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Abstract— Mapping is an important task for mobile robots in
general and for Safety, Security, and Rescue Robotics (SSRR)
in particular. It is hence one core aspect which is evaluated
in the RoboCup Rescue league. But assessing the quality of
maps in a simple and efficient way is not trivial, especially if
no detailed, complete ground truth data of the environment
is available. A new approach on map evaluation is presented
here. It makes use of artificial objects placed in the environment
named "fiducials”. Using the known ground-truth positions and
the positions of the fiducials identified in the map, a number of
quality attributes can be assigned to that map. Depending on
the application domain those attributes can weighed to compute
a final score. Results are presented that are based on using
this method during the RoboCup Rescue competition 2010 in
Singapore where maps were generated by different teams in an
maze populated with fiducials. Those maps are evaluated here
and compared to a human judgment, showing the effectiveness
of the fiducial approach.

I. INTRODUCTION

Mapping is an important task for mobile robots, because
maps are often essential to enable the robot to perform
its tasks [16]. One prominent example for such a task is
autonomous navigation using path planning. Maps also assist
an operator of a remotely teleoperated robot in locating the
robot in the environment by providing information of features
of interest like corners, hallways, rooms, objects, voids,
landmarks etc. Those features are referenced in the map in
a global coordinate system defined by the application. This
frame of reference can be a geographic coordinate system of
the earth or a local one defined by the application (e.g. robot
start pose or pose of an operator station). Furthermore, maps
are in the context of Safety, Security, and Rescue Robotics
(SSRR) not only an important mean for robot control but they
are often also a crucial mission deliverable [3]. It is hence of
interest to be able to assess the quality of maps, respectively
mapping approaches, to identify working solutions as well
as open problems.

Maps generated by mobile robots are abstractions of the
real world, which always contain inaccuracies or errors.
There has been great progress in mapping in the last two
decades, especially with respect to Simultaneous Local-
ization and Mapping (SLAM) techniques. But especially
in scenarios that are of high interest for SSRR, namely

Soren Schwertfeger and Andreas Birk are with the Dept. of Com-
puter Science, Jacobs University Bremen, 28759 Bremen, Germany
[s.schwertfeger, a.birk]@jacobs-university.de

Adam Jacoff is with National Institute of Standards and Technology,
Gaithersburg, MD USA adam. jacoff@nist.gov

Johannes Pellenz is with the Bundeswehr Technical Center for Engi-
neer and General Field Equipment (WTD 51), 56070 Koblenz, Germany
johannespellenz@bwb.org

on extended missions, respectively in unstructured environ-
ments, maps still often contain large errors. Furthermore, the
usefulness of a map not only depends on its quality but also
on the application [9]. In some domains certain errors are
negligible or not so important. That is why there is not one
measurement for map quality. Different attributes of a map
should be measured separately and weighed according to the
needs of the application [8]. Those attributes can include:

o Coverage: How much area was traversed/visited.

e Resolution quality: To what level/detail are features
visible.

o Global accuracy: Correctness of positions of features in
the global reference frame.

« Relative accuracy: Correctness of feature positions after
correcting (the initial error of) the map reference frame.

o Local consistencies: Correctness of positions of differ-
ent local groups of features relative to each other

o Topological accuracy: To what level can directions (e.g.
”go left at the 2nd crossing”) be extracted?

Note that the resolution quality is not only depending on
the actual size of the gird cells of the map but is also
influenced by the quality of the localization. If there are pose
errors between scans of the same object its features blur or
completely vanish. Depending on the groups chosen there
can be multiple local consistencies.

Many factors influence the quality of a map:

o Environment: Sparse environments are difficult for most
mapping approaches. Examples include wide open areas
or hallways with minimal features.

o Robot path: The path that a robot took to gather the
sensor data could contain different numbers of loops.
Furthermore could the terrain be even or difficult to
traverse, causing the robot to roll and pitch.

o Robotic platform: Features like active sensing or sus-
pended locomotion can increase map quality while parts
of the robot in the field of view of the sensors are
disadvantageous.

o Sensors: The range, field of view, structural errors,
accuracy and the position of the sensor on the robot
are factors influencing mapping algorithms.

o Computation power: SLAM algorithms can be compu-
tational very intensive. If the map has to be generated
on-line to aid other tasks like path planning processing
time is often scarce on mobile robots. Then less scans
can be used, or the number of particles in a particle
filter is reduced or loop closing and graph optimization
algorithms are executed less frequently.



o Algorithm: Of course the mapping algorithm itself
influences the map quality to a great extend.

Within RoboCup Rescue [5], there are different compe-
titions to evaluate the performance of robotic systems for
search and rescue mission, including their mapping capabil-
ities. While comparing mapping approaches one can try to
control some of the above mentioned aspects; the different
RoboCup Rescue competitions have different focuses in this
respect:

o VirtualRoboCupRescue [4]: Here in a virtual, simulated
3D environment a group of agents (robot models) have
to (mainly autonomously) explore and map an area.
The organizers control the environment and to a great
extend the robot platform, sensors and computation
power. Hence, the robot path (autonomy algorithms) and
mapping algorithms determine the mapping result.

o RealRescue [15]: Physical robots build by the teams
have to search a simulated disaster site (see Figure
1). There is a yellow area for autonomous robots and
orange and red areas with greater mobility challenges
for teleoperated robots. Here the organizers only control
the environment. All other factors vary strongly from
robot to robot.

« Interleague Mapping Challenge [11]: Real sensor data
(laser range finders (LRF), gyro, potentially odometry)
of a run through the arena is collected in the RealRescue
maze. Teams are asked to provide their mapping algo-
rithms. The organizers then run their mapping algorithm
and build maps using this data. Thus the organizers con-
trol everything except the algorithm that each participant
is using for mapping.

This paper approaches the task of map evaluation using
artificial features called fiducials [12]. The ground truth in-
formation about where the fiducials are located, also with re-
spect to each other, is used to calculate the scoring attributes.
The significant advantage of this method is that it does not
require a complete, detailed ground truth representation (i.e.
a perfect maps) of the environment.

This map metric works with maps depicting free space
and obstacles in an arbitrary environment (outdoor as well as
indoor). The sensors used to create the map are not important
to this algorithm, although maps are typically created using
2D or 3D LRF. Nevertheless, any sensors giving information
about free space and obstacles such as ultrasound sensors,
echo sounders (underwater), stereo-imaging, etc. can be
used. As an additional bonus the approach of systematically
placing fiducials also enables humans to quickly asses the
quality of maps by just looking at them.

The experiments used to demonstrate the usefulness of this
metric are performed on maps generated by various teams
during the RoboCup Rescue competition 2010 in Singapore
with real robots as well as maps from the RoboCup Rescue
Interleague Mapping Challenge that used data collected in
Singapore.

The analysis of robot generated maps is a relatively new
field, nevertheless it has already received some attention. Us-

Fig. 1. One part of the RoboCupRescue 2010 arena. Some fiducials (blue
barrels) are visible.

ing ground-truth robot paths [19] and [6] compare those paths
with those estimated by SLAM algorithms. But obtaining the
actual robot paths is a difficult problem and can only be done
in very controlled environments. Most other approaches use
accurate maps of the environment as ground truth, which is
particularly easy if simulations are used [13], [14]. One can,
for example, measure the alignment error of virtual scans in
the ground truth map [7] or use image-based techniques.
Image similarity methods [17] have their limitations due
to the common errors in maps, because maps often have
structural errors like noise, structures appearing more than
once due to localization errors and the like. Nevertheless,
certain attributes like the level of brokenness [2], can still be
obtained. The advantage of the fiducial approach compared
to the image based ones is, that errors described above do
not effect the score as long as the fiducials can be identified
in the map.

Quite often features are detected in the images of the maps.
Harris corner detector, the Hough transform and SIFT are
used in [18] while SURF and a room detection approach
are applied in [10]. Those approaches have in common, that
they use the pose of the detected features to determine the
map quality. They also require detailed ground truth repre-
sentations of the environment to be usable. A combination
of methods is used in the RoboCup Rescue Virtual Robots
competition [1], especially the topological structure of the
map is also taken into consideration.

II. FIDUCIAL APPROACH

Using the Fiducial map evaluation approach, several of
the above mentioned attributes can be measured to asses
the quality of maps. The only information needed to score
maps are the ground-truth positions of all fiducials in the
environment. Upon scoring each fiducial has to be identified
in the map together with its position. From a practical view-
point, especially in the case of competitions like RoboCup
Rescue where a multitude of maps has to be evaluated in an
environment that is changed between runs to ensure variable
conditions, this has the great advantage that no detailed
complete ground truth representation is required.

This approach completely abstracts from all other informa-
tion contained in the map like walls, unexplored and explored



areas and other aspects because it just takes the fiducials
and their position into account. However, given a reasonable
distribution of fiducials, this method reflects the quality of
those aspects well enough. This is because measuring the
localization performance of the SLAM algorithm suffices
since incorporating sensor data to the map given perfect
localization is typically easy.

The fiducials used in this paper are cylinders placed in the
environment. Those can either be cut in half and (typically)
placed on either side of a wall or two cylinders are separated
by a short artificial wall. In order to ease the understanding,
in the following representations of said cylinders in the
actual maps will be refereed to as barrels since barrels
were used as cylinder approximations in the experiments
(see Figure 1). Fiducials are then the objects in the actual
environment and its model - the so to say ground truth map.
As mentioned above there are (usually) two fiducial-parts (A
and B) respectively barrel-parts (A and B). Circular fiducials
are chosen because they stand out nicely in the environment.

All attributes scored by the fiducial approach have values
between 0 and 100% where 0 means poorest quality while
perfect results get a value of 100%. This allows us to
easily apply application dependent weights to the attributes
to come to a simple overall score for maps consisting of
just one number. The coverage, resolution quality as well
as global and relative accuracies and local consistencies can
be determined using the Fiducial approach. However, first
the fiducials have to be identified in the map. The Fiducial
metric works in principle for 3D as well as 2D maps, if the
3D positions of the barrels can easily be extracted from the
3D maps. For the rest of the paper and the experiments the
algorithm is described using 2D maps.

A. Identification of Fiducials in the map

The following steps are performed to find the fiducials in

the map and to register their position:

1) Rasterize: Render the map to a two-dimensional grid
with a sufficiently high resolution (if the map is already
present in a raster format this step can obviously be
skipped).

2) Colorization: Remove all probabilistic entries in the
grid, such that there are exactly three color values left:

« Free (typically white): No obstacle.

o Unknown (typically gray): Unknown, unobserved
area (e.g. voids, also “content” of barrels).

o Obstacle (typically black): Obstacle (e.g. walls,
barrel).

3) Identify barrel parts: Find all obstacles which form
parts of circles with the right radius. The minimum
visible angular opening of the part-circle has to be
2/3rd of the barrel.

4) Assignment: For each fiducial part assign one or none
of the barrel parts identified in the previous step. Each
of those barrel parts can be assigned to maximum one
fiducial part.

5) Determine Position: For each barrel part assigned to
a fiducial part compute the coordinates of the center

point of the circle (-part) visible in the map. This is
then the position of the barrel part. Thus the positions
of two parts of a cut-in-half-barrel are just separated
by the thickness of the wall.

The following three attributes use distances between two
positions to measure the error. For those there are maximum
distances dat'ribute defined which are considered to be the
worst case for the attribute. The maximums can, but don’t
have to be the same for those three attributes. Furthermore
the actual distance error d can be discretized to certain
values, for example the barrel radius. This can be done in
order to avoid differences in scoring which are caused by
the inherent error of the ground truth data and to put the
resulting scores in bins of similar qualities.

B. Determining Attributes

1) Global Accuracy: For every barrel-part assigned to
a ground-truth-fiducial part calculate the distance d to the
(global) position of the corresponding fiducial. So d can
be seen as the error in the position between the ground-
truth barrel and the one in the map. Distances d greater than
daeeuracy gre set to dicsum Y. The error e is then calculated
as e = dnfm% Average over the errors for all those barrel
parts. The value for the global accuracy is then 1 — e such
that perfect maps get a 100% number.

2) Relative Accuracy: The error of the global accuracy is
minimized (or the accuracy value maximized) by rotating,
translating or even scaling the map. This can be easily
done by just changing the poses of the barrel parts, thus
eliminating the identification step for each iteration. Often
the value for the transformation is just the error in the
start pose. If there was no agreement on a global frame of
reference (as in the following experiments) only the relative
accuracy can be computed while there can be no score for
the global accuracy.

3) Local Consistencies: For all groups calculate the dis-
tance errors between entries of a group. In the following
experiments the two parts of a fiducial form a group. Those
groups are either classified as short range or long range
depending on the (minimum) distance a robot would have to
travel in order to see both barrel parts. For each pair/group
where at least one barrel part has been found:

1) Calculate the geometric distance between the positions
of the two barrel parts A and B: dpgrrer-

2) If one of the barrel parts was not identified in the map
set dpqrrer t0 @ very high value.

3) Get the distance between the two corresponding
(ground truth) fiducial parts: df;qucial-

4) The absolute value of the difference of the distances
from step 1) and 2) is the error for this group: e =
min(dfgg;istency7 |dbarrel _ dfiducml|)/d$;zg;istency‘

The “short range consistency” is thus one minus the
average of the error of all short range groups while the “long
range consistency” is one minus the average error of the long
range groups.

Using barrels or half-barrels on opposite sides of walls
has two advantages. Firstly one can very easily measure



Fig. 2. A ground truth map of the RoboCupRescue arena with iconic
representation of the different terrain types. The arena is split into two parts
to accommodate two parallel runs during the preliminary rounds. The bold
black line shows the border between the two arenas. The blue circles depict
the locations of the fiducials.

the ground truth distance between those fiducial parts. Thus,
even when the ground truth positions of the fiducials are
unknown or their measurement contains a great error, one
can still compute very accurate local consistency scores. For
barrels which are simply cut in half and placed on either side
of a wall their distance is equal to the thickness of the wall.
Other local consistencies are also possible, for example all
fiducials in one room or area.

Secondly it is very easy to judge the quality of the those
pairs by just looking at the map and checking if those barrels
are properly aligned and form a good circle without big gaps.
This already allows a user to quickly assess a map score
without any algorithmic computations.

4) Coverage: The ratio of the number of fiducial parts
assigned to a barrel part to the total number of fiducial
parts. So a value of 100% means that all fiducials have been
mapped while for an error value of 0 no barrels have been
found.

III. EXPERIMENTS

In order to demonstrate the usefulness of the fiducial
map metric several maps are evaluated in the following
using this approach. The results are compared to a ranking
provided by human judgment, which used to be the method
of choice for judging maps in previous years in RoboCup
Rescue. The maps were created during the RoboCupResuce
World-cup 2010 competition in Singapore as well as the
RoboCup Rescue Interleague Mapping Challenge 2010 that
used sensor data collected in Singapore. The maze used in the
competition is depicted in Figure 1 and a schematic ground-
truth map is shown in Figure 2. This ground truth map does
not reflect the exact arrangement of the arena. Furthermore,
the arena has been reconfigured throughout the competition

Fig. 3. A very good map created by a human carrying a lightweight robot
around. In contrast to Figure 2, the arena is now configured as one big
maze for the autonomy challenge. The map is colored after the RoboCup
standard, marking white areas as observed but additionally marking areas
that were extensively searched for simulated disaster-victims as green. The
robot-path, start pose and a Im grid in the background are also visible.

and the positions of some of the fiducials were also changed.
The software used is a second generation of the Jacobs Map
Analysis Toolkit [17].

Barrels with a radius of thirty centimeters and a height of
one meter are used as fiducials. They are build by cutting
one barrel in half and putting the halves on both sides of a
wall, forming a nearly exact circle when viewed from the
top. One pair is put on both sides of a void, which could be
interpreted as a very thick wall (1.2 meter).

Figure 3 shows a map generated using nearly perfect
sensor data (a lightweight robot was carried through the
maze).

The maps created during the rescue competition were gen-
erated by different robotic platforms using different sensors,
navigation techniques (autonomous as well as teleoperated)
and mapping algorithms. In contrast, for the interleague
challenge maps sensor data was collected in the maze and
later-on fed to the algorithms.

Due to different arena configurations three groups of maps
can be distinguished. For the preliminary rounds in the
competition the arena was parted into two parts (A and B)
to allow simultaneous runs, while later-on one big maze was
available. For part A ten maps were scored while there are 7
maps for part B. For the whole arena 24 maps were tested,
of which 16 were generated during the interleague challenge.

The sensors used for the data collection of the interleague
challenge are a Hokuyo UTM-30LX LRF with a field of
view of 270°, an angular resolution of 0.25° and a range of
above 30m as well as a Xsens MTi gyro and accelerometer.
Those were mounted on a stick and connected to a laptop.
The sensor data was collected by a person holding the stick
with the sensors slowly walking through the maze and the



environment.

For illustration of the fiducial metric two local consis-
tencies are defined: short-range consistency and long-range
consistency. For those the two barrel parts on opposite sides
of a wall form one group. Each group was assigned a
distance, measured in “pallets” (the 1.2m square area for
each element - a 4x4 foot plywood sheet used to build the
arena). This distance reflects the minimum number of pallets
that has to be traversed to get from on part to the other in
the group.

The long-range consistency is thus the average value for all
groups which are more than six pallets away from each other,
while the short-range consistency is calculated for fiducials
with six or less pallets distance.

The value for d2¢tribute jg set to 4 times the radius for the
evaluations while the actual distance value d is discretized
to the radius (30 cm).

For the dataset used in this experiment, the global co-
ordinates of the fiducials were unknown, and therefore the
computation of the global accuracy was skipped. One ap-
proach to estimate the positions of the fiducials is to use
the well-structured design of the RoboCup Rescue arena and
derive the positions from the floor plan as depicted in Figure
2. However, the quality of the maps nowadays sometimes
exceeds the accuracy of the so called ”ground truth map”,
which does not take into account smaller movements of
the wall elements or of the fiducials itself. Another way to
determine the ground truth positions of the fiducials is to
“fly” through the arena with a mapping device under very
controlled conditions (as done for the map in Figure 3). The
resulting maps have a higher quality of the maps produced
by the robots, but still depend on the mapping algorithm
and the limited accuracy of the laser range finder. As a
solution to generate a highly accurate position estimation
for the fiducials, we are using the following approach:

1) On each fiducial, attach a bright marker (e.g. a nail
with a large white head) with a unique number (see
Figure 4).

2) Set up a tachymeter (a precise measurement device
used on construction sites) at a location from which
all fiducials can be seen.

3) Measure the Cartesian coordinates of the markers
attached to the fiducials.

Since modern tachymeters provide the feature to define a
reference line first (e.g. a fixed line outside the arena), the
positions can be measured in a global coordinate frame from
multiple locations. This approach yields very precise results
for the reference coordinates for several reasons:

o The accuracy of tachymeters is much higher than the
accuracy of laser range finders used on mobile robots.

o The location of the fiducials is inspected from a single
or only a few different locations.

« Since it takes only a short time to capture the data, the
reference coordinates can measured right before each
individual run. This way, also small modifications in
the environment can be captured.

Fig. 4. Left: The middle of a fiducial with marker. Right: A tachymeter set
up next to a RoboCupRescue arena to measure the position of the fiducials.

Fig. 5. Maps | and 2 from the RoboCupRescue Interleague Mapping
Challenge. As a service to the reader, these and all following maps are
rotated by the authors to be roughly parallel with the ground truth map.

The use of a tachymeter hence further increases the efficiency
- in terms of time it takes to establish a reference base - and
the accuracy of the reference; an according device is hence
used at RoboCup World Cup 2011 in Istanbul.

IV. RESULTS

In this paper only the results for one group of maps (part
A) consisting of ten maps are presented in more detail, while
the experiments performed on the other two groups in general
further support these results. The maps 1 and 2 (Figure 5) are
from the RoboCupRescue Interleague Mapping Challenge.
Since the sensor data collected there contained all of this
part of the maze a 100% score was possible for this arena.
Unfortunately, the algorithm generating map 1 suffered from
a severe localization error during its estimations, hence
overwriting already correct parts of the map with wrong data.

The other maps (Figures 6 and 7) are from the
RoboCupRescue competition. Since no global coordinate
system was defined the global accuracy cannot be calculated.
The robots took different paths exploring different amounts
of the arena, thus corresponding barrels on the other side of
walls have often not been mapped (properly). This leads to
low scores for the consistency attributes.

Table I show the results of the Fiducial Map Metric. For
the average first the two consistency values are averaged and
then this value is used to calculate an average score also
using the coverage and the relative accuracy. The coverage
value is sometimes surprisingly low (e.g. maps 1 and 9)
compared to the area actually visible. This is due to the
fact that the fiducials are not properly visible in the map due



Fig. 6. Maps from the RoboCup Rescue competition: maps 3 (top-left), 4
(top-right), 5 (bottom-left) and 6 (bottom-right).

Fig. 7. Maps from the RoboCup Rescue competition: maps 7, 8, 9 and

to mapping errors. A low coverage value also means that
the consistency calculation will often miss the corresponding
barrel of a fiducial pair, thus generating a low score. If there
is, on the other hand, just one pair with a good consistency,
the score will be very good. So for maps with a good
coverage it is more challenging to get a good consistency
value. This is less of a problem with the bigger maps with
more fiducials (or a higher fiducial density).

Table II shows the results of the human judgment of the
maps. This judgment was not done using the fiducials but
using the mapped area (for coverage) and locations and
consistencies of walls. As mentioned before, this used to
be the method of choice for judging maps in RoboCup
Rescue in the years before due to a lack of better alternatives,
especially as the generation of ground data for comparison

TABLE I
SCORES FOR THE MAP ATTRIBUTES FROM THE FIDUCIAL MAP METRIC.

Map | Coverage | Relative Consistency Average
Accuracy | Short-range | Long-range
1 56% 75% 100% 0% 60%
2 100% 97% 100% 100% 99%
3 44% 94% 100% 0% 63%
4 67% 100% 100% 100% 89%
5 33% 100% 0% 100% 61%
6 67% 71% 38% 25% 57%
7 56% 95% 100% 0% 67%
8 33% 67% 75% 0% 46%
9 44% 81% 100% 50% 67%
10 449 100% 100% 0% 65%
TABLE II

ATTRIBUTES FOR THE MAPS APPROXIMATED BY A HUMAN JUDGE.

Map | Coverage | Relative Consistency | Average
Accuracy (Topology)
1 80% 50% 70% 67%
2 100% 90% 90% 93%
3 50% 50% 70% 57%
4 60% 90% 90% 80%
5 40% 50% 90% 60%
6 50% 40% 50% 47%
7 50% 90% 90% 77%
8 30% 60% 80% 57%
9 60% 70% 80% 70%
10 40% 90% 90% 73%

would require a lot of effort. This human judgment of the
map quality is of course quite subjective, but the ranking
generated out of it should reflect the actual map attributes
quite well.

The results of the fiducial algorithms and the human
scoring are compared in Table III. The first rank in each
cell is the one gathered with the Fiducial Map Metric (e.g.
tie between places 4 and 5 for coverage of map 1) while the
number after the slash is the judges rank (e.g. place 2 for
coverage of map 1).

The big differences (two ranks) for coverage for the maps
1, 6 and 9 are again due to the fact that for those maps
fiducials are often missing due to mapping inaccuracies.
In so far the fiducial metric is even advantageous to the

TABLE III
RANK COMPARISON. THE FIRST RANK IS THE ONE CALCULATED WITH
THE FIDUCIAL MAP METRIC WHILE THE RANK AFTER THE SLASH IS
THE ONE FROM THE HUMAN JUDGMENT.

Map | Coverage Relative | Consistency | Average
Accuracy | (Topology)

1 4-5/2 8779 4-6 / 8-9 8/6
2 1/1 4/1-4 1-2/1-5 1/1
3 6-8 / 5-7 6/7-9 4-6 / 8-9 6 /89
4 2-3/3-4 1-3/1-4 1-2/1-5 2/2
5 9-10/8-9 | 1-3/7-9 4-6 /1-5 717
6 2-3/5-7 9/10 9/10 9/ 10
7 4-5/5-6 5/1-4 7-8/1-5 3-4/3
8 9-10 / 10 10/6 10/ 6-7 10/ 8-9
9 6-8 / 3-4 7175 3/6-7 3-4/5
10 6-8 / 8-9 1-3/1-4 7-8/1-5 574




human judgment since only area that has been properly
mapped without errors should be counted for the coverage
calculation.

For the relative accuracy the values for maps 5 and 8 differ
significantly. This is due to the fact that those maps are really
small. The few (3) fiducials for map 5 are actually at the right
places while the subjective appearance of the map is not so
good. The walls for map 8 overlap quite well with the ground
truth, but some of the actual fiducial positions are off.

The consistency values differ to up to three ranks. This is
due to the relatively low amount of fiducial pairs (two for
each short and long range) which yield to extreme results
depending on whether the pair is complete or now. For the
maps with greater coverage in the of the full sized arena this
is effect is less prominent and the results are thus better.

Nevertheless, the average of the results delivers a fairly
decent result. As can be seen in Table III, the actual rankings
for the averages correspond quite nicely, having a rank
difference of one in four cases, of two in two cases and
the same rank for four maps.

V. CONCLUSIONS

This paper proposes a novel approach for map evaluation:
the Fiducial map metric. The different attributes of this
metric are presented and exercised on maps gathered during
and after the RoboCupRescue World-Cup 2010 in Singapore.
The resulting numbers for the different attributes and maps
support the Fiducial approach.

One big advantage of the Fiducial approach is the low
amount of ground truth information needed in order to
compute a score, especially there is no need for a detailed
complete ground truth representation of the environment. In
the proposed approach, just the fiducial positions relative to
each other have to be provided. If the Global Accuracy is to
be calculated the fiducial positions also have to be known in
a global reference frame. If only the Local Consistencies are
to be scored, in the proposed wall-barrel-system, the only
information needed is the thickness of the walls. The metric
can be fully automated while still allowing quick quantitative
assessments of the map quality by just looking at the image
of the map.

The only part of the maps actually evaluated are the
fiducials. Thus, as long as the fiducials are detectable in
the map, all other mapping errors like noise or broken parts
do not effect this algorithm. This metric does not rely on
naturally occurring features, although those could be used if
they are dense and large enough. A disadvantage of using
natural features, such as rectangular corners is, that there are
often ambiguities which corner of the environment is shown
if the maps contain big localization errors. That is something
which can be avoided with not so dense and skillfully placed
fiducials. Natural features also do not allow for the very easy
measurement of the local consistencies as do the cut-in-half
barrels on either sides of a wall.

But this is also the biggest disadvantage of the Fiducial ap-
proach, meaning that only environments with such fiducials
can be scored. On the other hand, this avoids that the method

has to rely on special assumptions about certain environment
properties that would have to serve as natural features.

The work presented here works in mainly planar scenarios.
For more difficult terrain like piles of rubble a 3D map
representation is needed. If fiducials are detectable in those
3D maps this map scoring method can be easily applied to
3D. This remains future work for now.
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