
Pucca Wanders Around: 3D SLAM with Two Tilted Lidars
A project of the 2017 Robotics Course of the School of Information Science and Technology

(SIST) of ShanghaiTech University

https://robotics.shanghaitech.edu.cn/teaching/robotics2017

Zhengjia Huang, Zhonglin Nian, Ning Bi
{huangzhj, nianzhl, bining}@shanghaitech.edu.cn

Abstract— 3D Simultaneous Localization and Mapping
(SLAM) has drawn significant interests in robotics community,
as it enables the robotic vehicles to be deployed in a fully
autonomous way for various applications. Most works on 3D
SLAM use a single Lidar mounted upright on top of a mobile
robot, plus an IMU for initial guess of the robots motion. In our
project, we studied 3D SLAM using two Lidars simultaneously
and the Lidars are tilted to specific angles instead of upright.
Moreover, we use only the point clouds without IMU data to
estimate the robots motion. We show that by tilting the Lidar,
we can see the upper part in the scene (such as the ceiling)
which is normally hard using common strategy. And using our
method, we can build accurate omnidirectional 3D map on a
real time bases.

Keywords - Simultaneous Localization and Mapping, Tilted
Lidar, Iterative Closest Point, Pipeline rebuild.

Fig. 1. Our Robot ”Pucca”

I. INTRODUCTION
Simultaneous Localization and Mapping (SLAM) has

drawn significant interests in robotics community, as it
enables the robotic vehicles to be deployed in a fully
autonomous way for various applications. Recently, more and
more researchers have looked towards performing SLAM on
mobile robots in fully 3D, indoor and outdoor environments.
3D SLAM can be used in some pioneering systems such
as rebuilding the map of an area after earthquakes and also
contribute to the navigation systems on autonomous driving
cars. And Lidar, due to its high accuracy in 3D range data
perceiving, could be a capable sensor in SLAM work flow.

Most of the SLAM algorithms, such as the one by F.
Aghili[4], use IMU as part of their localization unit. In this
project, we tried to do 3D SLAM using two tilted lidars
without IMU. Figure. 1 shows our robot ”Pucca”. Our work
mainly built upon the Erik’s BLAM[1] package. We tested
our system in a relative small scene (ShanghaiTech Star
Center) and a relatively large scene (ShanghaiTech SIST
lobby). The result shows that our system can build accurate
omnidirectional 3D map on a real time bases using two tilted
lidars.

Our contributions are four-fold. First, we calibrated the
two lidars mounted on our Pucca robot. Second, we figured
out the pipeline of BLAM algorithm and wrote a document
for it. Third, we enabled the BLAM algorithm to do SLAM
using two tilted lidars so that it can build a 3D omnidirec-
tional map. Fourth, we programed a node to visualize the
ICP process between two closed loop laser scans to ease the
debugging.

The detail of our work flow is described as follows:
Section 2 introduces related works; Section 3 is system
description; Section 4 provides evaluation details and the last
section gives conclusion of our method.

II. RELATED WORKS

A. BLAM[1]

Our work is built upon the Berkeley Localization And
Mapping package. It is an open-source software package
for LiDAR-based real-time 3D localization and mapping
developed by Erik Nelson from the Berkeley AI Research
Laboratory (BAIR). Unfortunately, there is no document
available about BLAM. So a big part of our work is figuring
out the whole pipeline of BLAM and we want this report
to also be a document for BLAM. Besides, BLAM was
designed for SLAM using one Lidar mounted upright on
a robot. We enabled the algorithm to support multiple lidars
and the lidars can be tilted.

B. Generalized ICP[2]

x̂t = argmax
xt

{p(zt|xt, m̂
[t])}

Maximize the likelihood of the i-th pose and observation
relative to the given map(PointClouds). zt denoted as cur-
rent measurement and m̂[t] denoted as map constructed
so far. General ICP algorithm consists of four parts:

https://robotics.shanghaitech.edu.cn/teaching/robotics2017


1) Nearest point search:
For each point current scan find the nearest correspond
point in base frame. And run rejection to guarantee
one-to-one correspondences.

2) Compute registration:
Determine the rigid transform that minimizes the sum
of squared distances(SSD) between pairs by RANSAC
scheme.

3) Apply Transformation:
Apply the rigid transform to all points in current scan.

4) Iterate:
Repeat steps 1 to 3 until convergence.

BLAM uses ICP in localization and loop closure. ICP
is a widely used algorithm to register two PointCloud and
it is vital for SLAM, since this algorithm could be used
to estimate the Odometry of robots and behave as a tool
to check loop closure, which is the core of SLAM. The
common ICP algorithm simply uses closest points to get
the correspondences and then calculate transform matrix.
Instead, a more robust variant, which is called Generalized
ICP, performs better, and its used in this project. To be
specific, this algorithm combine ICP and point-to-plane ICP
algorithms into a single probabilistic framework. And then
use this framework to model locally planar surface structure
from both scan, that is to say, plane to plane ICP.

C. 3D SLAM Using IMU and Its Observability Analysis[6]

Currently, our package do not take imu as input, however
as for a big loop closure, it’s import to take IMU data
into account, or the accumulated deviation only using the
transform calculated by ICP will destroy the map. This paper
investigates 3-dimensional SLAM and the corresponding
observability analysis by fusing data from landmark sensors
and a strap-down IMU in an adaptive Kalman filter (KF). In
addition to the vehicle’s states and landmark positions, the
self-tuning filter estimates the IMU calibration parameters as
well as the covariance of the measurement noise. Examining
the observability of the 3D SLAM system leads to the
the conclusion that the system remains observable provided
that the line connecting the two known landmarks is not
collinear with the vector of total acceleration, i.e., the sum
of gravitational and inertial accelerations.

D. LiDAR System Calibration Using Overlapping Strips[7]

This paper talks about how to calibrate and produce
estimates a set of parameters based on system measurements.
These parameters can be used to improve the quality of
any subsequently-collected LiDAR data. Current LiDAR
calibration techniques require full access to the system
parameters and raw measurements (e.g., platform position
and orientation, laser ranges, and scan-mirror angles). Un-
fortunately, the raw measurements are not usually available
to end-users. The absence of such information is limiting
the widespread adoption of LiDAR calibration activities by
the end users. This paper proposes alternative methods for
LiDAR system calibration, without the need for the system
raw measurements. The simplified method that is proposed

in this paper uses the available coordinates of the LiDAR
points in overlapping parallel strips to estimate biases in the
system parameters and measurements. In this approach, the
conventional LiDAR equation is simplified based on a few
reasonable assumptions; the simplified LiDAR equation is
then used to model the mathematical relationship between
conjugate surface elements in overlapping parallel strips
in the presence of the systematic biases. In addition, a
quasirigorous calibration method is also proposed to deal
with non-parallel overlapping strips.

E. VoxelNet[8]

VoxelNet is a generic 3D detection network that uni-
fies feature extraction and bounding box prediction into a
single stage. Specifically, VoxelNet divides a point cloud
into equally spaced 3D voxels and transforms a group of
points within each voxel into a unified feature representation
through the newly introduced voxel feature encoding (VFE)
layer. In this way, the point cloud is encoded as a descriptive
volumetric representation, which is then connected to a
Region Proposal Network (RPN) to generate detections. A
key innovation of VoxelNet is the VFE layer. It uses fully
connect layers and its output feature combines both point-
wise features (absolute and relative coordinates) and locally
aggregated feature (high level). In train mode, the VoxelNet
takes 3D point cloud as input and ground-truth bounding
box as label and can be trained end-to-end. In test mode,
the VoxelNet takes in 3D Point cloud and outputs predicted
bounding boxes of objects. A limitation of VoxelNet is that
when dealing with the ununiform distribution of point cloud,
it uses random sampling to down sample the points, which
will loss some information. Another weakness is VoxelNet
performs convolution on 3D voxels, which is super time
consuming. Another model called PointNet++ [9] solved the
aforementioned problems and the model can be extended to
3D semantic segmentation.

F. LOAM: Lidar Odometry and Mapping in Real-time[10]

A real-time method for odometry and mapping using
range measurements from a 2-axis lidar moving in 6-DOF.
The method achieves both low-drift and low-computational
complexity without the need for high accuracy ranging or
inertial measurements.
The key idea in obtaining this level of performance is
the division of the complex problem of simultaneous
localization and mapping, which seeks to optimize a large
number of variables simultaneously, by two algorithms. One
algorithm performs odometry at a high frequency but low
fidelity to estimate velocity of the lidar. Another algorithm
runs at a frequency of an order of magnitude lower for fine
matching and registration of the point cloud. Combination
of the two algorithms allows the method to map in real-time.
By testing on KITTI dataset, the method ranked #1 among
all methods evaluated by the benchmark irrespective of
sensing modality, including state of the art stereo visual
odometry. The average position error is 0.88% of the
distance traveled, generated using trajectory segments at



100m, 200m, ..., 800m lengths in 3D coordinates.

G. Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks[12]

Object detection networks depend on region proposal
algorithms to hypothesize object locations. Runs about 22
fps on NVIDIA Titan-X.

H. ROS Package: libpointmatcher

Libpointmatcher is an open-source implementation of the
iteratively closest point method for 2-D/3-D mapping in
Robotics.
It supports both point-to-point and point-to-plane ICP. With
the former, it is able to solve not only for a rigid transform,
but also for a scale change between the clouds. Libpoint-
matcher also implements a set of filters to help denoise and
subsample the input point clouds.
Comparing to poorly documented icp-ros package, libpoint-
matcher’s source code is fully documented based on doxygen
to provide an easy API to developers.
The general work flow and main components are: Data
Filters (reduce number of points), Matcher (transform, then
perform kd-tree), Outlier Filter (remove links which do
not correspond to true correspondences), Error Minimizer,
Transformation checkers (a threshold on the rotational and
translational), Inspectors.

I. Geometric Calibration and Radiometric Correction of
LiDAR Data and Their Impact on the Quality of Derived
Products[13]

This paper talks about a practical approach for the geomet-
ric calibration of LiDAR systems and radiometric correction
of collected intensity data while investigating their impact
on the quality of the derived products

J. Continuous Trajectory Estimation for 3D SLAM from
Actuated Lidar[14]

This paper talks about how to extend the Iterative Closest
Point (ICP) algorithm to obtain a method for continuous-
time trajectory estimation (CICP) suitable for SLAM from
actuated lidar.

K. A flexible and scalable SLAM system with full 3D motion
estimation[15]

This paper talks about a flexible and scalable system
for solving the SLAM problem that has successfully been
used on unmanned ground vehicle with low computational
resources.

One method of modeling the map from point cloud data
to grid map is first to downsample and removal outliers in
order to reduce the pressure of CPU or GPU, but in this
paper, they only use endpoints of axis Z within a threshold
of the intended scan plan so there is less data to deal with
which is faster than donwsample. Also, they developed a
method to approach occupancy value at a certain point and
the gradient of occupancy gradient on a grid maps which
accelerate the speed by linear interpolation.

In order to align and match the data from laser scans
with the existing map, they use Gauss-Newton approach
without data association searching between beam endpoints
or an exhaustive pose search. It can not be denied that the
algorithm would lead to a local minima but it works well in
practice.

As mentioned before, any method using gradient approach
would face the risk of being stuck in a local minima, so the
writer mitigate the problem by using multi-resolution map
similar to image pyramid. But they are not generated from a
single high resolution image, instead, different maps are kept
in memory and simultaneously updating. This generative
approach ensures that maps are consistent across scales while
at the same time avoiding costly downsample operations

As for navigation for 3D state estimation, they use EKF,
IMU, and a range sensor to update the pos and velocity of
the robot and to promote the accuracy of the motion data.

All in all, this paper could be regarded as a guideline and
inspiration for our 3D slam project even though it’s a 2D
slam based on 3D motion data. And there should be a way
to learn and integrate this knowledge.

L. ROS Package: Cartographer

Cartographer is an open-source package with ROS oper-
ation system on Kinetic version. It’s developed by Google
and could be applied for both 2D and 3D SLAM. Multi-
sensors are available in this package like LIDAR, IMU and
different kinds of cameras which could be helpful in practice.
We don’t really need to use the whole package, but by
knowing the nodes and topics of the package, we would
get further information about how 3D slam can be done.
This package uses the fundamental tf package to deal with
rigid body transform. And there are diverse API that could
read multiple data from sensors, dealing with real-time loop
closure, pose adjustment, real time scan matching/alignment,
building occupancy grid map based on point cloud and path
planning.

M. Static Calibration and Analysis of the Velodyne HDL-
64E S2 for High Accuracy Mobile Scanning[16]

Since our work is mainly based on Lidar scanner, the
calibration work can be both fundamental and essential.
This paper discussed the basic calibration process and
mathematical model for measurements, which can be the
efficient guide essay to our first step, calibration.

N. Past, Present, and Future of Simultaneous Localization
And Mapping: Towards the Robust-Perception Age[17]

Keywords: Robots, SLAM, Factor graphs, Maximum a
posteriori estimation, sensing, perception.
This paper surveys the current state of SLAM and consider
future directions. They start by presenting what is now
the de-facto standard formulation for SLAM. Then review
related work, covering a broad set of topics including
robustness and scalability in long-term mapping, metric
and semantic representations for mapping, theoretical



performance guarantees, active SLAM and exploration, and
other new frontiers.

O. Simultaneous Localization and Mapping with Infinite
Planes[18]

Simultaneous localization and mapping with infinite
planes is attractive because of the reduced complexity with
respect to both sparse point-based and dense volumetric
methods. This paper shows how to include infinite planes
into a leastsquares formulation for mapping, using a
homogeneous plane parametrization with a corresponding
minimal representation for the optimization.

P. ROS Package: lidar camera calibration

The package is used to calibrate a Velodyne LiDAR with
a camera (works for both monocular and stereo).
Specifically, Point Gray Blackfly and ZED camera have
been successfully calibrated against Velodyne VLP-16 using
lidar-camera-calibration.
Since, VLP-16 provides only 16 rings, we believe that the
higher models of the Velodyne will also work well with this
package.

III. SYSTEM DESCRIPTION

Fig. 2. The SLAM system

As shown in Figure. 2, the system mainly contains 5
parts. The two Velodyne Lidars scan the environment. The
PCL Processing part takes in the cloud points, transform
and filter them. The processed point cloud is then input
into the Localization unit, which estimate the robots current
pose using the current scan, previous scan, and the current
map. Then, if the current frame is a key frame, the Loop
Closure unit check for loop closure between current frame
and previous key frames and recalculate the poses if needed.
Finally, the mapping unit insert current scan into the map
base on the estimated current pose. Below we describe each
unit in detail.

A. PCL Processing

The PCL processing procedure is shown in Figure 3. When
doing SLAM using both lidars, two Transform nodes will
transform the pcls from their lidars bases to the base link of
the robot. Then, a Merge node concatenates the transformed
pcls using approximate synchronizer. Our lidars are rotating
at 10Hz, so the merged two pcls will have a time difference
no larger than 0.05s. If we are doing SLAM using only one
lidar, only the lidar and its corresponding Transform node

Fig. 3. PCL Processing

will be on and the merge node will not run. The final step is
Filtering. Voxel grid with adjustable resolution and random
downsampling (90%-98% drop rate) are performed to reduce
the size of point cloud.

B. Localization

To locate the robot, the algorithm first take an initial
guess based on current laser scan and last laser scan. It
performs Generalized ICP between the two pcls to calculate
a transform from last frame to current frame. Using the
transform, we can transform the current pcl into global frame.
Then, the nearest neighbors of current scan in current map
are found. After that, the algorithm performs ICP between
the scan and its neighboring points to get another transform,
which is a correction transform of the initial guess. The final
step is to compose the correction transform with the initially
guessed pose to get the estimated current pose of the robot.

Fig. 4. Localization

C. Loop Closure

Fig. 5. Loop Closure

BLAM uses GTSAM for factor graph SLAM. An example
is shown in Figure 6. The factors are transforms calculated
from ICP using laser scans of two poses. For some of the
poses (Keyframes), their corresponding laser scans are stored
for loop closure and mapping. To register a new keyframe,
the robot has to be at a pose that more than 0.5 meters away
from the previous keyframe pose. When a loop closure is
detected, the poses are recalculated and the map is rebuilt
using the new poses.

To check for loop closure, the current frame has to be a
keyframe. Loop closure is checked between current keyframe



and all the previous keyframes. For a closed loop, the
following conditions have to be satisfied: (1) last closed loop
happened more than 40 frames ago (2) the two keyframes are
at least 40 frames away from each other (3) the two poses
have a direct distance smaller than 1.5 meters (4) the ICP
fitness must be below a threshold. For every keyframe, all
the possible closures are checked if any of them satisfied the
closure conditions, new factors will be added to the graph.
Poses and map will be recalculated and rebuilt base on the
new graph after loop closures.

Fig. 6. Pose Graph

D. Mapping

Fig. 7. Mapping

The Mapping section is a combination of results from
Localization and Loop Closure. Fig.7 shows the process of
mapping in BLAM. For every incoming pcls, the Localiza-
tion node will perform ICP to estimate current pose and if
it’s a keyframe(refer to Section: Loop Closure), mapper will
transform it to Global frame and add it to the map. In the
meanwhile, the Loop Closure node is detecting whether it’s
forming a closed loop. IF so, the GTSAM solver will produce
a series of new transformations for each key frame. And then,
reset the map and add each newly transformed point clouds
into the map. The map is stored as Oct-tree.

IV. EVALUATION

We evaluate our system in three aspects: calibration,
localization, and mapping. We further programed a tool to
visualize the ICP process which could ease the debugging
process.

A. Calibration

Two Lidars are mounted in two different orientations,
so we need to do calibration for these two Lidars to get
rigid transformations between base link and the frame of
two Lidars. Instead of an accurate calibration using Lidar-
Camera calibration with 3D-3D point correspondences[3],
we first perform a rough calibration because the approach
proposed in that paper is a simple scenario that Lidar and
Camera receive almost same information from the environ-
ment like stereo vision. But in our case, the camera and
Lidar are mounted in totally different angles which leads to
merely no correspondences. As another alternative, we put
Jackal robot at the corner of walls so we could measure the
alignment of two PointClouds better in RVIZ with the help
of 3 perpendicular vanishing lines and two nicely mounted
Hokuyo. Figure 8 shows our calibration setting. We tried to
maximize and calibrate the overlapping of the corner scanned
by the two lidars.

(a) Calibration Setting (b) Calibration in RVIZ

Fig. 8. Calibration

B. Localization

One problem we faced during localization is the drift
problem, as shown in Figure.9.a. The long red line means the
robot moved a large distance between two frames, which is
impossible. After some experiment, we figured out that this
is a performance issue. The speed of the SLAM algorithm
can’t follow up if the point clouds are very dense. So, if we
filter out more points, as shown in Figure.9.b, the problem
is solved.

(a) Filter out 95% points (b) Filter out 98% points

Fig. 9. Localization



C. Mapping

Figure 10.a shows the SLAM result using two lidars, while
in Figure 10.b we only used one lidar to SLAM in the same
scene. Comparing the results, it is obvious that the map using
two lidars contains more information, such as the structure on
the up-right part in the image and some of the inner structure
of the room on the right part of the image. However, due to
the error caused by calibration and time difference between
two lidar scans, the SLAM result using two lidars is more
noisy.

Figure 10.c shows a long straight corridor in SIST lobby.
This it tricky for loop closure, because it has no legible
features for ICP to distinguish different parts of the corridor.
Moreover, due to the length of the corridor, a slight error in
pose estimation will result in large discrepancy in the map,
as shown in Figure 10.d. Another challenge comes from the
setting of our lidar system. Because the lidars are tilted, the
view of the surrounding is limited. A lidar can only see about
45+45=90 degrees of view instead of 360 degree. So, if the
robot has different rotation at the same position, the things it
scanned can be totally different. This makes it hard for ICP
to converge.

(a) Two Lidars (b) Left Lidar

(c) Before Incorrect Closure (d) After Incorrect Closure

Fig. 10. SLAM Results in SIST Lobby

(a) Star Center 1 (b) Star Center 2

Fig. 11. SLAM Results in Star Center Lab

D. Visualizing Tool for ICP

After we notice the incorrect calculation of loop closure
mentioned in C Mapping (Fig.10.d), we came up an idea
to visualize the process of ICP in Loop Closure detection.
This program runs in two parallel threads, the main thread
is subscribing paired loop closure scan published by node
laser loop closure. And meanwhile, sub thread is listening
from the keyboard to decide which Loop Closure to visualize
and waiting for commands to visualize each iteration of ICP.
The approach to visualize ICP is to publish the result of each
iteration so that the two pcls could be presented in RVIZ.

Fig.11 show the process of ICP in loop closure detection.
These four pictures present the results of before ICP, on
iteration 4, on iteration 8, end of ICP. The purple points
are target pcl so it’s stationary, and the white points are
source pcl which are transformed in each iteration. Pcls are
presented in World Frame, thus they seem to be well aligned
at first, but the we can tell that white points are moving ”up”
gradually.

(a) Before ICP (b) iteartion4

(c) iteration8 (d) iteration10

Fig. 12. Visualization Tool(98% filtering)

V. CONCLUSIONS

Our system can build accurate omnidirectional 3D map
on a real time bases using two tilted lidars. Making the
lidar tilted enables us to see the ceiling of the environment.
However, it also limits the view of the surrounding of the
robot and make it challenging for ICP to converge to a good
result during loop closure.

Beside the contribution for now, there are some promo-
tions we can work on. For example, we could figure out
how to calibrate two Velodyne with the help of two Hokuyo
and four depth camera nicely. Also, it’s meaningful to make
use of the IMU data so that we can get better performance
of localization since handling large scale laser data can be
challenging for single ICP. To handle the incorrect loop



closure estimation, adding landmark can be an a good candi-
date solution. Since pictures contain much more information
than laser scan, we could use SIFT or perceptual hashing to
compare similarity of scenes from different frames to get a
better loop closure performance, or simply, attach QR codes
manually in the environment as landmark.

VI. APPENDIX
A. Code Usage

To figure out the function of each node in the algorithm,
please refer to the figures in this report. We have wrote the
corresponding node next to each function in the pipline.

To test the code, please filter out the ’/tf’ topic from your
recorded bag using:

rosbag filter data.bag data-no-tf.bag ”topic!=’/tf’”
Then play the bag with clock configuration:
rosbag play data-no-tf.bag –clock
Then you can launch the algorithm. In our setting, we have

two velodune lidars. By default, only the left lidar will be
used. If you want to use the right lidar or both lidars at the
same time, set the ’lidar’ parameter to ’right’ or ’both’, for
example:

roslaunch blam example test online.launch lidar:=right

B. RVIZ Setting

Fig. 13. RVIZ Setting

When you launch the code, the rviz setting will be
automatically loaded. The ’LIDAR’ section shows the current
laser scan. The ’Odometry Query’ to ’Localization ALigned’
sections are for localization visualization. The ’3D Octree’
and ’3D Incremental Octree’ are the current map and up-
date for the map. ’Odometry Edges’ to ’Closure Area’ are
visualization to the pose graph and loop closure. The ’Loop
Closure Scan’ are for visualizing the ICP process of any
loop closure. Finally, ’jackal mapper’ is the 3D model of
our robot.

C. Flow Chart of Mapping

Fig. 14. Flow Chart of Mapping

VII. ACKNOWLEDGEMENT

We would like to thank Patric and Professor Sören’s
instruction during the project.

REFERENCES

[1] Erik Nelson ,B(erkeley) L(ocalization) A(nd) M(apping).
[2] Aleksandr V. Segal and Dirk Haehnel and Sebastian Thrun,

Generalized-ICP
[3] Ankit Dhall and Kunal Chelani and Vishnu Radhakrishnan and K. M.

Krishna, LiDAR-Camera Calibration using 3D-3D Point correspon-
dences, 2017

[4] F. Aghili. 3d slam using imu and its observability analysis. pages
377383, Aug 2010.

[5] K. I. Bang, A. Habib, and M. Mller. Lidar system calibration using
overlapping strips. 15, 03 2010.

[6] F. Aghili. 3d slam using imu and its observability analysis. pages
377383, Aug 2010.

[7] K. I. Bang, A. Habib, and M. Mller. Lidar system calibration using
overlapping strips. 15, 03 2010.

[8] H. S. L. J. G. C. R. Qi, L. Yi. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. 06 2017.

[9] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for pointcloud
based 3d object detection. 11 2017.

[10] J. Zhang and S. Singh. LOAM: Lidar Odometry and Mapping in Real-
time. RSS, 2014

[11] R. Dub, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, C. Cadena.
SegMatch: Segment based loop-closure for 3D point clouds. ICRA,
2016

[12] S. Ren, K. He, R. Girshick, J. Sun. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. NIPS, 2015

[13] Ayman F. Habib, Ana P. Kersting, Ahmed Shaker, and Wai-Yeung
Yan:Geometric Calibration and Radiometric Correction of LiDAR
Data and Their Impact on the Quality of Derived Products

[14] H Alismail, LD Baker, B Browning:Continuous Trajectory Estimation
for 3D SLAM from Actuated Lidar

[15] Stefan Kohlbrecher and Oskar von Stryk, Johannes Meyer and Uwe
Klingauf: A flexible and scalable SLAM system with full 3D motion
estimation

[16] C Glennie DD Lichti:Static Calibration and Analysis of the Velodyne
HDL-64E S2 for High Accuracy Mobile Scanning

[17] C Cadena L Carlone H Carrillo Y Latif D Scaramuzza:Past, Present,
and Future of Simultaneous Localization And Mapping: Towards the
Robust-Perception Age

[18] M Kaess:Simultaneous Localization and Mapping with Infinite Planes

https://github.com/erik-nelson/blam

	INTRODUCTION
	Related Works
	BLAMc1
	Generalized ICPc2
	3D SLAM Using IMU and Its Observability Analysisc6
	LiDAR System Calibration Using Overlapping Stripsc7
	VoxelNetc8
	LOAM: Lidar Odometry and Mapping in Real-timec10
	Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networksc11
	ROS Package: libpointmatcher
	Geometric Calibration and Radiometric Correction of LiDAR Data and Their Impact on the Quality of Derived Productsc12
	Continuous Trajectory Estimation for 3D SLAM from Actuated Lidarc13
	A flexible and scalable SLAM system with full 3D motion estimationc14
	ROS Package: Cartographer
	Static Calibration and Analysis of the Velodyne HDL-64E S2 for High Accuracy Mobile Scanningc15
	Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Agec16
	Simultaneous Localization and Mapping with Infinite Planesc17
	ROS Package: lidar_camera_calibration

	System Description
	PCL Processing
	Localization
	Loop Closure
	Mapping

	EVALUATION
	Calibration
	Localization
	Mapping
	Visualizing Tool for ICP

	CONCLUSIONS
	APPENDIX
	Code Usage
	RVIZ Setting
	Flow Chart of Mapping

	ACKNOWLEDGEMENT
	References

