
Create

From existing repo

From existing data

cd ~/projects/myproject
git init
git add .

git clone ~/existing/repo ~/new/repo
git clone git://host.org/project.git
git clone ssh://you@host.org/proj.git

Remember: git command --help

Global Git configuration is stored in $HOME/.gitconfig (git config --help)

Publish

Prepare a patch for other developers
git format-patch origin

Mark a version / milestone
git tag v1.0

(complete conflict diff)

To view the merge conclicts

git add $conflicting_file
git rebase --continue

Zack Rusin
Based on the work of:
Sébastien Pierre
Xprima Corp.

Git Cheat Sheet

Files changed in working directory

Show

A specific file from a specific $ID

git status

git show $id:$file

All local branches

git branch

History of changes
git log

Who changed what and when in a file
git blame $file

What changed between $ID1 and $ID2
git diff $id1 $id2

History of changes for file with diffs
git log -p $file $dir/ec/tory/

Changes to tracked files
git diff

A commit identified by $ID
git show $id

Revert

you cannot undo a hard reset

Return to the last committed state

Revert the last commit
git revert HEAD

Revert specific commit

git revert $id

Checkout the $id version of a file
git checkout $id $file

git reset --hard

Creates a new commit

Creates a new commit

Fix the last commit
git commit -a --amend

(after editing the broken files)

Branch

Merge branch1 into branch2
git checkout $branch2
git merge branch1

Create branch named $branch based on
 the HEAD
git branch $branch

Switch to the $id branch
git checkout $id

Create branch $new_branch based on
branch $other and switch to it
git checkout -b $new_branch $other

Delete branch $branch
git branch -d $branch

Commit all your local changes

git commit -a

(star '*' marks the current branch)

git push
Push changes to origin

Pull latest changes from origin
git pull
(does a fetch followed by a merge)

Fetch latest changes from origin

Update

git fetch
(but this does not merge them).

(in case of a conflict, resolve and use
 git am --resolved)

Apply a patch that some sent you
git am -3 patch.mbox

Finding regressions

git bisect start
git bisect good $id
git bisect bad $id

git bisect bad/good
git bisect visualize
git bisect reset

Check for errors and cleanup repository

git fsck
git gc --prune

Search working directory for foo()

git grep "foo()"

Commands Sequence

PUBLISHCOMMIT

commit
REVERT BRANCHBROWSE

status
log

show
diff

branch

reset
checkout

revert

UPDATECREATE

pull
fetch

merge
am

pushinit
clone

checkout

the curves indicate that the command on the right is usually
executed after the command on the left. This gives an idea of
the flow of commands someone usually does with Git.

format-patchbranch

CHANGE

Cheat Sheet Notation

U
se

fu
l

C
o
m

m
a
n

d
s

 http://git.or.cz/

Concepts

git reset --hard
git rebase --skip

git diff
git diff --base $file
git diff --ours $file
git diff --theirs $file

After resolving conflicts, merge with

To discard conflicting patch

(against base file)
(against your changes)
(against other changes)

(do for all resolved files)

(to start)
($id is the last working version)
($id is a broken version)

(to mark it as bad or good)

(once you're done)
(to launch gitk and mark it)

Git Basics

R
e
so

lv
e
 M

e
rg

e
 C

o
n

fl
ic

ts

http://www.cheat-sheets.org/saved-copy/git-cheat-sheet.svg

