
Explore the Unexplored
A Downward-Looking Dataset for
Differential Wheeled Vehicles with

Vision, Event, and Laser

A project of the 2019 Robotics Course of the School of
Information Science and Technology of ShanghaiTech University

https://robotics.shanghaitech.edu.cn/teaching/robotics2019

Ling Gao and Kun Huang∗

Abstract

We explore the feasibility of estimating the motion of a differential
wheeled vehicle with a downward facing event-based camera along-
side with a convenition camera that exerts fronto-parallel motion with
respect to the ground plane. A basket of multi-channel datasets is
recorded and could be used for further research.

1 Introduction and Motivation
Accurate velocity measurements are an essential ingredient to the stable lo-
calization and control of ground vehicles. A simple forward integration of
vehicle speed can provide an estimate of the vehicle trajectory, a procedure
commonly known as dead-reckoning. Although the forward integration will
lead to a random walk, fusing its value in a complementary filter with an
absolute reference signal such as GPS may already be sufficient to attain

∗All the authors are with the School of School of Information Science and Technology,
ShanghaiTech University. {gaoling, huangkun1}@shanghaitech.edu.cn.

1

https://robotics.shanghaitech.edu.cn/teaching/robotics2019


reasonably accurate localisation. However, while the most straightforward
solution to vehicle speed estimation is given by employing wheel odometers,
the risk of varying and unknown wheel parameters as well as hard-to-model
wheel slippage have ever since motivated the use of contact-less visual odom-
etry to measure incremental vehicle displacements.

Our motivation is inspired by optical mouse sensors. The idea is that for
any device that is being moved over a flat, planar surface, the velocity in
the plane can simply be measured by an optical sensor that directly faces
the plane. As the device is moving, the displacement information is deduced
from the apparent motion of brightness patterns in the perceived image.
This turns the motion estimation into a simple image registration problem
in which we only have to identify a planar homography. Another important
motivation for a downward facing sensor is that the depth and structure
of the scene will be known in advance, and that—as a result—the motion
of patterns in the image under planar displacement can be described by
a simple Euclidean transformation. However, even though this estimation
problem appears to be simple, it is difficult to find point correspondences
between subsequent images as the perceived floor texture often does not lead
to distinctive, easily matchable keypoints, especially suffers from the low-
light enviroment and motion blur. As a compensation, event camera will
survive because of its high dynamic range and low latency.

2 State of the Art
The image displacements for a camera moving in front of a planar scene can
be modelled by a simple homography, which furthermore has a closed alge-
braic form as a function of the relative displacement, the camera intrinsics,
and the plane parameters [13, 15]. A homography is an 8 DoF image-to-
image transformation, and therefore generally requires 4 points to be solved.
The complexity of the solution may be reduced by assumption of known
plane parameters, or even constraints on the motion such as for example pla-
nar motion. For a downward motion-plane facing camera, these conditions
would reduce the problem to a simple 3 DoF Euclidean transformation esti-
mation. Other related work is given by [17], which substitute the Ackermann
steering model into the essential matrix or an n-linearity. The imposition of
epipolar incidence relationships that do no longer require either structure or
scale parameters to be derived makes it possible for those methods to identify

2



the relative displacement based on a single feature correspondence.
The aforementioned solutions are interesting and related in that they ex-

ploit structure or motion related priors to solve the registration problem.
However, they require feature correspondences for which at least a major-
ity is consistent with a single dominant camera displacement. The dominant
motion is then identified by sampling and testing hypotheses within a heuris-
tic framework [11], which is why such methods cannot guarantee to find the
optimal inlier set and an associated image-to-image transformation. Ransac-
based methods contrast with globally optimal solutions that search the entire
space of possible transformations to identify the optimal inlier set, possibly
even without the prior requisite of point correspondences. The most common
method here that has been regularly applied in geometric computer vision is
given by branch-and-bound optimisation [14].

Another line of research that is related to ours is in globally optimal
image matching for sparse [16, 9, 8] or even semantic, region-based [18] fea-
tures. Such methods proceed by branching in the space of a low-dimensional
image-to-image mapping, for example a 4 DoF transformation in the case
of [9]. An alternative for Euclidean image registration that does not require
the extraction of sparse features is given by the application of the Fourier
Mellin transform [12, 10], which provides high computational efficiency but
no guarantees of global optimality.

The above reference mainly justify the feasibility of this idea without
mathematic proof, which we believe is off topic with respect to this project.
Here, we also list some used ROS packages during our dataset recording and
data processing.

ROS Package: OpenCV [2]

OpenCV (Open Source Computer Vision Library) is an open source computer
vision and machine learning software library. OpenCV was built to provide
a common infrastructure for computer vision applications and to accelerate
the use of machine perception in the commercial products.

ROS Package: RPG DVS [1]

The ROS DVS package provides C++ drivers for the Dynamic Vision Sensors
(DVS/DAVIS). Even if one do not have a DAVS or DAVIS device, one can
still use this driver to read pre-recorded event data files. The package also

3



provides a calibration tool for both intrinsic and stereo calibration. This
package is based on libcaer.

ROS Package: Camera Calibration Tool [3]

Camera calibration is the process of estimating intrinsic and/or extrinsic
parameters. Intrinsic parameters deal with the camera’s internal character-
istics, such as, its focal length, skew, distortion, and image center. Extrinsic
parameters describe its position and orientation in the world. Camera Cali-
bration Tool allows easy calibration of monocular or stereo cameras using a
checkerboard calibration target.

Other ROS Package for all kinds of sensor drivers

• Velodyne Lidar Driver [6]

• Point Grey Camera Driver [4]

• Husky Unmanned Ground Vehicle Driver [5]

• OptiTrack Motion Capture Systems Driver [7]

3 System Description on the Algorithm side
We present a pseudocode algorithm here to provide an overall look on the sys-
tem description. Our overall algorithm denoted as Globally-Optimal event-
based Visual Odometry (GOVO) is outlined in Algorithm 1 and aided by
the helper function Algorithm 2 to calculate bound values within a certain
interval.

Starting from an initial domain, the algorithm consecutively divides the
2-dimensional intervals into four subspaces, each time evaluating lower and
upper bounds and pruning intervals if their upper bound is lower than the
lower bound of another interval. We terminate the branching when the inter-
vals lower bound equals the upper bound. Again, this pseudocode algorithm
is another justification on the feasibility of the very idea. One has imple-
mented the basic framework and tested its validity only on two consecutive
frames, but no actually acceleration on computing time, or memory-saving
tricks have been put into action, which we believe is off topic with respect to
this project.

4



Algorithm 1 GOVO: efficient branch and bound algorithm for globally-
optimal event-based visual odometry
INPUT: event set E , initial domains V and W for estimated parameters v

and w, intrinsic matrix K, and distance between camera and ground d
OUTPUT: optimal solution (v?, w?), data association among events
1: Initialize a space S0 over the domains V and W
2: Execute Algorithm 2 for S0

3: Push S0 into queue Q
4: loop
5: Pop a space S ′ from Q
6: if S ′ → c? == true then
7: Pop all spaces at same level in Q
8: if converged then Collect correspondences
9: Local refinement over all inlier correspondences

10: return refined result (v?, w?)
11: else
12: Split S ′ into subspaces S1, S2, S3, S4

13: Execute Algorithm 2 for S1, S2, S3, S4

14: Prune and push into Q
15: end if
16: end loop

Algorithm 2 bound calculation
INPUT: event set E , domains V and W for estimated parameters v and w,

intrinsic matrix K, distance between camera and ground d
OUTPUT: convergence signal c?, lower bound value Plb, upper bound value

Pub, data association among events
1: Calculate lower bound by evaluating the objective at the interval centre
2: for each event e in E do
3: Wrap e back to the image grid on a reference frame
4: end for
5: Calculate the covariance of the image as upper bound
6: if Plb == Pub then c? = true else c? = false

5



Figure 1: The husky robot in a garage, with downward-facing sensors, a
bumper and assisted lights in the front, Lidar on the top.

4 System Description and Evaluation on the
Dataset side

Data acquisition is an essential step among all procedures when conducting a
scentific experiment. As suggested and guided, to suit different scenarios, we
mount several sensors on the differential wheeled robot, including Velodyne
Lidar, the conventional RGB camera with high resolution, dynamic vision
sensor integrated with event camera, IMU (Inertial Measurement Unit) and
a low resolution monochromatic camera, also aiding by OptiTrack System
for high precision ground truth. A photograph of the robot is captured and
presented in Figure 1.

Here, we list a basket of recorded datasets under different scenarios with
different combinations of sensors in Table 4, and their textures are displayed
in Figure 2.

6



Scenario & Type of RGB DVS Lidar OptiTrack Duration
Texture Motion Camera System Time
Lab Floor Linear 3 3 7 3 5.4s
Lab Floor Linear 3 3 7 3 12.5s
Lab Floor Rotation 3 3 7 3 9.9s
Lab Floor Rotation 3 3 7 3 11.8s
Lab Floor Random 3 3 7 3 14.2s
Lab Floor Random 3 3 7 3 41.5s
Lab Carpet Linear 3 3 7 3 7.5s
Lab Carpet Linear 3 3 7 3 14.5s
Stone-paved Linear 3 3 3 7 5.4s
Stone-paved Linear 3 3 3 7 8.5s
Stone-paved Rotation 3 3 3 7 9.4s
Stone-paved Rotation 3 3 3 7 13.4s
Stone-paved Random 3 3 3 7 25.3s
Stone-paved Random 3 3 3 7 30.2s

Garage Linear 3 3 3 7 7.0s
Garage Linear 3 3 3 7 20.1s
Garage Rotation 3 3 3 7 8.7s
Garage Rotation 3 3 3 7 10.1s
Crossing Linear 3 3 3 7 5.4s
Crossing Linear 3 3 3 7 15.7s
Crossing Rotation 3 3 3 7 8.2s
Crossing Rotation 3 3 3 7 12.3s

Table 1: A summary on datasets, with texture, type of motion, sensors, and
duration time.

Figure 2: Textures are listed in the sequence of (1) Lab Floor (2) Lab Carpet
(3) Stone-paved (4) Garage (5) Crossing (from left to right). Please be aware
that the actual field of view and actual height between camera and ground
in the datasets are much smaller and lower than the ones in display.

7



Dataset Format

For each data stream, we present in text/png files and binary files (rosbag).
While their content is identical, some of them are better suited for particular
applications. For prototyping, inspection, and testing, it is recommended to
use the text files, since they can be loaded easily using Python or Matlab.
The binary rosbag files are prepared for applications that are intended to be
executed on a real system.

Here we list the detailed infomation in text/png format as follows.

• calib.txt Intrinsic parameters (fx fy cx cy k1 k2 p1 p2 k3).

• pose.txt One measurement per line (timestamp px py pz qx qy qz qw).

• dvs/events.txt One event per line (timestamp x y polarity).

• dvs/imu.txt One measurement per line (timestamp ax ay az gx gy gz).

• dvs/image_raw/*.png Grey images with resolution of 346 ∗ 260.

• camera/image_raw/*.png Grey images with resolution of 2448 ∗ 2048.

Here we list the detailed infomation in binary format as follows.

• camera–calibration contains intrinsic parameters.

• vrpn contains pose information of the vehicle as ground truth.

• velodyne contains pose information of the vehicle as ground truth.

• rpg_dvs_ros contains event streams, IMU streams, and grey images.

• pointgrey contains grey images with high resolution.

Notes on Data Acquisition

1. There is an unexpected incompatibility between OptiTrack System
and Dynamic Vision Sensor, where OptiTrack uses high-power infrared
spotlights at a high frequency. It is invisible and easily-negelected to
human beings or conventional sensors, but it has a spectacular inter-
ference on event cameras because of its sensitivity on high dynamic

8



range. This will overflow the buffer with useless noises. We deactivate
the LED option on the control board in OptiTrack software to a min-
imal level as a tradeoff between low noise and accurate ground truth
detection.

2. Both the conventional RGB camera and dynamic vision sensor are
mounted with the sam type of the lenses, which has a small field of
view but high distortion. They were equipped on the same height
and pointed to the ground vertically. One needs to do the camera
calibration twice, not only because of the accuracy, but also with the
fundamental difference on camera resolution.

3. For event stream, fine-tuning on some parameters is neccessary to gain
a clean result. Among all parameters one can play with, background
activity filter time seems to be the most important one. It will reduce
the noises generated by strobing LED from OptiTrack, and provide a
relatively clean result.

4. Light is also essential in our experiment. For conventional RGB camera,
sufficient illumination gurantees a shorter exposure time and a slighter
motion blur effects. For Dynamic Vision Sensor, since events are trig-
gered by the change of log intensity of pixels, a brighter enviroment will
produces less false-alarm changes (noises) than darker environment.

5. Originally, we plan to mount one more event camera on the robot
as a comparsion. The home-made CelePixel Dynamic Vision Sensor
has a much higher resolution (roughly 1 million pixels), resulting in an
unfortunately situation that skyrocketing number of events blocked the
buffer and occupied the processing units. This phenomenon will block
other sensors and sometimes even worse, crashing the whole system.

Evaluation and Reproducibility

As for evaluation on the quality of dataset, here we purpose a simple mea-
surement to test the blurriness of the captured images both from conventional
RGB camera and Dynamic Vision Sensor, as a comparison to event streams.
We believe the ratio of the number of detected features in a blurred image to
one in the still image can be seen as a compelling criterion, since the quality
and quantity of features are a crucial step in any SLAM algorithm.

9



Here, we list the evaluation result for all recorded datasets in Table 2.
Also, as mentioned above, the promising result from our testing codes based
on the collected dataset proves that the event stream is reliable and robust.

To reproduce the very same dataset as ours with identical trajectory
seems impossible, but with the 3D-printing holder to contain and fix the
cameras with same height, the already installed driver on the Raspberry Pi,
one can easily reproduce a similar dataset with ease. We write a README
file to guide anyone who want to conduct the data acquisition again.

5 Conclusions
Given the small depth-of-scene, it is necessary to process images at a very
high frame rate if elevated vehicle speeds are to be estimated. Therefore, our
efforts consist of improving computational efficiency, accuracy, robustness
and employing event-based cameras to obtain very low-latency perception,
and unlocking the unexplored potential towards accurate visual odometry
in dynamic scenarios in conjunction with our globally optimal registration
approach. The dataset we collected will be a solid foundation to conduct
further research on visual odometry for differential wheeled vehicles.

References
[1] https://github.com/uzh-rpg/rpg_dvs_ros.

[2] https://opencv.org.

[3] http://wiki.ros.org/camera_calibration.

[4] http://wiki.ros.org/pointgrey_camera_driver.

[5] http://wiki.ros.org/Robots/Husky.

[6] http://wiki.ros.org/velodyne.

[7] http://wiki.ros.org/vrpn_client_ros.

[8] Jean-Charles Bazin, Hongdong Li, In So Kweon, Cédric Demonceaux, Pascal
Vasseur, and Katsushi Ikeuchi. A branch-and-bound approach to correspon-
dence and grouping problems. IEEE transactions on pattern analysis and
machine intelligence, 35(7):1565–1576, 2012.

10

https://github.com/uzh-rpg/rpg_dvs_ros
https://opencv.org
http://wiki.ros.org/camera_calibration
http://wiki.ros.org/pointgrey_camera_driver
http://wiki.ros.org/Robots/Husky
http://wiki.ros.org/velodyne
http://wiki.ros.org/vrpn_client_ros


Scenario Type of Duration # of features # of features ratio
Texture Motion Time (still image) (blurred image)
Lab Floor Linear 5.4s 28 2 7.1%
Lab Floor Linear 12.5s 19 2 10.5%
Lab Floor Rotation 9.9s 19 1 5.2%
Lab Floor Rotation 11.8s 14 3 21.4%
Lab Floor Random 14.2s 12 1 8.3%
Lab Floor Random 41.5s 19 2 10.5%
Lab Carpet Linear 7.5s 44 0 0.0%
Lab Carpet Linear 14.5s 52 5 9.6%
Stone-paved Linear 5.4s 5107 49 1.0%
Stone-paved Linear 8.5s 709 84 11.8%
Stone-paved Rotation 9.4s 213 41 19.2%
Stone-paved Rotation 13.4s 5219 46 0.9%
Stone-paved Random 25.3s 4174 45 1.0%
Stone-paved Random 30.2s 4417 83 1.9%

Garage Linear 7.0s 184 13 7.1%
Garage Linear 20.1s 121 18 14.9%
Garage Rotation 8.7s 198 2 1.0%
Garage Rotation 10.1s 181 7 3.9%
Crossing Linear 5.4s 7 4 57.1%
Crossing Linear 15.7s 9 1 11.1%
Crossing Rotation 8.2s 9 2 22.2%
Crossing Rotation 12.3s 8 2 25.0%

Table 2: An evaluation on datasets, with number of features on both still
and blurred images.

11



[9] Thomas M Breuel. Implementation techniques for geometric branch-and-
bound matching methods. Computer Vision and Image Understanding,
90(3):258–294, 2003.

[10] H. Bülow and A. Birk. Fast and robust photomapping with an unmanned
aerial vehicle (uav). In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2009.

[11] M.A. Fischler and R.C. Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[12] X. Guo, Z. Xu, Y. Lu, and Y. Pang. An application of fourier-mellin transform
in image registration. In The Fifth International Conference on Computer and
Information Technology, 2005.

[13] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer
vision. Cambridge university press, 2003.

[14] Ailsa H Land and Alison G Doig. An automatic method for solving discrete
programming problems. In 50 Years of Integer Programming 1958-2008, pages
105–132. Springer, 2010.

[15] Yi Ma, Stefano Soatto, Jana Kosecka, and S Shankar Sastry. An invitation to
3-d vision: from images to geometric models, volume 26. Springer Science &
Business Media, 2012.

[16] David M Mount, Nathan S Netanyahu, and Jacqueline Le Moigne. Efficient
algorithms for robust feature matching. Pattern recognition, 32(1):17–38, 1999.

[17] Davide Scaramuzza, Friedrich Fraundorfer, and Roland Siegwart. Real-time
monocular visual odometry for on-road vehicles with 1-point ransac. In 2009
IEEE International Conference on Robotics and Automation, pages 4293–
4299. IEEE, 2009.

[18] Pablo Speciale, Danda P Paudel, Martin R Oswald, Hayko Riemenschneider,
Luc Van Gool, and Marc Pollefeys. Consensus maximization for semantic
region correspondences. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7317–7326, 2018.

12


	Introduction and Motivation
	State of the Art
	System Description on the Algorithm side
	System Description and Evaluation on the Dataset side
	Conclusions

