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Abstract: Topological maps have many applications in robotics. Matching two topological
maps from the same environment can be used for map merging, place detection, map evaluation
and other purposes. In this paper we present an approach to match two corresponding edges
from two Topology Graphs to each other based on the actual path with which the vertices of
the edges are connected in the underlying 2D grid maps. We perform experiments with two
artificial maps as well as with four maps from the RoboCup Rescue WorldCup 2010.
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1. INTRODUCTION

In many robotic applications mapping is an essential task
for mobile robot systems. The generated maps are models
of the environment which are often represented as 2D
grid maps. This image like map format is quite detailed.
Topology Graphs are more abstract representations which
only comprise of places and connections between them.

There are many applications for topological maps, for ex-
ample for map merging Saeedi et al. (2014), place detection
Beeson et al. (2005), or planning Thrun (1998). There are
also different ways to generate topological representations
from 2D grid maps, for example based on thinning meth-
ods Ko et al. (2004) or Voronoi Diagrams Kolling and
Carpin (2008), Lau et al. (2010).

All maps have some degree of error which should be
measured Schwertfeger et al. (2011). Recent work on map
quality assessment matches the topology graph of a ground
truth map to the topology graph of robot generated
maps Schwertfeger and Birk (2015a), Schwertfeger and
Birk (2013). Those algorithms base the matching on a
similarity metric of the vertices and a common sub-graph
isomorphism. In this work we explore the possibility to
match the edges of the Topology Graphs instead of the
vertices. The resulting edge matching is useful not only
for map evaluation but also to other applications like map
merging or place recognition.

This paper is structured as follows: Section 2 provides a
short review of related work while Section 3 introduces
definitions and the algorithm. The experimental validation
is presented in Section 4 and is followed by the conclusions.

2. RELATED WORK

Previous work on path or skeleton matching mainly follows
three different approaches:

e Map matching with shortest geodesic paths

e Contour partitioning and skeleton pruning

e Shape matching using Bayesian formula with skeleton
similarity

In Bai and Latecki (2008), only the endpoints of a path are
considered. As the endpoints are always on the contour,
they are indexed in a clockwise orientation. The least
distances through the skeleton path for each endpoint pair,
which is called ”shortest geodesic path”, are calculated,
and vertices are sampled from the path equidistantly. A
normalized vector is used to save the radii of each sampled
vertex’s maximal disc. With this vector, the similarity be-
tween two paths can be calculated. For skeleton matching,
the similarity matrix between a certain vertex v; from map
A and another vertex v} from map B is calculated by going
through all shortest geodesic paths which are connected
to the vertex v; from map A and calculating the similarity
with all shortest geodesic paths which are connected to the
vertex v} from map B.

By applying optimal subsequence bijection (OSB), some
outlier endpoints are filtered out, and the dissimilarity be-
tween two endpoints are obtained. A dissimilarity matrix
is then generated by going through all endpoints in both
map A and map B. By using the Hungarian algorithm,
each endpoint from map A finds its best match in map B.
It has to be noted that in this approach the matching of
connection vertices which are connected to 2 edges and the
junction vertices which are connected to 3 or more edges
are not taken into account because the endpoint which is
connected to only 1 edge is always on the contour, which
saves a lot of information about the shape of the object
and this is very important for matching.

If applied to the figures like horses or humans, whose
skeletons have many branches on the contour, and each
vertex on the algorithm finds the shortest geodesic paths
to the other on the contour, the approach works well.
For robot maps, there may be very few dead-end vertices
on the contour, and the paths in the maze-like map are
also complicated. So the shortest geodesic path between
vertices on the contour seems not suitable for robotic map
matching.

In their another approach Bai et al. (2007), skeleton maps
are used for contour partition. The Discrete Curve Evolu-
tion (DCE) Latecki and Lakdmper (2000) is applied to the



contours of objects in digital images. It uses the contour
pixels to form a polygon and each time a contour vertex
with the least contribution to the contour is removed. At
the same time, skeleton pruning is carried out, in which
only the skeleton points whose generating points belong
to different contour partitions are reserved. By setting a
certain threshold to stop the pruning iteration and re-
moving concave vertex on the contour and the skeleton
edge connected to it, several main skeleton edges and the
partition of the contour are obtained.

Since only the main part of the skeleton map and its convex
hull (in the form of polygon) is preserved, this approach
can be further used for shape classification (by matching
the pruned skeleton map).

In this approach, the figure always has a contour (such
as leaf), contour partitioning and skeleton pruning is used
to get the main skeleton of it. In contrast, the skeleton
of robotic maps is much more complicated. Some paths
are in a room, others connect one room to another. This
approach can only be applied to the paths in a certain
room in the map, since room has a contour, but it can not
applied on the whole map.

Yang and Sze (2007) use the longest weighted path in a
directed acyclic graph to match two graphs, and find the
top K suboptimal paths in polynomial time. This approach
is used in biology, and matches the abstract graph and
paths.

3. ALGORITHMS

First we define a terminology for the following sections.

e Graph: A graph is an ordered pair G = (V,E)
comprising a set V of vertices or nodes together with
a set E of edges or links.

e Topology Graph: A graph in which vertices repre-
sent locations and edges which represent the fact that
there exists a drivable route between two vertices.

e Vertex: A node in the graph. It is attributed with
the metric location as x, y coordinates.

e Edge: A (drivable) connection between vertices in
the graph. Each edge is attributed with a metric Path.

- Half Edge: In a Doubly Connected Edge List, a
half edge is a directed connection between two
vertices.

- Twin: Each half edge has one twin. A half edge’s
source vertex is its twin’s target vertex and vice
versa.

e Path: Every edge is attributed with exactly one path.
The path represents the metric information of a free
(drivable) way between two vertices. A path is a small
directed graph consisting of a series of edges which
are connected in a (possibly curved) line between the
source vertex and the target vertex of the parent edge.
Each vertex in the path is attributed with its metric
X, y coordinates.

The path matching works on the Topology Graphs in-
troduced in detail in Schwertfeger and Birk (2015a) and
Schwertfeger and Birk (2013). There, a Voronoi Diagram is
used to generate a topological graph from a 2D grid map.
After some filtering of vertices and edges, the topological
graph can directly be used to match two Topology Graphs

(b) Map II: Artificial map with man-made noise
and difference around E and F.

Fig. 1. Artificial 2D grid maps (black) with Topology
Graphs (labeled vertices: purple, edges: red dotted,
paths attributed to edges: blue)

with each other. In that work the matching was based on
similarity metric of the vertices and a common sub-graph
isomorphism. In contrast, this paper explores the matching
based on the edges of a topology graph, or more precisely
based on the path attributed to each edge.

Instead of using a Voronoi Diagram other methods of
generating the Topology Graph are possible, for example
thinning methods Ko et al. (2004). The Topology Graph
generation used here works best in relatively confined en-
vironments. In open areas graphs often differ between dif-
ferent maps and it is thus difficult to match those graphs.
Our work on generating Topology Graphs which represent
such open areas as vertices in the graph ("room detection”)
and thus alleviate this problem will be published soon.
Also it should be noted that the paths used here are not
paths that the robot actually traversed. Our edges/ paths
are connections between vertices have been found to be
possible to drive for a robot - by evaluating the metric
grid maps that are the sole input to this algorithm.

Please observe the definition: An edge is a topological
graph element directly connecting two vertices ("in a
straight line”), while the path is a metric attribute of an
edge which forms (an often curved) line in the free space of
the environment between the two vertices of the edge. For
example in Figure 1(a) there is an edge between vertices
1 and 3 (red dotted line) and a curved path attributed to
this edge (blue line). In the other figures the red dotted
edges are omitted. Also note that the topology of the graph
is undirected, but the graph is represented using directed
half edges and each half edge has a corresponding twin in
which the source and target are switched.

3.1 Path Matching

In the following algorithms we assess the dissimilarity of
two paths and thus also the dissimilarity of their associated
edges. The path dissimilarity is calculated by sampling
each path equidistantly. The result is a list of (z,y) 2D
coordinates. After sampling, the 2D Horn’s algorithm



Horn (1987) is applied in order to find the best rotation,
translation and scaling between the vertices sampled from
two different paths that minimizes the error between them.
The L2 Norm is used to define the error. For each path
from the map generated by the robot, the least-error path
in the ground truth map is found, which is recognized as
a match.

Generally, since the matching result will be used in later
stages of the map matching algorithm, within a topological
graph, the long and curvy paths are more distinctive than
the straight and short ones. Thus we are filtering out
short and straight paths (which are quite common) and
concentrate on the longer and more curvy paths.

3.2 Full Path Comparison

When matching two maps A and B we generate the two
corresponding Topology Graphs g(A) and g(B). The edges
in the graphs are all attributed with one path each.

Each path is cut into N — 1 pieces, and each one has the
same length of 1/N of the path’s whole length. In total
we will have sampled N points per path (including source
and target location). We employ 2D Horn’s for calculating
the similarity between two paths K and L. Horn’s works
with matched point lists. So the i-th point K; from K
is matched to the i-th point L; from L for all points
from ¢ = 0 to ¢ = N. The L2 norm as calculated by
Horn’s algorithm is the residual error and then used as
our dissimilarity value.

For the paths of all half edges of g(A) we calculate the
dissimilarity to the paths of all half edges of g(B), resulting
in a matrix with I rows (I is the number of edges in g(A))
and J columns (J is the number of edges in g(B)).

From each row in this table, a minimal value of the L2
norm and the corresponding path in map g(B) can be
found so that each path from g(A) can be matched to a
certain path in B.

3.8 Partial Path Comparison

There can be paths in g(A4) that are shorter or longer than
the corresponding path in g(B) because the map is only
similar around one of the vertices but differs in the second.
In this case, if the L2 norm of Section 3.2 is used, most
likely the corresponding path cannot be found.

To avoid this, the difference between the lengths of a path
pair can be calculated by dividing the length of the longer
path by the length of the shorter path.

In the partial path comparison 1/N of the length of the
shorter path is used to cut both paths for sampling the
vertices. That means only the subpath starting from the
source of the longer path with the same length of the
shorter path is used for matching. After sampling, the 2D
Horn’s method is used to calculate the partial L2 norm.
Again a matrix with the dissimilarity values of all edges
between the two maps is created.

3.4 Filtering

Straight paths always have a very low L2 norm in compari-
son and are thus not very discriminative. Also paths which

Path Length Curviness Path Length Curviness
1—3 44.9 1.00 18—20 64.2 0.80
252 110.7 0.00 19—21 45.2 0.81
2—3 95.3 0.65 20—24 93.8 0.54
2—9 63.3 0.97 21—22 37.0 0.96
3—5 45.4 0.96 23—24 26.0 0.98
4—5 76.4 0.99 24—27 79.4 0.90
4—6 24.8 0.99 25—30 99.2 0.97
4—7 71.8 0.60 26—32 78.2 0.71
5—13 39.4 0.97 27—29 25.8 0.98
8—9 48.8 0.99 27—30 38.1 1.00
9—21 117.6 0.78 28—32 41.6 1.00
10—15 32.6 0.96 30—31 11.3 1.00
11—20 69.0 0.98 30—33 41.7 0.96
12—15 31.4 0.88 32—33 178.9 0.43
13—16 16.2 1.00 32—35 93.1 0.85
13—17 89.4 0.85 33—34 20.3 0.99
14—16 19.8 1.00 35—36 24.5 0.98
15—17 12.9 1.00 35—38 24.1 0.96
16—19 59.5 0.78 36—37 40.0 0.66
17—18 64.2 0.47 36—39 23.2 0.99
18—19 139.1 0.82

Table 1. Length and curviness of edge paths
from the ground truth Map IIT (Figure 2(a))

Path | Length Curviness Path | Length Curviness
1—3 134 0.79 AC 138 0.79
2—3 133 0.79 BC 139 0.77
3—4 57 1.00 CD 53 0.96
4—5 134 0.79 DE 97 0.77
4—6 133 0.79 DF 132 0.57

Table 2. Length and curviness of the edge
paths from the artificial maps. (Figure 1)

are very short are typically very similar. That is why we
filter short paths out before applying the path comparison.

In human made environments we often have straight paths.
Straight paths cannot be differentiated by their shape
and we thus are also filtering out paths which have a
low curviness. The curviness ¢ of a path is calculated by
dividing the length of the geometric distance d between
the source and the target vertices of an edge by the length
[ along the path. Since we work in a planar 2D geometry
the following always holds: d < [. Thus ¢ = % is guaranteed
to always be between 1 (straight) and 0 (very curvy).

4. EXPERIMENTS

We do experiments with two sets of maps. Figure 1 features
Map I and II which where artificially created to showcase
certain features of the algorithms. Maps III through VI
(Figure 2) in contrast are real world maps created during
the RoboCup Rescue Worldcup 2010 in Singapore Jacoff
et al. (2012). They were created using systems described
in Pellenz and Paulus (2010), Milstein et al. (2011) and
Kleiner and Dornhege (2011). Those maps are also used
in Schwertfeger (2012) for map evaluation.

Table 1 shows the length and curviness of the ground truth
Map III (Figure 2(a)).

4.1 Artificial maps

We created a ground truth Map I (Figure 1(a)) and a
modified Map II to showcase some of the features of the
path dissimilarity. We added some noise to Map II to show
the feasibility of the approach with imperfect data and
also changed the topology on the right side. The top right
part of Map II is shortened to highlight the properties of
the partial path matching while the bottom right part has
approximately the same length with only the path being



bend. In the following experiments we always sample 100
points per path (N in Section 3 is set to 100).

Please note that we use Arabic numbers for the vertices
in the ground truth map and upper case letters for the
vertices in the other maps.

Table 2 shows the length and curviness for Map I and Map
II. Note that only one of the twins is included in the table
- the other twin has the exact same values. The curviness
values correspond to the expectations: 3 — 4 are perfectly
straight (value 1) while CD is only close to 1 (0.96) because
of the noise. DF is much more curvy (0.57) than the other
paths (about 0.79).

The first fact to notice when looking at the dissimilarity
matrix (Table 3) of the paths of Map I and II is that there
are certain symmetries. The shape of path AC matches
1 — 3 as well as 6 — 4 (when rotated 180°). The path
similarity is calculated in a rotation independent way. This
is then also reflected in the results in Table 3 where AC has
very low dissimilarities for those two paths and actually
matched to the true one.

For DE and ED as well as DF and FD we can observe
significantly higher dissimilarities because their path shape
differs from the ground truth map.

For the partial path comparison only the path up to the
length of the shorter of the two paths are compared - start-
ing from the source vertex. We can note that especially
the values for CD, DC as well as the corresponding 3 — 4,
4 — 3 have very good matches to other paths. This is
because only a very short part of the paths is compared
- due to the short length of the center edge (about 40%).
For the further discussion we thus ignore those four paths.

The advantage of the partial path comparison is that DE
can be matched better to the symmetric matches 3 — 2
and 4 — 5 when compared to the full path matching
(dissimilarity value L2 of 1.98 versus 4.76). The twin ED
however does not match well in any case (7.82 partial
and 4.77 full) - which is expected because it starts at the
shortened end of the path.

In summary we have shown that the dissimilarity value L2
works quite well - it matches the incompatible path shape
DF, FD very badly when compared to the compatible
paths AC, CA and BC, CB (L2 of about 6.8 versus < 3.0).
This is true even though there is considerable amount of
noise in Map II. Furthermore we have shown that the
partial map comparison has better results for DE but not
ED. We have also given good justification for filtering out
short and straight edges.

4.2 RoboCup Rescue Maps

Figure 2 shows the maps used for the experiments with
real robot generated maps. They are from the RoboCup
Rescue WorldCup 2010 in Singapore. Map III is the ground
truth map to which we try to match the other three maps.

Because of the limited size of this paper we cannot
show experiments on more maps or include the full dis-
similarity matrices here. Those matrices are available
in the dataset on http://robotics.shanghaitech.edu.
cn/static/data/IAV2016/dataset.pdf. In the experi-

1—-3 3—1 3—2 3—4 4—3 4—5 5—4 46 6—4
AC 2.01 16.40 15.27 9.41 3.85 3.85 9.33 15.01 16.65 2.20
CA |16.38 2.01 9.41 15.29 3.85 3.85 15.03 9.33 2.20 16.63
BC | 15.86 10.12 1.20 17.49 4.41 4.41 17.23 1.11 10.18 16.11
CB|10.12 15.88 17.48 1.20 4.41 4.41 1.10 17.2 16.13 10.18
CD | 11.41 7.33 7.79 12,10 1.42 1.42 11.87 7.61 7.51 11.65
DC| 7.31 11.42 12.08 7.80 1.42 1.42 7.62 11.85 11.66 7.49
DE 7.61 17.84 18.85 4.76 4.92 4.92 4.85 18.58 18.10 7.58
ED |[17.83 7.61 4.77 18.88 4.93 4.93 18.61 4.86 7.58 18.09
DF [21.41 6.94 7.84 21.83 6.91 6.91 21.56 7.86 6.78 21.70
FD 6.95 21.43 21.81 7.84 6.91 6.91 7.86 21.54 21.72 6.79
AC 2.98 15.55 14.64 9.40 1.12 1.12 9.29 14.23 15.97 2.99
CA | 16.59 1.78 9.44 15.55 3.82 3.82 15.37 9.38 1.99 16.80
BC [ 14.74 10.05 2.15 16.52 1.11 1.11 16.09 2.15 10.16 15.16
CB | 10.05 16.56 18.04 1.16 2.73 2.73 1.30 17.88 16.71 10.11
CD 1.33 1.89 1.33 2.57 1.33 1.33 2.81 1.33 1.80 1.33
DC 1.33 3.12 1.33 1.44 1.33 1.33 1.55 1.33 2.89 1.33
DE 7.90 14.86 8.91 1.98 2.98 2.98 1.91 8.91 14.95 7.90
ED 8.87 3.52 7.82 15.17 1.50 1.50 15.11 7.82 3.35 8.87
DF | 21.16 6.80 7.85 21.63 2.00 2.00 21.46 7.86 6.49 21.16
FD 7.08 21.34 21.32 7.66 5.06 5.06 7.77 21.31 21.53 7.08

Table 3. L2 norm for the full path comparison
between Map I and Map II at the top and for
the partial path comparison at the bottom.

2—3

ments we applied the filter: Paths shorter than 40 are
filtered out as well as paths with a curviness of higher
than 0.95(for Map IV) and 0.9(for Map V and VI).

The following tables show the two best matches of the
unfiltered path from the robot maps (Map IV to VI) to
the ground truth Map IIT and the actual corresponding
path in Map III. The robot maps are smaller and in
certain areas also different (erroneous) from Map III. This
is why there are paths in the robot map that don’t have
a correspondence in the ground truth map. For those no
match nor similarity is given in the tables. For paths which
are filtered in Map III, but where the corresponding path
is not filtered out in the robot map, no similarity value for
the correct (but unfindable) match is given.

In Table 4 we can see the best matches of Map IV with the
ground truth Map III. We get 66% correct matches with
the full path comparison and 83% correct matches with
the partial path comparison. For the full path matching
FC, SQ, and their twins are mismatched. However, in the
partial matching only 2 out of 12 paths are mismatched.
Only CF, SQ are mismatched, but their twins match
correctly. It can be noticed that in both approaches all the
mismatched paths are parts of certain long paths in the
ground truth map, which do not exist in the other map
due to mapping errors. The partial matching approach
matches with the correctly represented starting vertices,
but of course fails for the other direction.

If we apply a hard threshold on the resulting dissimilarity
(L2) of lower than 0.7 we can achieve a 100% true positive
rate and 0 false negatives for both approaches without
filtering away any good match.

The results for the full path matching for Map V are shown
in Table 5. Path TV, FA, PO(there are two edges/ paths
between P and O - up and down) and their twins are
matched wrongly but differ significantly from the ground
truth due to errors in the map. IM and its twin are also
wrong - the correct match is the 2nd best match which is
very close in dissimilarity value. The result for the partial
matching is similar. When applying the 0.7 threshold
to the full matching method we get 100% true positive
matches and 0 false negatives. For the partial method we
get a 80% true positive rate with 0 false negatives.



(d) Map VI

Fig. 2. RoboCupl 2D grid maps (black) with Topology
Graphs (labeled vertices purple, edges blue)

Map VI covers the most area of all three robot maps and
has thus also the most number of edges (Table 6). EF and
its twin are incorrectly matched because this path is much
longer in the ground truth map. It has to be noticed that
vertex 24 from Map III has no correspondence in Map VI,
such that GK and KG are not correctly matched in the full
approach. However, in the partial approach the beginning
of GK is correctly matched to 24 — 20! SQ and its twin are
correctly matched in the full approach, but in the partial
approach much shorter paths get better results. We are

Best Best 2nd Best 2nd Best Correct Correct

L2 Edge L2 Edge L2 Edge
HF | 027 18 — 17 2.17 36 — 37 0.27 18 — 17
FH | 027 17 — 18 2.17 37 — 36 0.27 17 — 18
HI 0.24 18 — 20 1.09 21 — 19 0.237 18 — 20
IH 0.24 20 — 18 1.09 19 — 21 0.236 20 — 18
CF |0.78 18 — 20 1.27 21 - 19 4.62 13 — 17
FC |[0.78 20 — 18 1.27 19 — 21 4.61 17 — 13
QS |3.28 19— 21 3.81 27 — 24 16.1 33 — 32
SQ 3.28 21 — 19 3.81 24 — 27 16.1 32 — 33
TIK |0.22 20— 24 1.89 17 — 18 0.22 20 — 24
KI 0.22 24 — 20 1.89 18 — 17 0.22 24 — 20
MK | 0.17 27 — 24 2.00 19 — 21 0.17 27 — 24
KM |0.17 24 — 27 1.89 21 —» 19 0.17 24 — 27
HF |0.39 18 — 17 0.89 36 — 37 0.39 18 — 17
FH |0.27 17 — 18 0.96 19 — 21 0.27 17 — 18
HI 0.32 18 — 20 0.84 36 — 37 0.32 18 — 20
IH 0.34 20 — 18 1.07 20 — 24 0.34 20 —» 18
CF |0.98 36 — 37 1.32 18 — 20 5.96 13 — 17
FC |0.68 17 — 13 1.48 26 — 32 0.68 17 — 13
QS | 0.26 33 — 32 0.98 21 —- 19 0.26 33 — 32
SQ 0.79 21 — 19 0.93 36 — 37 6.36 32 — 33
IK 0.66 20 — 24 0.90 20 — 18 0.66 20 — 24
KI 0.37 24 — 20 1.61 16 — 19 0.37 24 — 20
MK | 0.13 27 — 24 2.69 21 —» 19 0.13 27 — 24
KM | 0.27 24 — 27 1.06 21 —» 19 0.27 24 — 27

Table 4. Result of paths from Map IV to Map
ITI. Full path: top; partial path: bottom.

Best Best 2nd Best 2nd Best Correct Correct

L2 Edge L2 Edge L2 Edge
HF 0.21 18 — 17 2.11 36 — 37 0.21 18 — 17
FH 0.22 17 — 18 2.11 37 — 36 0.22 17 — 18
IH 0.47 20 — 18 1.03 19 — 21 0.47 20 — 18
HI 0.47 18 — 20 1.03 21 — 19 0.47 18 — 20
v 0.82 21 — 19 1.25 18 — 20 23.5 33 — 32
vT 0.82 19 — 21 1.25 20 — 18 23.6 32 — 33
FA 1.03 19 — 21 1.05 26 — 32 4.57 17 — 13
AF 1.03 21 — 19 1.07 32 — 26 4.59 13 — 17
MI 1.65 7T—4 1.69 24 — 20 1.69 24 — 20
IM 1.65 4 =7 1.69 20 — 24 1.69 20 — 24
PO(up) 2.21 21— 19  2.46 18 — 20 / /
OP(up) 2,22 19 —»21 245 20 — 18 / /
PO(down) | 1.97 19 — 21  2.37 20 — 18 / /
OP(down) | 1.97 21 — 19  2.38 18 — 20 / /
HF 0.15 18 — 17 0.66 36 — 37 0.15 18 — 17
FH 0.47 17 — 18 0.74 19 — 21 0.47 17 — 18
IH 0.33 20 — 18 1.05 20 — 24 0.33 20 — 18
HI 0.56 18 — 20 0.78 36 — 37 0.56 18 — 20
v 0.90 21 — 19 1.02 33 — 32 1.02 33 — 32
vT 0.68 19 — 21 1.36 17 — 18 2.23 32 — 33
FA 1.06 20 — 18 1.31 26 — 32 1.70 17 — 13
AF 0.93 32 — 26 1.40 36 — 37 5.63 13 — 17
MI 0.96 16 — 19 1.71 24 — 20 1.71 24 — 20
IM 0.86 20 — 18 1.95 20 — 24 1.95 20 — 24
PO(up) 0.852 21 — 19  1.88 36 — 37 / /
OP(up) 129 19 - 21  1.36 17 — 13 / /
PO(down) | 1.13 26 — 32  1.77 17 — 13 / /
OP(down) | 1.59 21 — 19  1.77 32 — 35 / /

Table 5. Result of paths from Map V to Map
ITI. Full path: top; partial path: bottom.

thus thinking about adding a certain penalty for too big
length differences.

When applying the 0.7 threshold we get a 80% true
positive rate with 2 false positives and 2 false negatives
for the full approach and a 100% true positive rate and 0
false negatives for the partial approach.

The runtime of the algorithm is dominated by the genera-
tion of the Topology Graph. Including the Topology Graph
generation the calculation of all path similarities between
any of the experiment maps takes less than a second (Map
III to Map IV: 0.741 seconds).

5. CONCLUSIONS

In this paper we introduced an algorithm to determine
the dissimilarity of two paths in Topology Graphs. The



Best Best 2nd Best 2nd Best Correct Correct

L2 Edge L2 Edge L2 Edge
HE | 0.17 18 — 17 2.13 36 — 37 0.17 18 — 17
EH |0.17 17 — 18 2.13 37 — 36 0.17 17 — 18
GH |0.28 20 — 18 1.11 19 — 21 0.28 20 — 18
HG|0.28 18 — 20 1.10 21 — 19 0.28 18 — 20
PN | 0.79 32— 26 1.30 21 — 19 0.79 32 — 26
NP |0.76 26 — 32 1.30 19 — 21 0.76 26 — 32
SQ | 0.45 32 — 33 2.07 36 — 37 0.45 32 — 33
QS | 0.37 33 — 32 2.06 37 — 36 0.37 33 — 32
EF | 0.66 20 — 18 1.36 19 — 21 4.58 17 — 13
FE |0.66 18 — 20 1.36 21 — 19 4.59 13 — 17
Ir 9.96 37 — 36 9.97 36 — 37 /
GK | 3.63 36 — 37 5.42 16 — 19 19.0 20 — 24
KG|3.63 37— 36 5.42 19 — 16 19.0 24 — 20
ST | 0.48 32 — 35 1.13 36 — 37 0.48 32 — 35
TS |0.43 35 — 32 1.14 37 — 36 0.43 35 — 32
HE | 0.48 18 — 17 1.03 36 — 37 0.48 18 — 17
EH |0.61 17 — 18 0.63 19 — 21 0.61 17 — 18
GH | 0.43 20 — 18 1.10 20 — 24 0.43 20 — 18
HG|0.23 18 — 20 0.71 21 — 19 0.23 18 — 20
PN |0.38 32— 26 0.96 36 — 37 0.38 32 — 26
NP |0.72 20 — 18 1.37 20 — 24 1.64 26 — 32
SQ |1.89 19 — 21 1.91 37 — 36 2.00 32— 33
QS | 0.86 21 — 19 1.33 33 — 32 1.33 33 — 32
EF | 0.40 17 — 13 1.31 20 — 18 0.40 17 — 13
FE |0.70 18 — 20 0.80 36 — 37 5.82 13 — 17
II |1.05 36 — 37 3.36 18 — 17 /
GK | 047 20 — 24 0.88 20 — 18 0.47 20 — 24
KG|236 21 — 19 3.12 36 — 37 14.5 24 — 20
ST | 0.49 32 — 35 2.39 32 — 33 0.49 32 — 35
TS |0.43 35 — 32 1.00 20 — 18 0.43 35 — 32

Table 6. Result of paths from Map VI to Map
III. Full path: top; partial path: bottom.

algorithm comes in two variants: the full path comparison
and the partial path comparison. On average we achieve
a true positive rate above 90%. This is very good since
for applying it in a framework for matching Topology
Graphs, such as in Schwertfeger and Birk (2015a), other
factors such as neighborhoods, vertex similarities and sub-
graph isomorphisms are also applied to determine a match
between two maps. This framework will then resolve the
ambiguities of similar looking paths, which might occur
more often in bigger maps. The partial path comparison
is especially suited for determining a vertex similarity,
because we can see how well the paths which start at that
vertex match the paths of the corresponding vertex.

In the future we plan to include the path dissimilarity in
a graph matching framework. In the long term we also
want to apply the matching to 3D Topology Graphs, for
example for 3D map evaluation such as in Schwertfeger
and Birk (2015b).
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