Basic Implementation and Measurements of

Plane Detection in Point Clouds
A project of the 2017 Robotics Course of the School of
Information Science and Technology (SIST) of ShanghaiTech University

https://robotics.shanghaitech.edu.cn/teaching/robotics2017

Chen Chen
School of Information and
Science Technology
chenchen @shanghaitech.edu.cn
ShanghaiTech University

Abstract—In practical robotics research, plane detection is an
important prerequisite to a wide variety of vision tasks. FARO is
another powerful devices to scan the whole environment into
point cloud. In our project, we are working to apply some
algorithms to convert point cloud data to plane mesh, and then
path planning based on the plane information.

1. Introduction

In practical robotics research, plane detection is an im-
portant prerequisite to a wide variety of vision tasks. Plane
detection means to detect the plane information from some
basic disjoint information, for example, the point cloud. In this
project, we will use point clouds from FARO devices which
contains a set of position(x,y,z, and) and the RGB color. At
first, we will try to implement some of algorithms to extract
plane information from point cloud data and do measurement
between them. And then we might do some path planning
based on this data and try to find a state-of-art solution on
point cloud environment information path planning on indoor
situation.

II. State-of-the-Art
A. Papers

() is the original paper that intro-
duces the PCL, and it tells some basic information and creative
points about PCL.

() introduces an automatic algorithm to
detect basic shapes in unorganized point clouds. Its application
areas include measurement of physical parameters, scan reg-
istration, surface compression, hybrid rendering, shape clas-
sification, meshing, simplification, approximation and reverse
engineering.

() is the first introduction of the project
MeshLab from Visual Computing Lab of the ISTI-CNR. In
this paper, the authors describe the architecture and the main
features and design objectives discussing what strategies have
been used to support its development, as well somem useful
examples of the practical uses.

Wentao Lv
School of Information and
Science Technology
Ivwt@shanghaitech.edu.cn
ShanghaiTech University

Yuan Yuan
School of Information and
Science Technology
yuanyuanl @shanghaitech.edu.cn
ShanghaiTech University

() is working on dealing with the problem
of taking random samples over the surface of a 3D mesh
describing and evaluating efficient algorithms for generating
different distributions. In this paper, the author we propose
Constrained Poisson-disk sampling, a new Poisson-disk sam-
pling scheme for polygonal meshes which can be easily
tweaked in order to generate customized set of points such as
importance sampling or distributions with generic geometric
constraints.

() is talking about poisson surface
reconstruction, which can create watertight surfaces from
oriented point sets.

Poisson surface reconstruction is a well known technique
for creating watertight surfaces from oriented point samples
acquired with 3D range scanners. The technique is resilient
to noisy data and misregistration artifacts. However, it suffers
from a tendency to over-smooth the data.

In this paper, the authors explore modifying the Poisson
reconstruction algorithm to incorporate positional constraints,
extend the technique to explicitly incorporate the points as
interpolation constraints. This approach differs from the tra-
ditional screened Poisson formulation in that the position and
gradient constraints are defined over different domain types.
Whereas gradients are constrained over the full 3D space,
positional constraints are introduced only over the input points,
which lie near a 2D manifold.

Moreover the authors present several algorithmic improve-
ments that together reduce the time complexity of the solver to
linear in the number of points, thereby enabling faster, higher-
quality surface reconstructions.

() presents a fast and accurate
algorithm to detect planes in unorganized point clouds using
filtered normals and voxel growing. Their voxel growing
method has a complexity of O(N) and it is able to detect
large and small planes in very large data sets and can extract
them directly in connected components.

() presents a very fast but nevertheless

https://robotics.shanghaitech.edu.cn/teaching/robotics2017

accurate approach for surface extraction from noisy 3D point
clouds. Instead of processing a global model, the sequential
nature of the 3D data acquisition on mobile robots is exploited.

The Hough Transform is a well-known method for detecting
parameterized objects. It is the de facto standard for detecting
lines and circles in 2-dimensional data sets. For 3D it has
attained little attention so far. Even for the 2D case high
computational costs have lead to the development of numerous
variations for the Hough Transform. ()
evaluates different variants of the Hough Transform with
respect to their applicability to detect planes in 3D point clouds
reliably. Apart from computational costs, the main problem is
the representation of the accumulator. Usual implementations
favor geometrical objects with certain parameters due to
uneven sampling of the parameter space. They present the
accumulator ball as an accumulator design. The advantage of
this design is that it does not unjustifiably favor planes with
specific parameters, due to the equal size of the patches. The
evaluation of the different Hough methods shows clearly that
the Randomized Hough Transform is the method of choice
when dealing with 3-dimensional data due to its exceptional
performance as far as runtime is concerned. The randomized
selection of points does not diminish but rather improve the
quality of the result. Because points are removed from the
data set once they have been found to lie on a plane, accuracy
for the next plane increases. Comparison with the region
growing by () and the hierarchical fitting
of primitives by () shows that the RHT also
competes with other plane extraction methods.

B. Software

1) Point Cloud Library (PCL): Point Cloud Library (PCL)
is a standalone, large scale, open project for 2D/3D image
and point cloud processing, which is released under BSD
license and free for research use. It is crossplatform, and has
been successfully compiled and deployed on Linux, macOS,
Windows and Android/iOS. The PCL framework contains
numerous state-of-the art algorithms including filtering, feature
estimation, surface reconstruction, registration, model fitting
and segmentation. These algorithms can be used, for example,
to filter outliers from noisy data, stitch 3D point clouds
together, segment relevant parts of a scene, extract key points
and compute descriptors to recognize objects in the world
based on their geometric appearance, and create surfaces from
point clouds and visualize them. To work as a multi-functional
software, the PCL has some independent parts which could
be compiled separately, to serve as a module. The modularity
design is important for distributing PCL on different platforms
with reduced computational or size constraints, and could
possibly gain a better performance. The PCL has its ROS
package version, and we can utilize its functions with other
ROS packages together.

() introduces a new approach on
plane detecting method by integrating RANSAC and MDL
(minimum description length). The method could avoid de-
tecting wrong planes due to the complex geometry of the 3D

data. This paper tests the performance of proposed method on
both synthetic and real data. It first introduced the principle
of MDL encoding using a simple example for interpreting
a set of points in a plane. Then the authors derived the
description length of interpreting points in 3D space as a
generalization of the previous part. After this, they recalled
the basic approach of RANSAC algorithm for plane detection,
which was introduced as a fore work to this paper. Finally,
they give the proposed plane detection method by integrating
RANSAC and MDL, together. With their implementation of
algorithms, the experimental result was given in the last part
of this paper. The key scheme to detecting planes are: The
point cloud is partitioned into small rectangular blocks to make
sure that there will be a maximum of three planes in one
block. RANSAC is applied to extract planes in each block.
The MDL principle is employed to decide how many planes
are in each block. Eventually, there are zero to three planes in
each block. This method could be seen as an enhanced version
of RANSAC plane detection with the utilization of MDL.

2) MeshLab: MeshLab is an open source advanced 3D
mesh processing software system,and is oriented to the man-
agement and processing of unstructured large meshes and pro-
vides a set of tools for editing, cleaning, healing, inspecting,
rendering, and converting these kinds of meshes. MeshLab is
free and open-source software, with lincense GNU General
Public License (GPL), version 2 or later.

MeshLab is developed by the ISTI - CNR research center;
initially MeshLab was created as a course assignment at
the University of Pisa in late 2005. It is a general-purpose
system aimed at the processing of the typical not-so-small
unstructured 3D models that arise in the 3D scanning pipeline.

3) 3D Builder: 3D Builder is a 3D computer-aided design
tool for Microsoft Windows that makes it easy to create, view,
edit, and 3D print 3D objects. It is developed by Microsoft
and available for free in the Windows Store for all Windows
platforms including Desktop, Phone, Holographic/HoloLens,
and XBox. The user interface supports touch and uses a ribbon
similar to the Office Mobile tablet apps. The app is easy for
beginners but contains powerful tools available in higher end
CAD software. Although the app supports a wide range of
common 3d file formats, it is the primary viewer for the 3MF
file format. The app is included with Windows 10 desktop and
is widely viewed as one of the most used 3D apps worldwide.

3D Builder loads to a welcome page similar to the ones in
Office Mobile, with options for loading 3D objects, scanning
3D objects, or choosing a 3D object to edit from a catalog of
preinstalled items. Only one project can be edited at a time per
window, but multiple windows can be opened simultaneously.
Additionally multiple objects can be added to a scene.

Views for objects include Center view, X-ray, Shading, Wire
frame, and Shadows. A view applies to all objects and cannot
be customized.

Editing tools for objects include Simplify, Split, Smooth,
Emboss, Extrude Down, Merge, Intersect, and Subtract but-
tons. Objects can be managed with traditional copy, paste,
delete, rotate, and drag-and-drop buttons and keyboard short-

cuts. They can also be moved by finger and stylus movements.
It is also possible to see the units of measure on the grid
background and change the units of measure. This app does
not use any visible scrollbars in the scene.

3D Builder includes a built-in mini tutorial and links to

online resources.

Features

o 3D Builder provides everything you need to make any
3D content printable.

¢ Open 3MF, STL, OBJ, PLY, and WRL (VRML) files.

e Clean up models by smoothing and simplifying.

o Automatically repair models so you can print them.

o Use the 3D Scan app to scan yourself in full color.

o Take pictures with your webcam and make them 3D, or
use BMP, JPG, PNG, and TGA files.

o Emboss any model with text or images.

e Drag-and-drop to build with simple shapes.

o Merge, intersect, or subtract objects from each other, or
slice them into pieces.

o Add a base to uneven objects.

o Print directly to supported 3D printers using multiple
materials or order your model through our preferred
online printing service: i.materialise.com.

o Supported 3D printers: https://microsoft.com/3d and on-
line 3D printing service i.materialise.com

o Print images of your 3D objects on paper.

e Save as 3MF, STL, PLY, or OBI files.

II1. System Description of 1st half
A. Proposal

As is suggested by the contents above, we have known
that there are some algorithms which have proved the point
cloud plane detection is feasible. We are going to implement
one of these algorithms. If possible, we will also do some
optimization on these algorithms. After the implementation
part, we get the planes in a point cloud. Thus we could use
the plane data to do some work like robot path planning,
or tagging the areas for better robot mapping. The plane
extraction is feasible, one potential problem is the system
complexity. Since the sensor we use is the FARO laser scanner,
the point cloud itself contains much information. We could
possibly down sampling the data, or find a way to compress
data without information loss, to make the plane detection
faster.

B. xyz2pcd

We get the FARO data from Prof. Schwertfeger. The data is
xyz format. For data containing position and color information,
a line in an xyz format is as the following:

e index in the first dimension

« index in the second dimension

e X position

e Y position

e Z position

o red color in uint8 type

« green color in uint8 type

1

« blue color in uint8 type
However, PCL works on pcd format. For data containing
position and color information, a line in an pcd format is as
the following:

e X position

e Y position

e 7 position

« rgb color in uint32 type
Hence, we write a python code to transform xyz to pcd. In our
test, for an xyz file with size 106 MB (containing information
of about 2.39 million points) , the transformation can be done
with in about 7 seconds.

C. Plane Extraction

We write a cplusplus code with PCL to extract planes from
point clouds. Here is the pseudo-code:

Read the pcd file.

Downsample the data. cloud_filtered =
cloud after downsampling

Initialize n = N = the number of points
cloud_filtered.

Initialize r = some ratio
r = 0.3).

the points
in

subject to 0 < r <1 (e.g.

s| while(n > r * N)

Detect planes in cloud_filtered with RANSAC
algorithm .

Add the inlier points to a new plane points
and save the new palne as a new pcd file.

Remove the inliers from cloud_filtered.

Update n = the number of points in cloud_filtered.

cloud

After running the program, several pcd files of planes will be
written if some planes are found.

We write a cplusplus code to show the result. It reads pcd
files of planes and set different colors for points belonging to
different planes. Then it shows the result with pcl_viewer.

D. Result and Analysis

Fig. 1. 2nd floor ground truth

We use pcl_viewer to show the point clouds in pcd format.
Figure | and figure 4 are about the raw data and we regard
them as the ground truth.

Fig. 2. 2nd floor result

Fig. 4. 5th floor ground truth

|2/ Asbglane-0.ped, 21 ped-plane-10.ped, 21, ped-plane-11.pod, 21.ped-plane-12.ped, 21.pcd-phine-1.ped, 21 ped-plane-2.ped, 21 ped-plane-3.pdd, 21ped-piane-4 ped

Fig. 3. 2nd floor result

For processed data, we set different colors for points belong-
ing to different planes. Figure 2 and figure 3 are results of data
shown in figure 1. Since the two main planes are extracted, the
result shown in figure 2 is good . The result shown in figure 3
is terrible because the wall is extracted as two lanes.The result
shown in figure 5 has the similar problem.

In short, our program works but not very well. We will try
to fix the problem in the 2nd half.

E. Work to be done in the 2nd half

We want to introduce a new interposition layer after the
processing of the algorithm, so solve the current inconsistent
problem. After the algorithm output each planes, our layer will
detect each planes attributes, then automatically fix the error
as general as possible.

Currently the planes are just set of points, it is hard to
process. One problem is the memory bottleneck. The current
plane is finite. It is not determined by a little points, but
visually determined. If we want to load a bigger plane, the
points quantity would be greater, which is not necessary.
Secondly, points themselves are not continuous, which is hard
for process. We will transfer those planes to a “real” plane,

- sogigpigne-0.pea, 1 ped-piane.1.ped, 1.ped-pia B U

Fig. 5. 5th floor result

which is represented by some key points. Upon this work, we
will construct a 2-D image presentation of planes.

Our third work is to do the plane alignment. If we want a
global plane map of SIST building, one approach is to run the
algorithm on those pre-aligned data. But this approach could
potentially have some problems. First, the aligned data size
is big. A single process could take a long time. Second, the
data output could possibly not be accurate. Two planes which
have do relation could be recognized as one same plane. So
our plan is to run our algorithm on single scan, which is more
accurate, and then manually align those outputs.

IV. System Description of 2nd half

In the latter half stage of our project, we achieved some
progress based upon our previous work. In the first stage,
we used PCL to extract planes within a point cloud. The
performance of the build-in algorithm of plane extraction in
PCL gains a kind of good performance with proper attributes
set. The result that we could get from the first stage is a set
of points which represent a plane set. Though this result has
achieved the goal that we want to extract planes from a point
cloud, it is not useful. Because:

1) The plane is finite, not a plane in math, just points.

2) The extracted information has a big size, which is not easy
to utilize.

3) The result is still not accurate, as may due to the error of
scanning or alignment.

In the 2nd half, we worked to try to get these problems
resolved. First, we want to extract the edge information of
every plane (hull). Second, we want to in some aspects
compress the data to represent same plane with smaller space.
What’s more, we want to compensate the “hole” which is
caused by the scanner’s blind area.

Fig. 6. ground plane (points)

Fig. 8. triangulated ground plane

Fig. 9. flat plane of the ground plane

Figure 6 is the point cloud extracted from the 5th floor scan
of the SIST building. It consists of many points, which repre-
sents our result from the previous stage. With this information,
we can now get the hull of the point cloud.

A. Hull extraction

The hull extraction result of points in figure 6 is shown in
figure 7. The “wave” pattern on the two sides are caused by
the precision of the scanner, as there are fewer points. This
work is done by the function “segment_hull” in our cpp code.

B. Triangulation

Figure 8 is the triangulation result of figure 6. This plane
represents the ground, but in reality they are not on the same
height. Thus we got some small triangular planes, with errors.
This work is done by the function “fast_triangles” in our cpp
code.

C. B_spline

We fit the triangular planes to a single flat plane, as is shown
in figure 9. This work is done by the function “B_spline” in
our cpp code. The iteration runs for around hours, but the
result is not bad. With better parameters, we possibly could
get better results.

Fig. 10. hull of the wall plane

Here is another result. Figure 10 is the hull of the wall
plane. Figure 11 is the triangulation result of the wall plane.

clouds using filtered normals and voxel growing. 3dpvt,
2010.

J Poppinga, N Vaskevicius, A Birk, and K Pathak. Fast plane
detection and polygonalization in noisy 3d range images. In
leee/rsj International Conference on Intelligent Robots and
Systems, pages 3378-3383, 2008.

Dorit Borrmann, Jan Elseberg, Lingemann Kai, and Andreas
Nchter. The 3d hough transform for plane detection in
point clouds: A review and a new accumulator design. 3d
Research, 2(2):3, 2011.

Marco Attene, Bianca Falcidieno, and Michela Spagnuolo.
Hierarchical mesh segmentation based on fitting primitives.
Visual Computer, 22(3):181-193, 2006.

Michael Ying and Wolfgang Frstner. Plane detection in point
cloud data. 2010.

Fig. 11. triangulated wall plane

V. System Evaluation

First we have to check the correctness of our algorithm
implementation as there could be some wrongly recognized
plane in the output data. Once we can determine that weve
got the correct planes, we optimize it.

We can compare the optimized result and the raw output
of the algorithm. With the information that we have got,
the infinite plane could be generated. We can compare the
aligned planes map with the raw point cloud data, and see if
every obvious planes have been extracted. A better evaluation
method like visualization (texture mapping) or some other
things could also possibly be introduced, too.

VI. Conclusions and Future Work

In this project we implement the plane detection in point
clouds scanned by a Faro Focus 3D X330. We present a
method to measure the quality of the plane detection. In the
future, the result of plane detection will be used to robot
navigation.

REFERENCES

Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud
library (pcl). In IEEE International Conference on Robotics
and Automation, pages 1-4, 2011.

R Schnabel, R Wahl, and R Klein. Efficient ransac for
pointcloud shape detection. Computer Graphics Forum, 26
(2):214-226, 2010.

Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo
Dellepiane, Fabio Ganovelli, and Guido Ranzuglia. Mesh-
lab: an open-source mesh processing tool. In Eurographics
Italian Chapter Conference 2008, Salerno, Italy, pages 129—
136, 2008.

M Corsini, P Cignoni, and R Scopigno. Efficient and flexible
sampling with blue noise properties of triangular meshes.
IEEE Transactions on Visualization & Computer Graphics,
18(6):914-924, 2012.

Michael Kazhdan and Hugues Hoppe. Screened poisson
surface reconstruction. Acm Transactions on Graphics, 32
(3):1-13, 2013.

Jean Emmanuel Deschaud and Franois Goulette. A fast and
accurate plane detection algorithm for large noisy point

	Introduction
	State-of-the-Art
	Papers
	Software
	Point Cloud Library (PCL)
	MeshLab
	3D Builder

	System Description of 1st half
	Proposal
	xyz2pcd
	Plane Extraction
	Result and Analysis
	Work to be done in the 2nd half

	System Description of 2nd half
	Hull extraction
	Triangulation
	B_spline

	System Evaluation
	Conclusions and Future Work

