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Abstract

A fast pose-graph relaxation technique is presented in this article for enhanc-
ing the consistency of 3D maps created by registering large planar surface
patches. The surface patches are extracted from point-clouds sampled from
a 3D range-sensor. The planes based registration method offers an alterna-
tive to the state of the art algorithms and provides advantages in terms of
robustness, speed, and storage. One of its features is that it results in an
accurate determination of rotation, although a lack of predominant surfaces in
certain directions may result in translational uncertainty in those directions.
Hence, a loop-closing and relaxation problem is formulated which gains sig-
nificant speed by relaxing only the translational errors, and utilizes the full
translation covariance determined during pairwise registration. This leads to
a fast 3D Simultaneous Localization and Mapping (SLAM) suited for online
operations. The approach is tested in two disaster scenarios that were mapped
at the NIST 2008 Response Robot Evaluation Exercise (RREE) in Disaster
City, Texas, USA. The two data-sets from a collapsed car park and a flood-
ing disaster consist of 26 and 70 3D scans respectively. The results of these
experiments show that our approach can generate 3D maps without motion
estimates by odometry, and that it outperforms Iterative Closest Point (ICP)
based mapping with respect to speed and robustness.

1 Introduction

There have been many recent attempts [Surmann et al., 2003, Thrun et al., 2003,
Weingarten and Siegwart, 2006, Magnusson et al., 2007, Nüchter et al., 2007] to extend the
methodology of scan-matching to 3D sensors. Almost all of this research is based on match-
ing 3D point-clouds of the environment, which are generated using a 3D range sensor and
then matched using an algorithm derived from the Iterative Closest Point (ICP) algorithm
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[Besl and McKay, 1992]. However, this algorithm, apart from being computationally expen-
sive and slow for large point-clouds of the order of 104–106 points, also suffers from premature
convergence to local minima, especially when the overlap between scene-samples decreases.

This article is concerned with 3D-Plane-SLAM, which builds upon robot pose registration by
matching large planar surface patches. The core of the plane-matching registration algorithm
and a derivation of its principles are introduced in [Pathak et al., 2009b] where results in
an indoor lab environment are presented. In this article, two important extensions of this
work on 3D registrations are made. First, it is shown that the algorithm also performs
very well on data from two challenging field experiments conducted during the 2008 NIST
Response Robot Evaluation Exercise (RREE) at Disaster City, Texas [TEEX, 2008]. The
performance of the plane based registration is compared to ICP in two disaster scenarios,
namely a collapsed multi-story car parking (Fig. 1) and a flooding disaster (Fig. 2).

Second, the plane registration algorithm is extended in this article to a proper 3D Simul-
taneous Localization and Mapping (SLAM) approach. This 3D-Plane-SLAM exploits the
fact that the plane registration is very robust with respect to rotations as also shown in the
experiments. Hence, relaxation in pose-graph SLAM can be restricted to 3D translations
allowing for a closed form solution that can be efficiently computed. It is shown in the ex-
amples of the two disaster scenarios that this fast relaxation indeed leads to a quantitative
and qualitative improvement of the 3D maps.

Previous work in map-building using surface-features has taken two main approaches: 1) uti-
lization of complex neuro-fuzzy rules [Fischer and Kohlhepp, 2000, Kohlhepp et al., 2004,
Kohlhepp et al., 2006] to determine surface-correspondences across samples for pose-
registration; and 2) extraction of planar surfaces and keeping them as features
[Weingarten and Siegwart, 2006] in EKF-SLAM, while still using point-cloud based ICP to
help in registration and correspondence determination. Our new approach utilizes planar
segments to systematically do surface-extraction and subsequently compute pose registra-
tion along with its covariance, while dispensing away with the use of large point-clouds
altogether. Furthermore, it has distinct advantages in terms of computation speed, storage,
and understandability of the resulting map. One of the main reasons for its computational
efficiency is that it is based on the extraction of large surface patches and not on local surface
features. The registration of two scans hence deals with a dozen or so large surface patches
in contrast to the one or several orders of magnitude more features that are found by local
surface analysis which is common practice in the Computer Vision and Imaging community
for 3D registration. Also, typical robotics range sensors, like the actuated laser range finder
(ALRF) used in our work, are too noise-prone for the standard computer vision approaches,
as demonstrated and discussed in [Hähnel et al., 2003].

Both registration approaches of [Fischer and Kohlhepp, 2000, Kohlhepp et al., 2004,
Kohlhepp et al., 2006] and [Weingarten and Siegwart, 2006] as well as our own
[Pathak et al., 2009b] were mainly tested indoors in office like environments where
large planar surfaces prevail. The two scenarios investigated here are more chal-
lenging in several respects as discussed in some detail in the sections 3.1 and 6.1.
Furthermore, the plane registration is embedded in a pose graph implementation
[Pfingsthorn and Birk, 2008, Pfingsthorn et al., 2007, Olson et al., 2006a] for Simulta-



(a) Front overview of the crashed car parking-lot. Note
the rubble to the right.

(b) Close-up front view corresponding to the lower-right
part of the façade in Fig. 1(a).

(c) Left view of the crushed car. (d) The robot collecting data under the collapsed ceiling
of the “ground floor” under the car. The yellow rotating
LRF sensor is clearly visible.

Figure 1: The crashed parking lot at Disaster City in College Station, Texas [TEEX, 2008].



Figure 2: The “dwelling” scenario at Disaster City simulates a flooding disaster.



neous Localization and Mapping (SLAM), which improves the results. Especially, there
is a conceptual contribution in the pose graph implementation: the plane registration is
inherently very robust for rotations, thus allowing an extremely fast relaxation in a closed
form solution.

The rest of this article is organized as follows. Section 2 provides an introduction to the plane
based registration, which consists of the following main steps: 1) extraction of planes with
the corresponding uncertainties; 2) plane matching, i.e., finding correspondences between
planar surface-segments in the two scans to be matched; 3) the actual pose-registration,
i.e., determining the optimal rotation and translation which aligns the corresponding set
of planes, once the correspondences have been decided on. Based on the crashed car park
scenario, an experimental evaluation of the performance with respect to speed and robustness
of the plane based registration is presented in Sec. 3. In doing so, a detailed comparison to
the performance of ICP is included. Section 4 presents the theoretical formulation of the
pose-graph relaxation technique for 3D-Plane-SLAM. This is followed by results presented in
Sec. 5 where it is shown that the relaxation indeed improves the map quality in the crashed
car park scenario in quantitative as well as qualitative terms. Further experimental results
based on a second disaster scenario known as the “dwelling” are presented in Sec. 6. A
performance comparison with ICP is also included for this data set. It is shown that the
plane based registration is fast and robust and that the 3D-Plane-SLAM relaxation improves
the mapping results. A discussion of the merits and the limitations of plane based mapping
is provided in Sec. 7. The article is concluded in Sec. 8.

2 Plane-Segment Extraction and Matching

2.1 Overview

The scan-matching based on plane-segments consists of the following steps:

1. Planes extraction from raw point-clouds: This procedure is based on region-
growing in a range-image scan followed by a least-squares estimation of the param-
eters of planes [Poppinga et al., 2008]. The covariances of the plane-parameters are
computed as well [Pathak et al., 2009a].

2. Matching planes: This step consists of finding correspondences between planar
surface-segments in the two scans to be matched. These two scans are typically
successive samples for normal registration but they may be also be non-successive,
for example if a loop is closed.

3. Computing pose-registration: After the correspondences have been decided on,
the optimal rotation and translation which aligns the corresponding set of planes
must be found. This gives the pose change of the robot between the scans.

4. Polygonization: This step consists of polygonizing each plane-segment by finding
and fitting the boundary of each surface-patch so that the surface can be compactly
described. This step is crucial for visualization of the result– however, if only pose reg-
istration is desired, it may be omitted. It is also described in [Poppinga et al., 2008].



These steps are followed by a global relaxation described in Sec. 4 to form 3D-Plane-SLAM.
We now provide a brief overview of plane-matching, i.e., the third step, because an under-
standing of its properties aids the understanding of why the relaxation step is designed in a
certain way.

2.2 Notation

A plane P (m̂, ρ) is given by the equation m̂ · r = ρ, where ρ is the signed distance from the
origin in the direction of the unit plane normal m̂. It can be seen that P (m̂, ρ) , P (−m̂,−ρ).

To achieve a consistent sign convention, we define planes as P (n̂, d), where, d , |ρ| ≥ 0,
and n̂ , σ(ρ) m̂, where, σ(ρ) = −1 if ρ < 0 and +1 otherwise. If ρ = 0, then we choose
the maximum component of n̂ to be positive. The latter case is unlikely to occur in practice
in the sensor-frame, because such a plane, which is parallel to the line of sight of the range
sensor, is unlikely to be detected by it.

For denoting frames and relative transforms, the notation of [Craig, 2005] is used. The j-
th sample is associated with a frame Fj, in which the set of extracted planes is denoted
as jP. Suppose we are given two samples jP and kP. Usually they are successive, but
they may be non-successive, for example during loop-closing. Using the procedure described
in [Pathak et al., 2009a], one can compute an isotropic uncertainty measure σ2 which is
derived - usually, using the trace operation - from the 4×4 covariance matrix C of the plane
parameters n̂ and d associated with it. Thus a plane-set kP is an ordered set of triplets
given by

kP , { kPi〈 kn̂i,
kdi,

kσ2
i 〉, i = 1 . . .Nk}, (1)

2.3 Decoupling of Rotation and Translation

If the robot – more precisely, the sensor mounted on the robot – moves from Fj to Fk,

i.e. rotates by j
kR and translates by j

kt between samples j and k resolved in Fj, then the
Cartesian coordinates jp and kp of the same physical point observed from the two frames
are related by

jp = j
kR

kp + j
kt. (2)

Substituting the above in the plane equation, one can derive that if jPi and kPi represent
the same i-th physical plane, the plane parameters resolved in the two frames are related by

jn̂i = j
kR

kn̂i (3)
jn̂T

i
j
kt = jdi − kdi (4)

The above equations show that the rotation and the translation components have been nicely
decoupled.

2.4 Pose-registration by plane-matching

Statement of the Problem Given noisy plane-sets jP and kP, with correspondences
between planes known and denoted by the common index i, find the optimum rotation j

kR



and the optimum translation j
kt. We provide a solution below.

2.4.1 Optimum Rotation

To find the optimum rotation between jP and kP, we maximize the following value-function

max
j

k
R

ζr ,
1

2

N
∑

i=1

( jσ2
i + kσ2

i )
−1 jn̂T

i
j
kR

kn̂i (5)

This is the well-known Wahba’s problem [Shuster, 2006]. To solve this we parameterize the
rotation j

kR with quaternions j
kq̌ and proceed as in [Horn, 1987]. Using the above, one can

reformulate (5) as

max
j

k
q̌

ζr ,
1

2
j
kq̌

TK j
kq̌, (6)

where the matrix K is depends on jn̂i and kn̂i, i = 1 . . .N. The optimum quaternion j
kq̌ is

then the eigenvector of the matrix K corresponding to its maximum eigenvalue µ̄(K). The
4 × 4 covariance of this optimum j

kq̌ can be computed as

j
kCq̌q̌

= − (K − µ̄(K) I4)
+ , (7)

where, X+ represents the Moore-Penrose inverse of the matrix X [Kanatani, 2005]. This
covariance matrix can then be transformed to roll-pitch-yaw (RPY) space by using the
Jacobian of the transform between the quaternion and the RPY space. Finally, we note that
at least two non-parallel pairs of planes are required to fully determine rotation.

2.4.2 Optimum Translation

The translation determination is central to the relaxation step presented later on. Therefore,
we review it in detail in this section. Equation (4) can be stacked-up to give

M j
kt = d, (8a)

where,

MN×3 ,







jn̂T

1
...

jn̂T

N






, dN×1 ,







jd1 − kd1

...
jdN − kdN






(8b)

Due to its intuitive nature and fast closed-form solution, we will solve Eq. (8a) with ordinary
least squares (LS). A diagonal weighting matrix W is defined as

Σ ,





jσ2
1 + kσ2

1 0
. . .

0 jσ2
N

+ kσ2
N



 , (9)

W ,
(

Σ−1
)1/2

. (10)

Then the LS solution minimizes ‖W(M j
kt−d)‖. If M is full rank, the least-squares optimum

translation is j
kt =

(

MTW2M
)

−1
MTW2d.



Unlike rotation, we need in general N ≥ 3 mutually non-parallel planes to find j
kt. The

above formula is not a good way to compute the solution because M may be ill-conditioned,
may be rank-deficient, or N < 3. A more general way to solve the equation is presented
next. We define

M̂ , WM, d̂ , Wd. (11)

Let the singular-value decomposition of M̂ be given by UN×NΛN×3V
T

3×3. Λ has non-negative
singular values λ2

i arranged in descending order. The column unit vectors of U are denoted
ui, i = 1 . . .N and the column unit vectors of V are denoted vi, i = 1 . . . 3.

Let NM̂ ≤ 3 be the effective rank of M̂. If the largest singular value λ2
1 < ǫ1, then the

effective rank is 0. The parameter ǫ1 is dependent on machine accuracy. If λ2
1 ≥ ǫ1, then the

effective rank is found by finding the count of all singular values λ2
i > λ2

1/c̄ in the diagonal
matrix Λ, where c̄ is the maximum allowable condition number of the matrix.

Then the best rank NM̂ approximation of M̂ is

M̃ =

N
M̂

∑

i=1

λ2
i ûiv̂

T

i , NM̂ ≤ 3. (12)

The span of the orthogonal unit vectors ûi, i = 1 . . .NM̂ gives the best approximation for

the range-space of M̂. Therefore, the closest we can get to d̂ is d̃ =
∑N

M̂

i=1(ûi · d̂)ûi, which
gives the corresponding translation estimate

j
kt =

N
M̂

∑

i=1

λ−2
i (ûi · d̂)v̂i (13)

, M̂+d̂, M̂+ ,

N
M̂

∑

i=1

λ−2
i v̂iû

T

i . (14)

This is also the minimum 2-norm solution of the LS problem regardless of the rank of M
[Golub and Loan, 1980].

Note that for directions v̂i, i = (NM̂ +1) . . . 3, we have no information about the translation.
One option is to keep these components 0 and inject large uncertainty along those directions
in the covariance matrix. However, if an odometry estimate j

ktO and its covariance matrix
j
kCtt,O are available, we can use them only for these missing components. In this case, we
have

j
kt = M̂+d +

3
∑

i=N
M̂

+1

( j
kt · v̂i)v̂i,

, M̂+d + MO
j
ktO, MO ,

3
∑

i=N
M̂

+1

v̂iv̂
T

i . (15)

The covariance of odometry is in general only very roughly known because it depends on the
vehicle model, unknown slippage, etc. A fusion of odometry translation and plane-matching



translation using this covariance should hence not be done per default. But the nice thing
about this solution is that it automatically detects the directions for which the translation
is uncertain, and it resorts to odometry – if available – only for these directions. This is, for
example, of interest when the robot moves along a long corridor where the end cannot be
seen, and hence there is high uncertainty along the corridor direction. In such cases where
the translation is not fully determined in some directions, the uncertainty in translation
increases, which then needs to be mitigated by loop-closing and relaxation, i.e., by proper
SLAM, as introduced in Sec. 4.

To round-off the solution, we can write the estimate of the covariance matrix for translation
as follows

j
kCtt

= M̂+WΣWT(M̂+)T + MO
j
kCtt,O MT

O,

= M+Σ (M+)T + MO
j
kCtt,O MT

O (16)

where the last equation comes from simplification using (10) and (11). This covariance plays
a central role in the pose-graph relaxation.

2.5 Determining Correspondences

It is assumed in Sec. 2.4 that Nk↔k+1 pairs of corresponding planes have already been found.
However, detecting that Pk,i is the same physical plane patch as Pk+1,j is a difficult problem.
We denote correspondence by Pk,i ↔ Pk+1,j or simply as i ↔ j. Many similarity metrics like
size, shape, color, geometric consistency, etc. can be used to infer correspondence.

In [Pathak et al., 2009b], we have introduced an algorithm for solving this problem in a ge-
ometric manner, namely by determining the correspondence-set which maximizes the global
rigid body motion constraint. It makes use of the fact that the number of planes in a scene
is much less than the size of a typical point-cloud. The algorithm scales as O(N4), where N

is the average number of planes in the two scans being matched. For details, the reader is
referred to the aforementioned article.

3 A Performance Comparison of Iterative Closest Point (ICP)
and Plane Registration

3.1 The Collapsed Car Park Scenario

In this section, a first comparison with ICP is presented based on data from a disas-
ter scenario– a collapsed car parking-lot in Disaster City, Texas. The data was collected
in November 2008 during the annual NIST Response Robot Evaluation Exercise (RREE)
[TEEX, 2008]. As shown in Fig. 1(d), the Jacobs University rescue robot used in the RREE
is equipped with an actuated laser range-finder (ALRF). The ALRF has a horizontal field of
view of 270◦ of 541 beams. The sensor is rotated (pitched) by a servo from −90◦ to +90◦ at
a spacing of 0.5◦. This gives a 3D point-cloud of a total size of 541 × 361 = 195, 301 points
per sample. The maximum range of the sensor is about 30 meters. The mobile robot was



teleoperated and stopped occasionally to take scans. The time to take one full scan is about
Tscan ≈ 32 seconds. This data acquisition is currently the bottleneck in our 3D mapping but
only due to the low cost sensor used for this purpose. By using a much faster but also more
costly 3D LRF like a Velodyne HDL-64E, this data acquisition time could be reduced by
two orders of magnitude.

A total of 26 usable scans were taken in this scenario. Figure 3 shows the view of the
front camera of the robot at the locations where the scans where taken. The whole front
camera movie of the moving robot can be downloaded from the web (see Sec. 7.3). Note
that the conditions in which the robot operated include a high presence of dust, rubble, and
so on, which limit the accuracy of motion estimates by odometry. The front camera pictures
are taken with a wide angle lens with an horizontal opening angle of approximately 85◦.
The camera hence only covers a fraction of the data gathered by the ALRF with its 270◦

horizontal field of view. Figure 4 shows an example scan as point cloud from two different
perspectives and as a gray scale range image, which provides a rough overview of the data
contained in the scan. The range-images of all 26 scans of the collapsed car park scenario
are shown in Fig. 5.

3.2 ICP Registration

A point-to-point Iterative Closest Point (ICP) registration is used as a comparison baseline
for the plane-registration. Our implementation of ICP is straightforward, with a kd-tree
for fast nearest neighbor operations, but no other specialized optimizations. A standard
stopping criterion based on the percentage of the decrease of the mean squared error (MSE)
from time step t to t + 1 is used, i.e., the registration is considered to have converged if
(MSEt − MSEt+1)/MSEt < Tstop with Tstop = 10−4. Subsampling of the point clouds is
used to improve the runtime. The experiments are done with subsampling by factor 3 and
10. As discussed later on, these rates of subsampling have little effect on the quality of the
results; they just speed up the processing by ICP. ICP is run on the scan pairs without
any initial guess on the robot’s motion. As discussed later on, using odometry significantly
worsens the results. In fact, ICP fails to do any registration if the highly inaccurate odometry
is used in this scenario.

The run times for the registrations vary significantly between scan pairs as shown in Table 1.
The average time for registration of a scan pair with subsampling by 3 is about 18 minutes.
It is still 1:45 minutes with subsampling by 10. This is significantly larger than the run-times
of the plane based registration as shown in Sec. 3.3. But what is more important than the
run-times – which may be improved by specialized versions of ICP – is that ICP fails to
register a significant number of scan pairs.

The results of the pairwise registrations were manually inspected. The results of this qual-
itative assessment are also shown in Table 1. As also discussed in more detail later on,
the qualitative assessment did not differ for the different resolutions of the subsampling. A
registration was only judged to have failed if there are severe displacements between the
two supposedly registered scans. The results clearly fall into two very distinctive categories:
either ICP succeeds well or it clearly fails. An example of a successful ICP registration is



Figure 3: The front camera view of the scenes 0–25 at the locations where the robot took a
scan. The first image with index 0 is shown at the top left.



(a) scan 7, point cloud, front view (b) scan 7, point cloud, top view

(c) scan 7, range image

Figure 4: An example scan of the collapsed car park scenario as point cloud and as gray
scale range image.



Figure 5: The 26 scans of the collapsed car park as gray-scale range-images. The first scan
with index 0 is shown at the top left.



Pair Subsampled by 3 Subsampled by 10 Success
time (min:sec) time (min:sec)

0 → 1 02:24 0:11 ×
1 → 2 17:32 1:37

√
2 → 3 08:48 1:04

√
3 → 4 14:38 1:40 ×
4 → 5 02:42 0:09

√
5 → 6 12:02 1:16 ×
6 → 7 02:54 0:18 ×
7 → 8 09:19 1:03 ×
8 → 9 07:15 0:56

√
9 → 10 10:26 1:05

√
10 → 11 10:49 0:58

√
11 → 12 08:51 0:37

√
12 → 13 09:52 1:19

√
13 → 14 15:25 1:18

√
14 → 15 08:24 0:47

√
15 → 16 10:06 1:19 ×
16 → 17 21:30 2:18

√
17 → 18 12:13 1:19

√
18 → 19 13:31 1:16

√
19 → 20 21:00 1:40 ×
20 → 21 29:22 2:24 ×
21 → 22 57:40 5:33

√
22 → 23 72:57 5:42 ×
23 → 24 28:21 2:60 ×
24 → 25 06:53 0:40 ×
Average 18:13 1:44 14 / 25

Table 1: ICP performance on the crashed car park data set.
√

- succeeded, × - failed



(a) reg. scans 16-17, front view (b) reg. scans 15-16, perspective view

Figure 6: An example of a successful pairwise registration by ICP of scan 16 (blue) and 17
(black). Note that the robot mainly made a forward motion.

(a) failed reg. scans 6-7, top view (b) failed reg. scans 15-16, top view

Figure 7: Two examples of unsuccessful pairwise registrations by ICP: scan pairs 6 (blue),7
(black), and 15 (black),16 (blue). The misaligned façade – indicated by dashed red lines – is
clearly recognizable in this top view. ICP seemingly could not cope with the larger rotations
of the robot in these cases.



shown in Fig. 6. Typical failed registrations are shown in Fig. 7.

In total, 11 out of 25 ICP registrations are clearly unsuccessful. It is notable that the
failures occur when the robot made relatively large rotations. When the robot mainly made
a forward motion, ICP performs well. It can be intuitively explained as follows. Given a
point pA in point cloud A, let its nearest neighbor in point cloud B be pB. The likelihood
that pA and pB physically correspond in the real world is much higher if A and B are just
transformed due to a translation. In case there is a rotation as well, the likelihood that the
nearest neighbors are actual correspondences is much smaller.

In this context, the lack of proper odometry is of importance. Given good initial estimates,
especially for the rotation, ICP is known to perform better. ICP has to cope with rather
large motions in this data-set, which also affects its run-time. The Disaster City scenario
with significant amounts of rubble and dust renders odometry – like in most unstructured
environments – completely useless. It is to be noted that the usage of odometry information
in the ICP experiments as initial guesses for the iterations does not improve the results. On
the contrary, it significantly worsens the outcomes. Not a single registration is successful
when the recorded odometry data is used in the ICP. This is because the ICP registrations
are successful when the robot mainly moves forward with some minor rotations. But due to
slip, odometry typically perceives larger changes in orientation at many times. This again
leads to virtual rotations, hence worsening the starting conditions for ICP when odometry
is used.

(a) no subsampling (b) subsampled by 3 (c) subsampled by 10

Figure 8: When the ICP registration fails, it leads to similar wrong results, independent of
subsampling. The situation is illustrated above with the results for the failed registration of
scans 4 and 5 with subsampling by 3 and 10, and with no subsampling respectively.

Last but not the least, on selected scans where the ICP registration failed with subsampling,
we tested whether the usage of the full data in a scan would improve the result. The run-time
per registration increased by a factor of about 78 compared to subsampling by 3. But the
qualitative result remained the same as illustrated in Fig. 8. The misalignment is always
very similar, irrespective of whether subsampling by 3, 10, or no subsampling is used. The



qualitative similarity of the results is also indicated by the estimated robot paths shown in
Fig. 9.
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Figure 9: The robot path according to the ICP registrations of the scans. The results for
the different amounts of subsampling are very similar.

For the sake of completeness, a 3D map based on recorded odometry only is shown in Fig. 10.
It is clearly unusable. The plane extraction method from [Poppinga et al., 2008] is used as
the representation basis of the scans for illustration purposes only; the corresponding point
cloud representation is not suited for visualization due to its lack of structure.

Figure 11 shows the 3D map as result of ICP registrations. Some structures are recognizable.
It is a significant improvement over the odometry map shown in Fig. 10. But overall, the
map has significant errors. The façade appears in several different locations in the map, the
lower floor under which the robot drove is misrepresented, and parts of the large rubble pile
next to the scenario are distributed all over the map. The computation time to generate the
whole map with subsampling by 10 is 39:28 minutes and it is about 7 hours for subsampling
by 3.

3.3 Results of the Plane-Matching Registration

The plane matching registration performs on the same data-set better than ICP in terms of
processing speed as well as robustness. Table 2 summarizes the results. The values are for
an AMD Turion 2 1.6 GHz with 960 MB RAM running OpenSUSE 10.3. The computation
time is on average 2.68 seconds for the plane extraction and 5.42 seconds for the plane



(a) Perspective View

(b) Top View

Figure 10: A 3D “map” created using only odometry. The plane based representation of the
scans is used for illustration purposes only. The planes are colored according to their normal
directions for easier visualization, and the colors do not carry any other semantic meaning.
Such a map is clearly not usable.



(a) perspective view

(b) top view

Figure 11: The 3D map of the collapsed car park as result of ICP registration. Some
structures are roughly recognizable. But overall, the map contains gross errors.



Scan k Extraction Polygon. Registration k→k+1 Total
(sec.) (sec.) (sec.) success (sec.)

0 2.48 3.38 4.34
√

10.20
1 2.47 1.85 4.85

√
9.17

2 2.46 2.07 2.39
√

6.92
3 2.40 1.94 2.60

√
6.94

4 2.55 2.91 4.87
√

10.33
5 2.49 2.17 5.61

√
10.27

6 2.40 2.08 3.66
√

8.14
7 2.32 1.53 3.20

√
7.05

8 2.53 1.70 5.44
√

9.67
9 2.60 1.51 7.02

√
11.13

10 2.51 1.30 13.64
√

17.45
11 2.59 1.95 13.82

√
18.36

12 2.54 1.61 7.68
√

11.83
13 2.56 2.02 6.51

√
11.09

14 2.72 1.88 9.23
√

13.83
15 2.63 1.86 8.31

√
12.80

16 2.65 2.30 7.48
√

12.43
17 2.67 2.29 6.57

√
11.53

18 2.96 2.74 2.86
√

8.56
19 2.90 4.19 2.85

√
9.94

20 2.91 4.28 2.95
√

10.14
21 3.00 3.91 1.97

√
8.88

22 3.09 2.48 2.18
√

7.75
23 3.00 3.21 2.86

√
9.07

24 3.12 4.08 2.59
√

9.79
25 3.09 4.25 – – –

Average 2.68 2.52 5.42 25/25 10.62

Table 2: The performance of the plane matching registration.

registration, i.e., 8.1 seconds in total for the registration of two scans. In case a plane based
visualization instead of point clouds is used, additional computation of the polygonization
of the boundaries of the plane patches is required. This takes 2.52 seconds, i.e., the overall
computation time is then 10.62 seconds. This is – without any subsampling – significantly
faster than ICP, which requires on an average 18:13 and 1:44 minutes with subsampling by
factor 3 and factor 10 respectively.

The aspect even more crucial than the run-time is the robustness of the plane matching
registration. The pairwise registrations by plane matching were manually inspected using
the same criteria as for the results of ICP. None of the plane matching registrations showed
any of the gross failures that could be observed in 11 cases with ICP. Figure 12 shows several
examples of the registrations. Not only did the cases where the robot only moved forward
worked out well, e.g., scan pair 16-17, but the cases with larger amounts of rotation in the



robot’s motion worked out well also, e.g., scan pairs 6-7 and 15-16, in which ICP failed (see
also Fig. 7).

(a) scan pair 16-17 (ICP:
√

), front view (b) scan pair 16-17 (ICP:
√

), top view

(c) scan pair 6-7 (ICP: ×), front view (d) scan pair 6-7 (ICP: ×), top view

(e) scan pair 15-16 (ICP: ×), front view (f) scan pair 15-16 (ICP: ×), top view

Figure 12: Examples of the successful pairwise registrations by the plane based approach.
ICP performs also well on the pair 16-17 (see also Fig. 6), but it fails, for example, on pair
6-7 and 15-16 (see also Fig. 7).

Figure 13 shows the resulting 3D map of the collapsed car park scenario. The overall structure
can be well recognized. It is a significant improvement over the odometry and ICP based
maps (Figs. 10 and 11). Though the 3D map represents the scene quite well, it is not
perfect. The remaining errors in this map are presented and discussed in some detail in
Sec. 5. They consist of certain corresponding planes that have some translational offsets
parallel to the planes themselves. This occurs because of an occasional lack of prominent
planes to match along certain directions, and sometimes due to the determination of incorrect



Figure 13: The 3D map created using the plane registration. Matched planes are drawn in
the same color and unmatched planes are grayed out. The estimated robot positions are
shown by red circles.



correspondences when the scenes have several planar patches lying within the same infinite
plane. However, the fact that corresponding planes remain parallel shows that the rotation
was accurately determined; numerical data to back up this claim is also presented in Sec. 5.3.

A closed-form pose-graph relaxation for 3D-Plane-SLAM is introduced in the next Sec. 4.
As shown in Sec. 5, the 3D-Plane-SLAM further improves the the quality of the 3D map in
the collapsed parking lot scenario. The performance of 3D-Plane-SLAM, i.e., plane based
registration and pose-graph relaxation, is then further evaluated with respect to computation
speed and robustness in Sec. 6, where a second data set from another Disaster City scenario
is used.

4 Fast Relaxation for 3D-Plane-SLAM

4.1 Pose Graph Maps

The planar surface registration is now embedded into a 3D SLAM approach, which – as shown
later on in sections 5 and 6 by experiments in the two disaster scenarios – is extremely fast
and improves the map quality. First, our notation is introduced. The robot takes 3D scans
from several locations i = 0 . . .N. Each location defines a robot-attached frame Fi with
origin Oi. For each pair of adjacent frames Fi and Fi+1, planes are extracted from the
point-clouds and matched, thus providing the pose registration between these frames. These
matches are written i → i + 1.

It is sometimes also possible to match certain non-adjacent frames Fi, Fj such that |j−i| > 1.
These are called loop-closing matches, and are written in reverse order as j → i, where
j > (i+1). The pose-registration computed by plane-matching consists of a relative rotation
j
iR and translation j

it ,
−−−→OjOi, resolved in frame Fj .

A general consensus on efficient data structures for 3D map representations does not ex-
ist. Many representations, such as plain point clouds in kd-trees [Nuechter et al., 2004], 3D
occupancy grids in oct-trees [Surmann et al., 2003, Nüchter et al., 2007], or surface mod-
els as features in an extended Kalman filter [Weingarten and Siegwart, 2006], are in use
in current literature. A graph-based representation called pose-graph [Olson et al., 2006a,
Pfingsthorn et al., 2007, Pfingsthorn and Birk, 2008, Takeuchi and Tsubouchi, 2008] is used
here, although other similar graph data-structures are in use as well [Kohlhepp et al., 2007].
The pose graph consists of nodes Ni, i = 0 . . .N, and directed edges j

iE , i 6= j, also denoted
as j → i. Each node Ni corresponds to a sensor frame Fi with origin Oi. Each directed edge
j
iE contains the relative rotation j

iR and translation j
it along with their estimated covariance.

4.2 Relaxation

After a successful loop detection through spatial proximity to a previously visited node, the
map has to be relaxed to take advantage of the newly available information. The most general
formulation relaxes both rotation as well as translation errors. However, even in relatively
general approaches formulated in 2D, some simplifications of the rotational coupling are done



to speed up the computation, e.g., by neglecting the contribution of the rotation matrix in
the computation of Jacobians [Olson et al., 2006b, Grisetti et al., 2007].

As shown earlier, our plane matching can decouple the determination of rotation and trans-
lation components. Additionally, only two pairs of non-parallel corresponding planes need
to be found to determine the rotation registration between two samples, whereas for trans-
lation, this number is three. Typically, for a large FOV sensor, the number of high-evidence
corresponding plane pairs found between two samples is around 10. Therefore, the rotation
is in general more accurately determined than translation in plane-matching. This can be
exploited for pose-graph SLAM by relaxing only the translation error. Since this part is
linear, a fast non-iterative closed-form least-squares solution can be obtained. A similar
approach was taken in 2D by [Duckett et al., 2002], where ignoring rotation relaxation was
justified by assuming the availability of a global orientation sensor, e.g. a compass. In our
work, the justification is based on the rotational accuracy of the plane-matcher.

In addition to this theoretical motivation, this property can also be experimentally observed.
As discussed in more detail in sections 5.3 and 6.3, tables 4 and 5 show the rotation errors
that are determined through loop closing in the two disaster scenarios. The orientation
differences between node i and j are once shown based on the propagated changes through
the path from i to j, i.e., i → (i+1) → ... → j (Cumul.), and once based on the loop closing
result, i.e., the registration j → i (Direct). The differences are negligible as indicated by the
small χ2 distances computed based on the covariance matrix of the direct registration.

Proceeding as in [Lu and Milios, 1997], the translation j
it can be thought of as a random

vector with mean
j
i t̄ and the inverse of its 3 × 3 covariance matrix being denoted as j

iC
−1
tt .

This covariance comes from the plane-matcher. If the scans corresponding to two nodes are
not matchable, we set the inverse of the covariance j

iC
−1
tt ≡ 0.

To relax the graph we need to minimize the cost

min
j
i
t

N
∑

j=0

N
∑

i=j+1

( j
it− j

i t̄
)T j

iC
−1
tt

( j
it − j

i t̄
)

(17)

with the additional constraints on j
it for all possible independent loops containing it. As j

iE
and i

jE contain the same information, only one is considered in the summation – which is
considered, depends on the direction the graph is traversed.

Since unconstrained optimization is easier to solve, we reformulate the problem by resolving
all quantities with respect to the global frame – since the rotations are considered known
and certain, this is possible. The position of Ni resolved in global coordinates is denoted by
g
i t. Furthermore,

j
i ḡ ,

g
jR

j
i t̄ (18)

j
iΣ

−1
tt ,

g
jR

j
iC

−1
tt

g
jR

T (19)

Then the previous cost function can be made unconstrained as follows

min
g
⋆t

N
∑

j=0

N
∑

i=j+1

(

g
i t− g

jt− j
i ḡ

)T j
iΣ

−1
tt

(

g
i t − g

jt− j
i ḡ

)



We further define

x ,





g
1t
...

g
N
t



 ∈ R
3N , (20)

and also,
j
i I ,

[

03×3 · · · −I3 03×3 · · · I3 03×3 · · ·
]

(21)

In the above, I3 is the identity matrix, −I3 appears in the jth 3 × 3 block of j
i I, and I3

appears in the ith block. Note that the size of j
iI is 3× 3N. The cost function can again be

rewritten as

min
x

N
∑

j=0

N
∑

i=j+1

( j
i I x− j

i ḡ
)T j

iΣ
−1
tt

( j
i I x − j

i ḡ
)

(22)

Differentiating the above by x, setting the resulting expression to zero and solving for x gives

Gx = b, where, (23)

G ,

N
∑

j=0

N
∑

i=j+1

j
i I

T j
iΣ

−1
tt

j
iI, b ,

N
∑

j=0

N
∑

i=j+1

j
iI

T j
iΣ

−1
tt

j
i ḡ. (24)

After solving for x, we can back-calculate
j
it = g

jR
T
(

g
i t − g

jt
)

. (25)

5 3D-Plane-SLAM in the Collapsed Parking-Lot Scenario

5.1 Loop Closing and Closed Form Pose Graph Relaxation

As previously described in Sec. 3, in contrast to ICP and using just odometry, the plane
based registration leads to a meaningful 3D map of the collapsed car parking scenario. The
map (Figs. 14(a) and 15(b)) captures the overall structure of the scene. But there is still
room for improvement. Some corresponding planes have translational offsets parallel to
the planes themselves, some examples are shown in Fig. 18(c). These errors occur in case
of a lack of prominent planes to match along certain directions and sometimes due to the
determination of incorrect correspondences when the scenes have several planar patches lying
within the same infinite plane. The errors are relatively small, at least compared to the cases
of unsuccessful registrations of ICP (Sec. 3, Fig. 7), but they nevertheless accumulate. It is
hence of interest to use proper SLAM. An experimental evaluation of the 3D-Plane-SLAM
introduced in the previous Sec. 4, i.e., the embedding of the plane based registration into a
pose graph with closed-form relaxation, is presented in this section. The relaxation is very
fast and it leads to quantitative as well as qualitative improvements of the results.

Figure 16 shows the computed rotation of the robot along its path, and Fig. 17 shows the
estimated robot paths for plane-registration only and for full 3D-Plane-SLAM. The latter
figure also shows the numbering of the pose estimates. Proximity based loop detection is
used. It leads to a total of 8 loops that can be successfully matched, out of which 7 are
short, consisting of 3 nodes each. There is one large loop 12 → 2, consisting of 10 nodes.



(a) Perspective view before relaxation. The rubble pile on the figure-bottom consists of small
gray unmatched planes (see also Fig. 1(a)). Note the misalignment of the car-chassis back
(see also Fig. 18) and the planes on the left of the figure. All the misalignments are parallel
to the planes, indicating that the rotation error is negligible.

(b) Perspective view after relaxation. Note the good alignment of planes parallel to the
façade.

Figure 14: Perspective view showing the improvement from relaxation. The robot position is
shown by red circles. Matched planes are shown with the same color and unmatched planes
are grayed out. A video of the point-cloud model is available on the website given in Sec. 7.3.



(a) Top view before relaxation. (b) Top view after relaxation

Figure 15: Top views of the map, before and after relaxation.
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Figure 16: The robot rotation trajectory. Note that the apparent jumps in the yaw are
simply the wrapping of angle value from −180◦ to 180◦. The rotation was not relaxed.



Figure 17: The robot path before and after relaxation. In the unrelaxed path, the 10σ
uncertainty ellipses are plotted in red for pair-wise matching result. This shows that most
of the time there is only one principal direction of uncertainty. The motion along the z
direction is quite small; it amounts to about 200 mm in total.

5.2 Computation Time and Map Improvement

The results of applying the algorithm described in Sec. 4 to the 3D pose-graph is shown
in Figs. 14(b) and 15(b), where the whole map is shown in perspective and top view. The
results are also shown in a close-up in Fig. 18(d), which should be compared with the camera
photographs of Fig. 18(b). The reader can immediately locate various ground-truth struc-
tures and notice that their alignment has improved significantly after relaxation, i.e., there
is a clear qualitative improvement in the map. There is also a quantitative improvement in
terms of reduced uncertainty: the accumulated Mahalanobis distance is significantly reduced
by the relaxation, as can be seen in Table 3. The table also gives the run-times for the various
steps involved: plane-extraction, plane-matching, polygonization, and relaxation.

Compared to the state of the art in 3D mapping, the approach can be considered to be
fast. This holds especially from a practical viewpoint, since in comparison to the previously
mentioned total time Tscan ≈ 32 seconds for taking one scan: the core registration, i.e., mean
extraction and plane-matching, takes 0.25 Tscan. When adding the polygonization step,
which is needed mainly for visualization, the total time of mean extraction, plane-matching,
and polygonization is 0.33 Tscan. Hence, It is easy to process a registration of the previous
two scans while a new one is being acquired. Currently, a speed-up of the data acquisition
by at least two orders of magnitude is possible with more costly off-the-shelf equipment.
Even then, the approach is still very well suited for online processing. The approximately
10 seconds that it takes to register two scans are less than the time it takes the robot to



(a) Closeup view showing the transition of the robot from outside the struc-
ture to underneath the collapsed floor.

(b) Ground-truth structures.

(c) Zoomed-in top-view before relaxation (d) Zoomed-in top-view after relaxation

Figure 18: There are several ground-truth structures that can be easily identified in the
planar models before and after relaxation.



Figure 19: The final 3D map as point cloud. The point-clouds have been aligned based on
the results of plane-matching registration and loop-closing for 26 scans. As can be seen, there
is a higher level of detail but the points are too dense in several regions for a meaningful
visualization.



Table 3: Mean statistics for 3D-Plane-SLAM on the 26 scans of the Collapsed Parking Lot
scenario

Planes-extraction per scan 2.68 sec.
Nr. of planes unfiltered per scan 99
Nr. of planes after filtering per scan 19
Plane-matching and registration per scan-pair 5.42 sec.
Polygonization per scan 2.52 sec.
Time for relaxation of pose-graph with 26 nodes and 33 edges 0.01 sec.
Mahalanobis distance in Eq. (22) after/before relaxation 869724/(2.36× 1010)

move from one scan spot to the next one under the challenging locomotion conditions of this
scenario.

The 3D SLAM proper, i.e., loop closing and relaxation, comes almost for free with the
plane based registration. Due to its angular precision, the relaxation can be restricted
to translations only, allowing for a closed-form solution that can be computed in a few
milliseconds. The SLAM improves the map as shown in Figs. 14(b) and 18(d). As discussed
in more detail in Sec. 7, the 3D map can still be displayed based on the collected point-clouds,
e.g., to see a high level of detail. This is shown in Fig. 19, which was created by applying
the pose-registration computed by plane-matching and relaxation to the point-clouds. The
figure also illustrates the difficulty of visualization of large point-clouds.

5.3 The Accuracy of Rotation Estimates

To experimentally validate the claim that the plane-matching leads to accurate rotation
results, the rotation computations for the loop-closing edges are listed in Table 4. As an
example, for the loop 12 → 2, the row marked “Direct” shows the result of matching F12 with
F2 directly. The row marked “Cumul.” shows the result of finding the relative transform
between F12 and F2 by cumulatively computing the relative rotation by traversing all the
intermediate edges as follows

2
12R = 2

3R
3
4R . . . 10

11R
11
12R (26)

It can be seen that the maximum difference is 2.5◦ for roll and that the yaw angles are quite
close. More importantly, the Mahalanobis distance χ2 based on the covariance matrix of the
direct transform is quite small, which shows that the difference is not statistically significant.

The high accuracy of rotational estimates is also supported by theory and experiments
presented in [Pathak et al., 2009b] where the plane registration is introduced. Additional
relaxation of the rotations requires non-linear optimizations based on computationally more
costly iterative methods. The relaxation method of 3D-Plane-SLAM is therefore not suited
for the pose graphs generated by ICP registrations; this holds at least for the two data-sets
used in this article. Also the loop detection is critical in this respect. The simple proximity
based method in 3D-Plane-SLAM requires reasonable initial 3D maps from registration,
which is not the case for the ICP registrations in the two Disaster City scenarios.



Loop Type Roll Pitch Yaw χ2 dist.
3 → 1 Direct 0.612◦ 0.340◦ 4.197◦

Cumul. 0.857◦ −0.136◦ 4.475◦ 1.11 10−4

8 → 6 Direct −2.258◦ 0.561◦ 76.026◦

Cumul. −2.253◦ 0.553◦ 75.879◦ 6.575 10−6

10 → 8 Direct 1.164◦ 1.741◦ 14.73◦

Cumul. 0.474◦ 2.358◦ 14.870◦ 2.668 10−4

12 → 2 Direct −3.760◦ 1.595◦ 112.708◦

Cumul. −1.238◦ 2.717◦ 112.79◦ 2.324 10−3

14 → 12 Direct 0.927◦ 0.284◦ −32.166◦

Cumul. 0.820◦ 0.399◦ −32.239◦ 9.198 10−6

18 → 16 Direct 0.280◦ −4.664◦ 5.246◦

Cumul. 0.274◦ −4.419◦ 5.318◦ 1.985 10−5

21 → 19 Direct −0.301◦ −0.0180◦ 15.164◦

Cumul. −0.207◦ 0.172◦ 15.568◦ 6.336 10−5

25 → 23 Direct −0.786◦ −1.156◦ −1.271◦

Cumul. −0.588◦ −0.654◦ −1.375◦ 9.197 10−5

Table 4: Estimated rotations between nodes i and j once based on the propagated changes
through the path from i to j (Cumul.) and once based on the registration of j with i (Direct).
The differences are statistically negligible as shown by the small Mahalanobis distances χ2.

6 Registration and Relaxation in the “Dwelling” Scenario

6.1 The Scenario

The performance with respect to computation speed and robustness of 3D-Plane-SLAM,
i.e., plane based registration and closed form relaxation, is evaluated in this section based
on a second set of experiments at the 2008 Response Robot Evaluation Exercise (RREE)
in Disaster City [TEEX, 2008]. The scenario known as the “dwelling” deals with a small
house hit by a flooding disaster. It consists of a half-collapsed porch, two mainly intact
rooms with large amounts of rubble, damaged furniture, etc., and two kinds of courtyard
structures including some collapsed roof parts. The scans also partly cover some pieces of a
large concrete rubble pile in the direct neighborhood of the scenario.

In all 70 usable scans were taken. Figure 20 shows the view of the front camera of the robot
at the locations where the scans where taken. Note that these are difficult conditions for the
locomotion, i.e., a high presence of dust, rubble, and so on. Also, the floor is not level; this is
partially due to rubble and partially due to artificial ramps that were added during RREE as
locomotion and sensing challenges. The roll and pitch of the robot thus significantly varies
during the mission.

As mentioned before, the front camera pictures has a wide angle lens with an horizontal
opening angle of approximately 85◦, i.e., it only covers a fraction of the field of view of the
actuated Laser Range Finder (ALRF). Figure 21 shows the first scan in the sequence as



Figure 20: The front camera view of locations where the scans 0 to 69 were taken in the
“dwelling” scenario.



a point cloud from two different perspectives and as a gray-scale range-image. The other
69 scans of the mission are shown as range-images in Fig. 22. The ALRF on the robot
has a horizontal field of view of 270◦ of 541 beams. In this experiment, the servo pitches
the ALRF from −90◦ to +90◦ at a spacing of 2◦, i.e., with 4 times less vertical resolution
than in the collapsed car park experiment. Each 3D point-cloud has hence a total size of
541 × 91 = 49, 231 points. This setting was chosen during the response robot exercise to
allow for faster scanning, namely in about 8 seconds per scan. Thus, the overall mission
time in this scenario with 70 scans was about the same as for the mission with 26 scans at
the collapsed car park.

(a) scan 0, point cloud, perspective view

(b) scan 0, range image

Figure 21: The first scan of the 70 scans of the dwelling scenario as a point cloud and as a
gray-scale range-image.

The scenario is mainly an indoors environment but it provides several challenges. First of all,
there are significant changes in roll and pitch of the robot. Second, the floor is covered with
a lot of rubble and broken furniture, i.e., with many non-planar structures. This holds also
to some extent for the walls. The ceiling is partially broken and it has a regular, repetitive
structure of horizontal support beams, i.e., a significant potential for mis-registration of
similar looking sub-patterns. Last but not the least, the robot moves through four narrow
doors. This results in a lot of occlusions: most range data visible in one sample disappears
in the next.

6.2 Registration Comparison with ICP

The challenges of this scenario are also reflected in the performance of ICP, which – in
contrast to the crashed car park scenario – more or less completely fails here. As shown in



Figure 22: The other 69 range-images of the “dwelling” scenario. The first range-image is
shown in Fig. 21(b).



(a) front view (b) side view

(c) top view

Figure 23: The result of ICP registration in the “dwelling” scenario. The estimations of the
relative orientations between scans pairs are quite often grossly wrong, leading to significant
misrepresentations along the roll, pitch and yaw axes.



Loop Type Roll Pitch Yaw χ2 dist.
17 → 12 Direct 1.570◦ −18.605◦ −144.878◦

Cumul. 3.302◦ −18.109◦ −146.096◦ 1.44 10−3

22 → 17 Direct 1.345◦ −18.037◦ −111.323◦

Cumul. 5.481◦ −18.059◦ −111.088◦ 5.23 10−3

27 → 22 Direct 8.075◦ 9.011◦ 155.593◦

Cumul. 9.813◦ 9.093◦ 158.078◦ 2.8 10−3

22 → 8 Direct 8.677◦ −5.032◦ 124.810◦

Cumul. 9.545◦ −3.736◦ 124.159◦ 8.7 10−4

60 → 55 Direct −4.499◦ −4.187◦ 88.720◦

Cumul. 2.080◦ −7.966◦ 89.966◦ 1.8 10−2

Table 5: Estimated rotations between nodes i and j, once based on the propagated changes
through the path from i to j (Cumul.), and once based on the registration of j with i (Direct).

Fig. 23, the ICP registrations drift significantly in the estimations of the robot’s roll, pitch
and yaw. One likely reason for this is the lack of any meaningful odometry measurements
that can be used to seed ICP with good initial guesses. As discussed before in Sec. 3.2,
this is not unexpected in this scenario since the orientation of the robot often changes
significantly between scans. Additionally, a pairwise inspection of registered scans indicates
that ICP often also performs poorly on translations in this scenario; especially, sequences
with motions through doors, with the concomitant occlusions, seem to pose difficulties.

6.3 Performance of 3D Plane SLAM

In contrast to ICP, the plane based registration provides a good initial basis for pose graph
SLAM. The registration of the 70 scans succeeds in the sense that there are no gross mis-
alignments, especially with respect to the relative orientation of registered scans. There are
a few translational errors; the two most severe ones are discussed later on in this section in
the context of qualitative improvements through the relaxation. The run-time is about 8
seconds on an average per full registration, including plane extraction and the polygonization
for visualization. It is thus slightly faster than in the crashed car park scenario.

A proximity based loop detection is used again. It leads to a selection of 5 loops consisting of
scan-pairs (17, 12), (22, 17), (27, 22), (22, 8), (60, 55), where members of each pair are written
in reverse order to emphasize that a scan is being matched against a non-sequential past
scan. The related poses are shown in Fig. 27 where the path estimates are shown with
and without relaxation. The SLAM proper, i.e., the closed form relaxation generates again
hardly any computational overhead as it is computed with a run-time of 34.11 milliseconds.
On relaxation, the overall consistency of the map increases, which is again reflected in
quantitative as well as in qualitative terms.

The cost-function (Eq. (22)) is reduced from 954, 808 to 785.38. Its effect on the motion
estimates can be seen in Fig. 27. During plane-matching, no prior roll/pitch estimates were
available. The decrease in uncertainty is indicated by the significant decrease in the accu-



(a) top view

(b) front view

(c) perspective views, inside the building

Figure 24: The final map of the “dwelling” disaster scenario as result of 3D-Plane-SLAM.
The robot is shown at the scan-locations by an avatar which is to scale.



Figure 25: The xy path of the robot before and after relaxation. The pair-wise uncertainty
10σ ellipses, which form the basis for the relaxation, are shown in red. The z direction
motion of the robot was in the range ±500 mm.
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Figure 26: The computed roll, pitch, and yaw of the robot. Note the high roll and pitch at
certain samples.

mulated Mahalanobis distance. The claim that the plane-matching leads to quite accurate
rotation results is also supported in this scenario. The rotation computations for the loop-
closing edges are listed in Table 4. Given, for example, the loop 17 → 12, the row marked
“Direct” shows the result of matching F17 with F12 directly. The row marked “Cumul.”
shows the result of finding the relative transform between F17 and F12 by cumulatively
computing the relative rotation by traversing all the intermediate edges as follows

12
17R = 12

13R
13
14R

14
15R

15
16R

16
17R (27)

The maximum differences are 6.5◦ for roll, 4◦ for pitch, and 2.5◦ for the yaw. This is
slightly worse than in the collapsed car parking scenario but also to be expected. First of
all, there are significant higher variations in roll and pitch during the robot’s motions in
this scenario. Second, a significant larger number of scans - namely 70 instead of 26 - is
used in the dwelling scenario. Nevertheless, the fast, closed form relaxation is still a very
reasonable alternative to full non-linear optimization in this case. This is also indicated by
the Mahalanobis distance χ2 based on the covariance matrix of the direct transform: at
worst it is 10−2 and hence indicates no strong statistical significance of the differences.

The positive effects of the relaxation can also be seen in qualitative terms. Two quite
apparent translational errors in the plane based registration are shown in Fig. 25. A pairwise
manual inspection of the registrations, including the 5 loop pairs, suggested that these two
cases had by far the largest translational error before relaxation. In both cases, a main wall
is off by about 70 cm, i.e., about 2.3% of the ALRF’s maximum range. As shown in Fig. 24,
both these errors are corrected by the relaxation.



(a) scan pair 22-8, before (left) and after (right) relaxation

(b) scan pair 60-55, before (left) and after (right) relaxation

Figure 27: The result of relaxation can also be qualitatively seen in this scenario. The
main effects are on the two pairs shown above where each time an error of about 70 cm in
translation is corrected, causing the walls in room 1 (scan pair 22-8) and room 2 (scan pair
60-55) to be properly aligned.



7 A Comparison of Point Cloud Based Maps and Surfaces Based
Maps

7.1 Planar Surface Patches for Map Representation

Point clouds are the predominant form of representation for 3D mapping. In this work we
have used a surface based representation in the form of planar patches. This representation
of 3D ALRF data is also the basis for the scan registration in our approach. Our registration
method can be used for localization only, or – especially as it is capable of delivering proper
covariance matrices – as a basis for SLAM. Note that the representation of the 3D map
itself is completely independent of this. Obviously, one may use the plane registration for
localization and simply fuse the 3D ALRF data as point clouds into a 3D map. If one prefers,
the presented algorithms can hence be used to generate “standard” point cloud maps.
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(b) Data sizes of the plane representations relative to
the point clouds sizes per scan.

Figure 28: The surface representation in form of polygons leads to significantly smaller
amounts of data. This is especially beneficial in teleoperation scenarios when the data has
to be transmitted over wireless links.

The representation used here has other advantages as well. First of all, it can be used for
a significant data reduction. Figure 28 shows the data sizes of the two different represen-
tations per scan. For the point clouds, the average size is 3.235 MByte. For the surface
representation, it is only 124 KByte. The planes require on average only 3.8% of the size of
the point clouds. Within the whole set of all scans, the compression ranges from a maximum
of 2.38% to a minimum of 5.42%. This compression makes a significant difference especially
in teleoperation scenarios when wireless links are used. Also, it makes it faster and more
efficient to visualize the map.

Secondly, the planar polygon representation is well suited for 3D maps even in the quite
unstructured scenarios of Disaster City. Point clouds admittedly provide a higher level
of detail, but point cloud maps tend to become too dense for a meaningful visualization
(Fig. 19). A polygon based map, in contrast, always provides a very good overview of the
scene. In addition, even rather complex, non-planar objects are reasonably well represented



(a) The robot control GUI. (b) Polygon representation of the victim.

(c) The corresponding point cloud. (d) Close up of the victim in the point
cloud.

Figure 29: A human “victim” in the collapsed car parking scenario. The polygon represen-
tation is much more efficient than the point cloud in terms of memory requirements.

and recognizable. Figure 29 shows a human disaster “victim”, who can be clearly identified
in the polygon representation.

7.2 Limitations and Open Questions

Surface based mapping has some potential but there are still some open questions. There
is the obvious question as to which extent planar patches are suitable for registration of 3D
scans in more general environments. The two disaster scenarios presented in this article are
quite unstructured, but they nevertheless still represent urban environments. It is hence of
interest to consider higher order surfaces, e.g. quadrics, as representations for large surface
patches in non-urban settings. The determination of an appropriate level of detail is also an
open question.

It is of foremost interest for 3D-Plane-SLAM to concentrate on the extraction of a few, large
planes per scan that give high evidence correspondences for accurate registration. However,
to make actual use of the 3D map, especially in 3D path-planning and navigation, more fine
grained surface representations may be of interest. We postulate that surface patches are a
good candidate for these purposes, especially compared to point clouds. The main reason
for this is that large planes with polygon boundaries are very well suited for computational
geometry algorithms employed in 3D path-planning and navigation.

Another open question is the implementation of loop-closing in scenarios where the planed



based registration does not provide a reasonable initial 3D map. The loop detection used
here is based on spatial proximity: it presumes that the computed robot’s path corresponds
reasonably well with reality. If this is not the case, O(n2) pairwise registrations of all n scans
may be needed to determine possible loops.

In addition to these general issues, there are some more concrete limitations of the presented
3D-Plane-SLAM, especially with respect to the relaxation method used here. The closed-
form solution for pose-graph relaxation is based on the assumption that the determination
of the rotations is accurate. Though this accuracy is quite high as shown in the experiments
in this article, it is nevertheless not perfect. Orientation errors accumulate and they can
become sufficiently severe for long sequences of registered scans. In this case, a more complex
non-linear optimization is required.

7.3 Multimedia

Several animated movies of point cloud and polygon maps generated with our algorithms
can be downloaded from the following URL: http://robotics.jacobs-university.de/
projects/3Dmap/. The website also contains multimedia material of the scenarios, e.g., the
front camera movies.

8 Conclusions

Two contributions in the context of a novel approach to 3D mapping are presented. First
of all, it is shown that a new algorithm for registering large planar surface patches can be
applied to quite unstructured environments. Experimental data from two disaster scenarios
is presented, which was collected at the 2008 NIST Response Robot Evaluation Exercise
(RREE) in Disaster City, Texas. Second, we show how to embed the plane registration in
pose-graph SLAM. In doing so, the angular precision of the plane registration is exploited
and the relaxation is formulated as a closed-form solution.

We demonstrated that the presented algorithm is quite fast and robust in comparison to
Iterative Closest Point (ICP). The registration of scans is done in about 10 seconds, including
plane extraction and polygonization for visualization. This is less than it takes the robot to
move in the scenarios from one scan spot to the next. Therefore, online mapping is feasible.
3D-Plane-SLAM, i.e., the embedding of the registration into a pose-graph with loop-closing
and relaxation, comes almost for free. It takes only a few milliseconds of computation time
and improves the 3D maps in quantitative and qualitative terms.
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[Nüchter et al., 2007] Nüchter, A., Lingemann, K., and Hertzberg, J. (2007). 6D SLAM– 3D
mapping outdoor environments. Journal of Field Robotics, 24(8/9):699–722.

[Nuechter et al., 2004] Nuechter, A., Surmann, H., Lingemann, K., Hertzberg, J., and
Thrun, S. (2004). 6D SLAM with an application in autonomous mine mapping. Robotics



and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on,
2:1998–2003.

[Olson et al., 2006a] Olson, E., Leonard, J., and Teller, S. (2006a). Fast iterative alignment
of pose graphs with poor initial estimates. In Leonard, J., editor, Robotics and Automation,
2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pages 2262–2269.

[Olson et al., 2006b] Olson, E., Leonard, J., and Teller, S. (2006b). Fast iterative alignment
of pose graphs with poor initial estimates. Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on, pages 2262–2269.

[Pathak et al., 2009a] Pathak, K., Vaskevicius, N., and Birk, A. (2009a). Revisiting uncer-
tainty analysis for optimum planes extracted from 3D range sensor point-clouds. In IEEE
Int. Conf. on Robotics and Automation, Kobe, Japan.

[Pathak et al., 2009b] Pathak, K., Vaskevicius, N., Poppinga, J., Pfingsthorn, M., Schwert-
feger, S., and Birk, A. (2009b). Fast 3D mapping by matching planes extracted from
range sensor point-clouds. In International Conference on Intelligent Robots and Systems
(IROS). St. Louis, MO, USA.

[Pfingsthorn and Birk, 2008] Pfingsthorn, M. and Birk, A. (2008). Efficiently communicating
map updates with the pose graph. In Proceedings of the International Conference on
Intelligent Robots and Systems (IROS).

[Pfingsthorn et al., 2007] Pfingsthorn, M., Slamet, B., and Visser, A. (2007). A scalable
hybrid multi-robot SLAM method for highly detailed maps. In RoboCup 2007: Proceedings
of the International Symposium, LNAI. Springer.

[Poppinga et al., 2008] Poppinga, J., Vaskevicius, N., Birk, A., and Pathak, K. (2008). Fast
plane detection and polygonalization in noisy 3D range images. In IEEE Int. Conf. on
Intelligent Robots and Systems (IROS), Nice, France.

[Shuster, 2006] Shuster, M. D. (2006). The generalized Wahba problem. The Journal of the
Astronautical Sciences, 54(2):245–259.

[Surmann et al., 2003] Surmann, H., Nuechter, A., and Hertzberg, J. (2003). An autonomous
mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor
environments. Robotics and Autonomous Systems, 45(3-4):181–198.

[Takeuchi and Tsubouchi, 2008] Takeuchi, E. and Tsubouchi, T. (2008). Multi sensor map
building based on sparse linear equations solver. Intelligent Robots and Systems, 2008.
IROS 2008. IEEE/RSJ International Conference on, pages 2511–2518.

[TEEX, 2008] TEEX (2008). NIST Response Robot Evaluation Exercise. http://www.

teex.com/teex.cfm?pageid=USARprog\&area=USAR\&templateid=1538.

[Thrun et al., 2003] Thrun, S., D. Haehnel, D. F., Montemerlo, M., Triebel, R., Burgard,
W., Baker, C., Omohundro, Z., Thayer, S., and Whittaker, W. (2003). A system for
volumetric robotic mapping of abandoned mines. In Proc. IEEE International Conference
on Robotics and Automation (ICRA). Taipei, Taiwan.

[Weingarten and Siegwart, 2006] Weingarten, J. and Siegwart, R. (2006). 3D SLAM us-
ing planar segments. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Beijing.


