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Abstract— This paper presents an approach to classify objects
using 3D sensor data and an evolutionary algorithm. An impor-
tant by-product of this classification is, that additionally certain
properties and the pose in space of this object are determined.
The Reproductive Perception Paradigm is used utilizing an
evolutionary strategy. Two sub-approaches are discussed using
different representations of the 3D data. The first one uses depth
images while the second one uses point clouds stored in a special
octree. The approaches will be demonstrated in experiments with
simulated and real data.

I. INTRODUCTION

Object classification and recognition is a challenging and
not yet fully solved problem in computer science and espe-
cially in robotics. The ability to reliably determine not only
that but which objects are surrounding a robot permits it
to deliberately reason and (inter-) act with its environment.
This is especially true if not only the presence of certain
objects can be detected but also their important properties
like, for example, their pose in space. The proposed algorithm
approaches this problem using the reproductive perception
paradigm utilizing three-dimensional data and an evolutionary
approach.

First the 3D sensor which was in mind when developing
these algorithms, the SwissRanger, will be shortly introduced
as well as the data-structure to store its readings, the Fast-
OcTree (FOT). Next the reproductive approach using an evo-
lutionary strategy and its fitness functions will be presented.
The classification and simulated as well as real experiments
conclude this paper.

II. SWISSRANGER 3D DATA

The SwissRanger SR-3000 is a time-of-flight camera, i.e.,
a technology that is much less established than laser scanners
or stereo cameras. An earlier version of this sensor is char-
acterized in some detail in [1]. The technological principles
on which this sensor is based are described in [2]. Roughly
speaking, this type of sensor uses an array of cells similar
to an imager of a camera to measure the phase-shift of
emitted modulated infrared light. By this, a time-of-flight
based distance measurement can be done simultaneously in
each cell of the array. The sensor generates distance images as
well as intensity images. The first correspond to the measured
phase-shift, the second to the amplitude of the signal (see
figure 1). One main advantage of this sensor is its large frame
rate of up to 50 fps. The underlying technology of the SR-3000
is relatively young and far less established than laser range

finders or stereo cameras. Though promising, there are still
many drawbacks like the wrap-around error or the extremely
small field of view, which is only 47° x 39° due to the need
of the LEDs to illuminate the scene. Other disadvantages of
this sensor are the great sensitivity to ambient light conditions
and reflections.

Fig. 1. Depth and Intensity Image of a chair taken with the SwissRanger

For the first approach depth images are used (see figure 1).
For the algorithm the depth is encoded as a gray-scale value.
Using straight-forward geometry 3D voxels can be computed
from the depth image. All the valid pixel in the image form
a point cloud which is being inserted into an octree for the
second approach. Since the proposed algorithm only needs the
binary information whether a cell is occupied or not a special
fast octree implementation which also allows for very efficient
nearest neighbor search has been developed.

III. A FAST OCTREE IMPLEMENTATION

The well known octree data structure [3], [4] is a means of
storing spatial occupancy information very memory-efficiently,
especially more efficiently than in the default solution, a
3D grid, which also occasionally called regular mesh. More
precisely, we are interested in a data-structure where for every
cell (z,y, 2), a value occ € {occupied, free} has to be stored.
The word “octree” is formed from “oct” (short for “octant’)
and “tree”. As the name suggests, information is stored in a
tree. An octree is able to collapse nodes. This happens when
all sibling nodes are either “occupied” or “free”. Then, this
node will be represented in the parent by a single value, saving
memory.

The FastOcTree (FOT) is an implementation of an octree
optimized for speed [5]. The key design feature is the distinc-
tion between leafs of the octree and leafs of the FOT: The



(Algorithm IIL.1: NEARESTTREENEIGHBOR(node) )

procedure NEARESTTREENEIGHBOR(node)
if node.hasChildren() and not at maximum depth
node «— getNextChild(node, point)
NEARESTTREENEIGHBOR (node, point)
else upper Bound «— 4 - edge Length(node)
SEARCHCHILDEN(node, upper Bound)

then

procedure SEARCHCHILDEN(node, upper Bound)
if not node.hasChildren()

upper Bound < manhattan distance to filled
cell closest to point

nearestPoint < said cell

else if any point in this node falls in current upper bound

children = list of children, ordered by
distance to point

for all child € children

SEARCHCHILDREN(child, upper Bound)

then

then

latter store the values for eight of the former in a bitmap, thus
saving one level of nodes.

FastOcTreeNode is used for the nodes as well as for the
leaves. It only has a single one-word member, a union. This
union can either be used as a pointer or as a bitmap. As a
pointer, it points to a struct containing all children as member
variables. As a bitmap, it stores the occupancy of its children.
Which role a node plays depends on whether it is a leaf or not,
which can be determined by the value of the least significant
bit of the union.

As an inner node the variable is a pointer. The class
FastOcTreeNode is 4 byte memory aligned, thus ensuring that
at least the two least significant bits of pointers to objects of
this class are always 0. For FOT leafs, on the other hand,
the union stores a bitmap. As an inner octree node always has
eight children, only the most significant byte is used. The least
significant bit is always set to 1.

The class FastOcTree manages the tree of FastOcTreeNodes.
No coordinates and edge lengths are stored in the nodes,
these have to be maintained by this class. Both iterative and
recursive tree traversals are used, depending on the task at
hand.

1) Bresenham’s algorithm: In order to generate artificial 3D
sensor data using 3D models, the Bresenham’s line algorithm
as well as a 2D Bresenham-like conic drawer are implemented
for the FastOcTree. The Bresenham line and also the cone are
very fast by using almost no multiplications, no divisions nor
square-roots or trigonometric functions. Combinations of the
line and the cone algorithm are used to occupy more complex
primitives like boxes, cylinders or spheres.

2) Nearest Neighbor: Nearest Neighbor will be used to
calculate the similarity between two FOTs. That means, given
a particular cell in one data set, the closest cell with the same
property must be determined in a second data set.

Due to the hierarchical structure of the octree, we can
quickly find all filled cells and only compute the nearest neigh-

bor distances for only those points. For this an algorithmic
optimization is introduced, which extents the work of Hoel
and Samet on nearest neighbor search on line segments in a
quadtree [6]. In a dynamically growing octree, the presence of
a node implies that within the boundaries of that node, there
is at least one leaf node. Thus, we can immediately deduce
an upper bound to the volume we have to search in the tree.
Potentially, a lot of subtrees can be pruned from the search that
lie completely outside this bound. While searching the nodes
which do fall within this bound, we can progressively tighten
said bound when we encounter leaf nodes in lower levels. This
way we prune even more nodes from the search. Exploiting
this property of octrees makes this algorithm very efficient.
There are two phases for our recursive implementation of this
algorithm as shown in III.1 : First, finding the octree node
from which we want to start the search and finding the upper
bound on the subsequent search. Second, we search this node’s
children and this node’s parents children, and so forth, until
we reach the root node. During the search, we progressively
tighten the upper bound to correspond to the closest filled cell
found so far, ensuring the pruning of subtrees that lie outside
of the current bound.

In addition to these optimizations in the implementation, a
special conceptual optimization is introduced, namely the so-
called LineBurstAccess. This heuristic starts the traversal to
access a specific node from the last visited one. This strategy
is more efficient than the default to start from the root as
geometrically close points are usually consecutively accessed.

IV. REPRODUCTIVE PERCEPTION PARADIGM

Computer science approaches to perception are dominated
by the view that perception is a process that takes large
amounts of data from physical sensors like the pixel array
of a camera and feed this data through various stages of
processing that each lead to a reduction of the data. This holds
especially for computer vision [7], [8], [9], [10], [11] but also
with respect to more explicitly spatially oriented topics like
map building [12]. The main idea of so-called reproductive
perception is to do the opposite (figure 2) [13]. Perception is
seen as a process, respectively a series of processes, where
based on a small model large amounts of data are generated
that match the incoming data from the sensors. The processes
involved in perception so to say try to reproduce the data
delivered by the sensors.

A (world-)model as a compact representation of the environ-
ment that is first generated and later on updated by perception
is hence somewhat special within this paradigm. It is not a
collection of passively descriptive data, but it can be thought
of as a code in a kind of programming language that actually
generates data.

So, a model is not constructed by stepwise processing of
sensor data, but it itself generates large amounts of so-called
pseudo sensor data, which is matched against the current
sensor data. This generation of the pseudo-sensor data is
denoted as rendering. By measuring the similarity between
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Fig. 2. Common computer science approaches to perception process sensor
data in various stages that lead to a data reduction (left). The main idea of
reproductive perception is in contrast that perception involves processes that
generate data that matches the huge amounts of data delivered by the sensors
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Fig. 3. The implementation of a reproductive perception presented here uses
evolutionary learning. A population of evolving models is used to learn a
representation that generates so-called pseudo sensor data, which should be
as close as possible to the actual sensor data.

the actual sensor data and the pseudo sensor data, models can
be generated and adapted.

This basic idea of reproductive perception is not tied to
specific mechanisms. Nevertheless, a concrete implementation
is presented here in form of an evolutionary learning scheme
(figure 3). As mentioned, a model representing of the envi-
ronment can be thought of as code in a special programming
language. Models are hence programs that can be executed and
that generate data. This data is then compared by a metric to
the data from the sensors. This metric measures the similarity
between the internally generated data and the data from the
sensors. This measure of similarity can then be used as a
fitness function in an evolutionary algorithm.

V. EVOLUTIONARY CLASSIFICATION

The evolutionary approaches Evolutionary programming
[14], Genetic Algorithms [15] and Evolution strategies [16]
have been developed contemporary in the 1970’s. Evolutionary
Algorithms are search methods which draw inspiration from
the natural search and selection processes leading to the
survival of the fittest individuals. They use a probabilistic
search mechanism which has a high probability of locating
the global optimal solution although several local optimal
solutions could exist as well [17].

A. Experiments

In this section two fitness functions for 3D data are com-
pared in two experiments. In these, artificial scenes have to
be recognized. The goal scene to be recognized is given in a
format suited for the used fitness function. For the evolutionary
algorithm, each individual represents a scene. This scene
usually consists of a number of object models. The population
is evaluated by calculating a fitness value for every individual.
This value is a measure for the similarity between the goal
scene and the scene that the individual represents. Different
similarity functions are used for the two approaches.

The algorithm for one evolution is summarized here:

Simple Evolutionary Algorithm () {
randomly initialize population;
evaluate population;
while termination criterion not reached {
select parents for next population;
clone parents and perform mutations;
evaluate population;
}
}

The classification algorithms used here randomly initialize the
population and then evaluate the population by applying a
similarity function between the scene representation of the
individuals and the goal scene. Parents for the next generation
are chosen in the selection process and then cloned and
mutated. The new population is evaluated and the loop is
repeated until the termination criterion is reached, which in
this case is the number of iterations. For the experiments 255
generations have been calculated. The roulette selection is used
as selection method.

B. Depth Image Fitness Function

In order to optimize for the goal scene, the algorithms use
fitness functions which reward similarity of the image of an
individual with the goal image. This is done by implementing
a fitness function that only distinguishes between empty and
occupied (by one of the primitives) voxels.

The depth image of the generated models is created by
using OpenGL. The model is rendered into a scene and
the view-port is set to the properties of the SwissRanger.
For the depth images all the depth-distances between two
corresponding pixel in both images are averaged. A fixed
penalty for uncovered areas is used, where uncovered means
error pixels or, for the generated models, background pixel.
This value then directly represents the similarity where zero
means perfect fit and higher values are worse.

C. 3D Fitness Function

For computing the similarity between two octrees the near-
est neighbor search is used. The similarity function is derived
from the 2D image distance function v, which is based on
accumulated minimal Manhattan distances between cells in
the two data sets that share the same properties [18]. The 2D
version defines the fitness between two 2D arrays m; and mo
as:

p(mi,ma) = > cod(mi,ma,c) +d(ma,my,c)



2y [pg]=c Min{md(p1,p2)|ma[pa]=c}
#c(ma)

d(my,mag,c) =
where:
o C denotes the set of values assumed by mq or mo,
o my[p] denotes the value ¢ of array ml at position p =
(@, 9).
e md(p1,p2) = |x1 — x2| + |y1 — y2| is the Manhattan
distance between points p; and po,
o #c(my) = #{p1|m1[p1] = ¢} is the number of cells in
m; with value c.
In the 3D version the Manhattan-distance is now defined as:
md(p1,p2) = |z1 — 2| + [y1 — Y2 + |21 — 22|.
The most important difference to the 2D approach is, that the
distance map is not used. Generating a distance map would
mean, that the whole octree would have to be expanded, which
is extremely expensive both computationally and with respect
to memory size. Instead the Manhattan-distance is calculated
for all voxels by searching in the FastOcTree. The special
structure of the octree is, as already mentioned, very helpful
for finding upper boundaries for the next occupied cell, which
allows, together with other optimizations, a fast search for the
nearest occupied voxel. Once the voxel is found the Manhattan
distance is easily calculated using the above formula.

D. The Classification

The experiments all define different classes by placing three
primitive objects in one scene on position one, two and three.
There are thus 216 different classes (three primitives of six
different shapes). The primitive objects have attributes which
vary from individual to individual, for example the size, the
orientation and the position. Two scenes are regarded as being
in the same class if their first, second and third primitives
are from the same class, although their attributes can be quite
different. Those primitive classes are box, ball, cross, cylinder,
T-shape and L-shape. The scene does not only differ in the
objects themselves but also in the position, the size and the
rotation of each primitive - within certain bounds (see figure
4). Due to this freedom the primitives have a certain chance
to overlap.

The classification tests every possible class with the evolu-
tionary algorithm. For each of these classes, one evolution is
started in which the population is initialized with individuals
from this class. The evolution then mutates the attributes of
these scenes such that an optimal fit between the representation
of the goal scene and the scenes in the population is reached.
The fitness value of the best individual is then taken as the
similarity value between this class and the goal-class. The
similarity is calculated for each class. The class with the
highest similarity is then regarded as the class in the goal
scene (provided that it reached a sufficient similarity value).

For each experiment 400 evolutions were run. In 200 tests
the populations were initialized with scenes from the same
class as the goal-class, while in the other 200 runs at least
one of the primitives was different. This great number allows
for good statistical proposals.

In order to actually classify we specify a similarity value
threshold which evolutions of a class have to reach to be

Fig. 4. On the left side the primitives are visualized. On the right side the
respectively occupied cells of the octree are shown as a point-cloud.

classified (see figures 6 and 8). This threshold value b was
computed using the experiments and is defined to be somewhat
in the middle between the average correct and the average false
example:

b= (UAUe'r'ageFalse - UA’Ue’rageCo'r”rect) x0.3 +UAvev'ageCor7'sct
Now all results are compared to this threshold and for every
single evolution the class is defined.

VI. SIMULATION EXPERIMENTS

For these experiments a special representation was devel-
oped which is capable of multiple output formats. The shapes
can be rendered with OpenGL and exported as X3D and in
text format. The most important feature of this representation
is, that it can render the surface of those models into a FOT
in order to use the presented 3D similarity as fitness function.

As mentioned there are 216 different classes with which the
individuals can correspond. The problem to be solved is to
identify the class of such a (randomly generated) individual.
That means that the input available for the program is just
(simulated) goal sensor-data of this goal individual.

During evolution the primitives of the individuals inside the
population will adjust their size, position and their rotation to
the goal scene. But only individuals which are in the same
class as the goal can optimize their values such that a perfect
fitting value can be achieved. Those individuals are then exact
models of the goal and provide, in addition to the class of the
goal, also information about the position, size and rotation of
its primitives. The Evolutionary Strategy that is being used is
a basic version without any improvements like adoption of the
mutation strength.

The initial population always consist of individuals which
are all in the same class. Two different scenarios were per-
formed. In the first test run the initial class was the same as
the goal class, in the second test one of the primitives always
differed from the goal individual. In figure 5 the development
of the fitness values of an example evolution is displayed
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Fig. 5. Development of the fitness during an example evolution

(please note the logarithmic scale on all diagrams). Best fitness
shows the development of the fitness of the best individual.
The graph is convergent because the plus selection strategy
was implemented which keeps the selected parents in the
population. Average fitness is the average fitness value of all
individuals in the population while Worst fitness is the value
of the worst fitness in the current population.

The population size is 30. Six parents plus the best parent
are selected for breeding using the roulette selection method.

A. Results of the depth image approach
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Fig. 6. Depth image approach: Comparison with same and different shapes

The results for the evolution of the depth image approach
can be seen in figure 6. It shows the average and best (of the
200 runs) similarity (= fitness) between the goal individual
and the generated individuals - once for the case where the
classes are equal and once where they differ. The threshold
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Fig. 7. Depth image approach: Classification results

that is used for classification is also shown. The results of the
classification are visualized in figure 7: over 70% are correct
after 100 generations. After 255 generations 75% are reached
with about 12% false positives and about 12% false negatives.
As can be seen in the figures the classification quality reaches
considarable levels fast and then improves only slowly.

B. Results of the Octree Approach
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Fig. 8. Octree Approach: Comparison with same and different shapes

The results for the Octree approach (figures 8 and 9) are
slightly better then those from the depth image algorithm:
After 100 generations the classification is correct in about 75%
of the cases while this number reaches over 86% after 255
generations.

VII. CONCLUSION AND OUTLOOK

The experiments show that both approaches achieve quite
good results. The 2D depth image approach computes fast but
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Fig. 9. Octree Approach: Classification results

relies on the fact that the 3D data is present as a projection
of 2D data. It can thus not be used for general point clouds.
Being able to work on general point cloud data is one main
advantage of the 3D FOT approach. Thus it can use point
clouds generated out of depth images taken from different
positions or from actuated LRF. This way occlusions are even
less a problem as they are already in the reproductive approach
in general.

A. First real world results

In future real world data will be used to test and compare
both algorithms - a first experiment can be seen in figure 10.
Possible objects to be classified are, for example, stairs, chairs,
tables, cupboards or humans. These classification algorithms
go nicely hand in hand with 3D mapping algorithms. They
can replace simple planes generated for the classified objects
in the 3D map with their models, thus making the map more
accurate and readable.

The data of the stair for figure 10 was gathered with the
SwissRanger. A point cloud which has already undergone
some preprocessing to reduce the noise can be seen in which
a model of a stair has been fit into by the 3D evolutionary
classification algorithm. The algorithm not only detected the
presence of a stair but also its spatial pose and properties like
number of steps, the step width and height and depth as well
as the overall inclination of the stair.

Fig. 10. The point cloud of a stair gathered with the SwissRanger and a
stair model created with the 3D reproductive perception approach.
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