
find path from start vertex to goal
vertex
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Dijkstra’s Algorithm for Path Planning: Grid Maps

- Graph:

- Neighboring free cells are connected:
- 4-neighborhood: up/ down/ left right
- 8-neighborhood: also diagonals

- All edges have weight 1

- Stop once goal vertex is reached

- Per vertex: save edge over which
the shortest distance from start was
reached => Path

pEIRG RS R4

R R BéRe
R X R B B¢
2 2R R R
2 X X R B¢

b ss s s sis
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Graph Search Strategies: Breath-First Search

- Corresponds to a wavefront expansion on a 2D grid
- Breath-First: Dijkstra‘’s search where all edges have weight 1

6
. obstacle cell

12 cell with
4 distance value
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Graph Search Strategies: A* Search

- Similar to Dijkstra's algorithm, except that it uses a heuristic function h(n)
»f(n) = g(n) + h(n)

goal

goal goal goal

g=14 g=10 g=14 g=1.0

h=28 h=3.8 h=2.8 h=3.8
g=28 g=24 g=28

h=34 h=38 h=42

goal

9=3.8

'h=1.0

9-3.4 g=1.0

h=2.0 h=3.8

g=38 g=28 g=24 g=28 g=3.8 ¢g=28 ¢g=24 @g=28 g=3.8 @¢=28 g@g=24 g=28
h=3.0 h=34 h=38 h=4.2 h=3.0 h=3.4 h=38 h=4.2 h=3.0 h=34 h=38 h=4.2
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A*

- Developed 1986 as part of the Shakey project!

- Complexity:
Worst-case performance O(|E|) = O(b%) *
Worst-case space o(|V|) = O(v?)
complexity

b: branching factor
d: depth

- Good heuristic => small branching factor
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Optimal Planning

- Dijkstra finds the optimal path
- What about A*?

- Find admissible heuristic h(n)
- Admissible: do not overestimate the true cost-to-go

- A* is optimal (finds optimal/ shortest path) if h(n) is
admissible for all n

- Admissible example: use geometric distance for
h(n):

h(n) = \[(xgoal — )2+ (Vgoar = )2 ).

- Example: heuristic 5x geometric distance
- h(n) =0 => Dijkstra's Algorithm
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A*

- Hierarchical planning possible e.g.: Go to the library:
- First plan how to get from SIST building to library
- Then plan how to get from entrance of library to goal room (campus level vs. library level)

- Many variants of A* algorithms exist — with different properties

- A* as graph search: applications outside of robotics/ path planning

- Video games
- Parsing with stochastic grammars in natural language processing

- Graph on which planning is done matters!
- E.g.: Grid map; Pose Graph; Topological Graph; Open Street Map; Lattice Graphs; ...
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Distance: 221.7
Generation: 46 s
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Graph Search Strategies: D* Search

- Similar to A* search, except that the search starts from the goal outward
- f(n) = g(n) + € h(n)

- First pass is identical to A*

- Subsequent passes reuse information from previous searches

e = 1.0 e = 1.0 e = 1.0
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Graph Search Strategies: Randomized Search

- Most popular version is the rapidly exploring random tree (RRT)
- Well suited for high-dimensional search spaces
- Often produces highly suboptimal solutions
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Why are RRT's rapidly exploring?

The probability of a
node to be selected
for expansion is b
proportional to the
area of its Voronoi
region
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v & Q[0 IFESS[00:00:04] & nx = B = BD(97%) <= 09:56 %

S

rtstar.cpp.  baog

rrtstar_planner.cpp

0 = O lizhi@lizhi-HP-EliteBook-8460w: ~/download codes/rrtstar_planner

goal: 5.96963 7.10589
1
New Path Found. Total paths 1
Finding Optimal Path
[ INFO] [1497922923.557025739, 592.300000000]: Got new plan
[ INFO] [1497922923.957553192, 592.700000000]: Goal reached
AC[rviz-13] killing on exit
EStarplan.cp [amcl-12] killing on exit
‘ [map_server-11] killing on exit
q . . [move_base-10] killing on exit
B [kobuki_safety_controller-9] killing on exit
—— [navigation_velocity_smoother-8] killing on exit
' 1 o SRS [emd_vel_mux-7] killing on exit
P LS ~ - [mobile_base_nodelet_manager-6] killing on exit
S [joint_state_publisher-5] killing on exit
*" e -[dtagnosttc aggregator-4] killing on exit
—_[robot_state_publisher-3] killing on exit
- [stageros 2] killing on exit
F- "‘*[rosout 1] killing on exit
- [master] killing on exit
¢shutting down processing monitor...
. shutting down processing monitor complete
; done
’, Lizhi@lizhi-HP-EliteBook-8460w:~/download codes/rrtstar_planner$

PRI - W Y '
o TN ._ ~ -‘

rrtstar.h

8
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ROS Navigation

- http://wiki.ros.org/navigation

R.0.B:0.T. Comics

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."



http://wiki.ros.org/navigation
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Path Planning in ROS: move base

“move_base_simple/goal® . .
geometry msgs/PoseStamped Navigation Stack Setup
move_base l "/map"
Y nav_msgs/GetMap Map_server
amcl — global_planner < global_costmap
/ A
I Wit ; sensor topics
sensor transforms —¢ » internal I8 ey
1 ' tfitfMessage nav_msgs/Path recovery_behaviors :::‘\:g:_m:g:/lkg'snfiggzg
Y \ Y
B -acom_ »  local_planner  -—— local_costmap

nav_msgs/Odometry

"cmd_vel"|geometry _msgs/Twist

Y provided node
optional provided node
platform specific node ‘

base controller
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dortmund

teb local planner

An optimal trajectory planner for mobile robots based on Timed-Elastic-Bands

o000
http://wiki.ros.org/teb_local_planner : : : R O S



