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I. INTRODUCTION

As service robots stepped into the public view in recent
years, the development of mobile manipulators has rapidly
increased. A mobile manipulator is a robot system composed
of a manipulator arm installed on a mobile platform [23].
Through this combination, robots have unlimited workspace
and the ability to operate in the environment. Taking ad-
vantage of these, mobile manipulators are widely applied
in different fields, such as hospital operation, warehouse
transportation and laboratory research assistance. Although
mobile manipulators are a mature robot system and in high-
development demand, so far there is still no systematic
tutorial on how to operate mobile manipulators.

Many components are commonly available to accomplish
basic functions of a mobile manipulator, and many of these
as downloadable software packages. Most of them, such
as MoveIt, move base, SMACH, come with detailed official
tutorials or documents. However, most packages require
users to configure parameters according to the practical
situation of their robots, the official documents are often too
broad for beginners, and the example codes cannot be applied
to the users’ robots directly.

This tutorial provides four demos based on two robots,
running on both real and simulation environment, and their
corresponding codes. For the simulation part, we also provide
a docker with a well-configured environment so that readers
can easily run our examples on their own computers. We
design the following task for the demos: the robot navigates
to location A to pick an object (bottle/can) detected on
the table, then brings the object to location B in another
room and place it on the table there. Through our tutorial,
readers can learn what components are needed to complete
such a task, what software packages are recommended for
these components, how to configure the packages according
to the operational demo, what functions each component
undertakes, and how to connect these components. In Table
I the packages needed during running the “bring object” task
are listed. And Table II lists the packages which are needed
offline. In addition to providing all the code on GitHub, we
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created a webpage1 to show the videos of the demos and
properly guide users through all the modules mentioned in
this tutorial.

TABLE I
MODULES RUNNING IN REAL TIME (C FOR CODE, T FOR TUTORIALS)

Name Package Links
Kinova Bringup kinova ros C

RealSense Camera Driver realsense ros C
Object Detection & Pose NOCS [21] C

Object Place Pose AprilTag ROS C T
Arm Planning MoveIt C T
Path Planning move base C T

Decision Making FlexBE C T

TABLE II
AUXILIARY MODULES (C FOR CODE, T FOR TUTORIALS)

Name Package Links
Simulation World Building Gazebo T

SLAM 2D Cartographer C T
Camera Calibration camera calibration T

Camera Pose Detection AprilTag ROS C T
Hand-eye Calibration easy handeye C T

II. PREPARATION

This tutorial is based on the assumption that the readers
are already familiar with ROS (Robot Operating System).
All the examples in this tutorial will be run on ROS Melodic
version under Ubuntu 18.04. Before starting the tutorial, one
should install ROS under a Linux Operating System.

We build two catkin workspaces, one named “fetch ws”
for the Fetch robot examples, and the other named “ki-
nova jackal ws” for the Kinova-Jackal robot examples. We
provide all code and configuration files mentioned in this
tutorial on GitHub. The repository for the Fetch robot can
be found here2, while the repository for the Kinova-Jackal
applications can be found here3. Before the start of our tuto-
rials, one should download our source and the dependencies,
and compile them:
$ git clone <our-source-url>
$ cd fetch_ws # or cd kinova_jackal_ws
$ git submodule update --init --recursive
$ rosdep install --from-paths src --ignore-

src -y -r

1https://momantu.github.io/
2https://github.com/momantu/momantu_fetch
3The code will be available in the final version.
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$ catkin_make
$ source devel/setup.bash # run this command

before using the launch file in the
workspace

We also provide another repository4 for 6D object pose
estimation, which need to be installed in another workspace
according to its README file.

III. SIMULATION

We use Gazebo to build the simulation and use RViz to
visualize and set up the robotics environment. Gazebo is an
essential robot simulation tool as it allows users to replace
the models of robots, objects and building modules to build
the simulation scenes. RViz is a popular ROS tool to setup
virtual scenes for debugging robots. The two software can
be installed through:
$ sudo apt install ros-melodic-rviz
$ sudo apt install ros-melodic-gazebo-*

A. Robot Model

A robot model can be obtained in two ways: download
the official model or write URDF/Xacro file on your own.
In this section, we describe how to obtain a model of Fetch
robot and build a Jackal-Kinova combined robot model.

1) Download Official Model: If you buy a robot that can
run with ROS, it is quite common to find its robot model on
its official website/source. For example, all the robot models
of Fetch, Jackal and Kinova can be downloaded directly.

To install the necessary components of Fetch simulation,
we run this command:
$ sudo apt install ros-melodic-fetch-gazebo-

demo

Then we can launch our Fetch robot in Gazebo by running
$ roslaunch fetch_sim gazebo_simulation.

launch

In the launch file, there is a world name argument specifying
the world file to be loaded. If you build another world in
Gazebo, you can save it as a “.world” file and change the
world name argument to point to this file to use it:
<arg name="world_name" value="PATH TO THE

WORLD FILE"/>

2) Build URDF/Xacro File: URDF is the abbreviation of
Unified Robot Description Format, which is used to describe
a robot model, including all the element required to specify
the model. Inside the URDF file, a group of joint and link
tags are combined to describe the entire robot. Joints have
its subtags to describe which two links it is connected to,
the type of the joint (continuous, revolute, prismatic, planar,
floating, fixed), dynamic feature (damping, friction), motion
limit (position limit, speed limit, torque limit). Links also
have their subtags, such as appearance, collision, inertial.

Since there are many identical parts in a robot files can
be long and have many duplicates when using URDF files

4https://github.com/momantu/nocs_ros

to describe it. To overcome such disadvantage, the idea
of using Xacro (XML Macros) files, a macro language,
comes to mind. Xacro files provide features including macro
definition, file inclusion, which allows us to reuse variables
and functions, and programmable interface, which enables
us to define variable, mathematical calculation and condition
statements.

A demo that adds a Velodyne Lidar to the Jackal robot
model is shown as follows, and the code can be found in the
file “jackal with basket.urdf.xacro” of our source.

Firstly, we can use the file inclusion feature provided by
the Xacro to import the Jackal model directly.
<xacro:include filename="$(find

jackal_description)/urdf/jackal.urdf.
xacro"/>

Secondly, we add the Velodyne Lidar. Define the link
velodyne mount to add the Velodyne.
<link name="velodyne_mount">
<visual>
<geometry>
<mesh
filename="package://mani_description/meshes/

velodyne_mount.stl" scale="0.001 0.001
0.001"/>

</geometry>
<material name="white"/>
</visual>
<collision>
<geometry>
<mesh
filename="package://mani_description/meshes/

velodyne_mount.stl" scale="0.001 0.001
0.001"/>

</geometry>
</collision>
</link>

The visual tag specifies what the link looks like. In this
demo, we use the geometry tag and material tag. Inside the
geometry tag, we can use some basic geometry, such as a
box or cylinder, or load an stl file using a mesh tag. In order
to enable collision detection, it is needed to define a collision
element as well.

Then, we use a joint tag to connect the velodyne mount
link with the front mount link in the Jackal robot. A “fixed”
type joint is used since the basket is fixed on the Jackal.
<joint name="velodyne_mount_front_mount" type

="fixed">
<child link="velodyne_mount"/>
<parent link="front_mount"/>
<origin xyz="0 0 0" rpy="0 0 0"/>
</joint>

Inside the joint tag it is needed to specify which two links
are connected and what is the relative pose between them.
The pose contains the position and orientation.

Finally, we import the Velodyne Lidar model and mount
it on the link velodyne mount.
<xacro:include filename="$(find

velodyne_description)/urdf/VLP-16.urdf.
xacro"/>

https://github.com/momantu/nocs_ros
http://wiki.ros.org/urdf/Tutorials/Adding%20Physical%20and%20Collision%20Properties%20to%20a%20URDF%20Model
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<VLP-16 parent="velodyne_mount" name="/
velodyne" topic="/velodyne_points" hz="10
" samples="440" gpu="false">

<origin xyz="0 0 0.044" rpy="0 0 0"/>
</VLP-16>

When including sensors, like camera or lidar, their param-
eters need to be configured, such as data frequency, fov, etc.

3) Work with Gazebo simulation: To spawn the robot
model in Gazebo, it is required to add more tags to describe
the model.

An < inertial > element contains the inertia information.
It must be properly specified and configured within each
< link > element. The inertia information can be provided
by modeling programs such as MeshLab. The following
example shows how to add an < inertial > element to the
link velodyne mount.
<link name="velodyne_mount">
...
<inertial>
<origin xyz="0.012 0.002 0.067" rpy="${PI/2}

0 ${PI/2}"/>
<mass value="1"/>
<inertia
ixx="1" ixy="0" ixz="0"
iyy="1" iyz="0"
izz="1"/>
</inertial>
</link>

4) Assemble your own mobile manipulator: There are
already many mature mobile manipulators, such as Fetch
and Robotnik, on the ROS community. Although it is quite
common to find mobile chassis and fixed robotic arms, in
here we’d like to introduce a method to combine a chassis
with a robotic arm using the Software Development Kit
(SDK) provided by the vendor.

The traditional approach is to modify the URDF files and
combine these files as a new URDF file which contains the
chassis and the manipulator. However, this method can be
quite challenging. Usually, robot manufacturers will provide
their SDK, which contains the URDF files that describe
their robot, to allows consumers to launch their robot. The
challenge here is that these URDF files share the same key
words, like robot description, so if you run the simulation
code of different robots at the same time these key words
will enter conflict.

Here is a demonstration on how to combine a Jackal model
with a Kinova model on a Gazebo simulation. Two key points
are followed to address the problem:

1. add namespace to arguments
2. assemble chassis and robotic arm as one robot.
Namespace should be added in the following 5 places:

1. robot description parameter when loading the URDF
file to the ROS parameter server. The code is in the
file “kinova jackal gazebo.launch”.
<param name="/$(arg ns)/robot_description

"
command="$(find jackal_description)/

scripts/$(arg env_runner)

$(find jackal_description)/urdf/configs
/$(arg config)

$(find xacro)/xacro $(find
mani_description)/urdf/
jackal_with_basket.urdf.xacro

--inorder ’namespace:=$(arg ns)’" />

2. robot description parameter when spawn
model in Gazebo. The code is in the file
“kinova jackal gazebo.launch”.
<node name="urdf_spawner" pkg="gazebo_ros

" type="spawn_model" ns="$(arg ns)"
args="-urdf -model jackal -param /$(arg

ns)/robot_description -x $(arg init_x)
-y $(arg init_y) -z $(arg

floor_height) -Y $(arg init_yaw)" />

3. robot description parameter loaded by ROS package
robot state publisher. The code is in the file “ki-
nova jackal gazebo.launch”.
<node name="mybase_robot_state_publisher"

pkg="robot_state_publisher" type="
robot_state_publisher" ns="$(arg ns)">

<param name="robot_description" value="
/$(arg ns)/robot_description"/>

</node>

4. Controller in Gazebo. The code is in the file
“jackal control.launch”.
<node name="controller_spawner" pkg="

controller_manager" type="spawner" ns=
"$(arg ns)"

args="jackal_joint_publisher
jackal_velocity_controller">

</node>

5. < robotNamespace> parameter in Gazebo plugins. The
code is in the file “jacka.gazebo”.
<robotNamespace>/$(arg namespace)</

robotNamespace>

We conclude the first step by adding namespace to these
five places and launching all the original launch files. A
distinctive difference is that in this way all topics are under
a namespace we set.

On the other hand, besides the change of rostopic name,
the 5th step will also add the namespace to the < f rame id >
tag inside a topic if the topic message is published by a
sensor. If we don’t need to add the namespace to the <
f rame id > filed, we can use the absolute namespace by
adding a slash to the name parameter of the corresponding
sensor in the URDF file. Here is an example of avoiding
the use of a namespace to the < f rame id > in the message
published by the Velodyne sensor.
<xacro:include filename="$(find

velodyne_description)/urdf/VLP-16.urdf.
xacro"/>

<VLP-16 parent="velodyne_mount" name="/
velodyne" topic="/velodyne_points" hz="10
" samples="440" gpu="false">

<origin xyz="0 0 0.044" rpy="0 0 0"/>
</VLP-16>

http://wiki.ros.org/urdf/Tutorials/Adding%20Physical%20and%20Collision%20Properties%20to%20a%20URDF%20Model
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As a second step we should assemble both chassis and
robotic arm as one robot:

Adding a static transform between chassis and manipulator
through ROS node static transform publisher

<node pkg="tf2_ros" type="
static_transform_publisher" name="
base_arm_link_broadcaster"

args="-0.12 0.0 0.184 0 0.0 0 base_link root"
/>

Using Gazebo service to attach two robot together. Gazebo
itself doesn’t provide this service, but it can be done by an
additional Gazebo plugin. Gazebo ros link attacher project
provides this service. In our world file, add this plugin to
enable this service:
<sdf version="1.4">
<world name="default">
<!-- A gazebo links attacher -->
<plugin name="ros_link_attacher_plugin"

filename="libgazebo_ros_link_attacher.so"
/>

<include>
<uri>model://sun</uri>
</include>
<!-- A ground plane -->
<include>
<uri>model://ground_plane</uri>
</include>
</world>
</sdf>

To launch the assembled robot model in Gazebo run the
file “launch robot.sh” in our kinova jackal ws.
$ ./launch_robot.sh

B. Model in Gazebo

Gazebo provides a building editor and model editor to
allow users to make their own scene and models easily
through a Graphical User Interface (GUI). Through this
building editor, it is easy to build a room, which is shown
in Fig. 1. Gazebo comes with a model database already, and
Rasouli et al. [15] provides a dataset that contains 270+ 3D
models to be used on Gazebo simulations.

On the other hand, if the GUI still doesn’t meet your
requirement to build the model you can write an SDF file to
describe the model. The tutorial for writing a custom model
can be found on the Gazebo website.

We build a custom Gazebo world for our simulation, which
is shown in Fig. 2.

IV. ROBOTICS MANIPULATION

A. Introduction

Manipulation capability is key to many applications. It
enables robot to interact with the environment. Generally,
the robot manipulator picks something and put it at another
place, or just manipulate some machine. Grasping an object
requires the robot manipulator to plan a trajectory through
cluttered environments and generate a grasp pose to pick
the object. While planning a trajectory, the robot needs to
use sensors to perceive the environment and see where the

Fig. 1. Using building editor to build a small room.

Fig. 2. Our Gazebo simulation world.

manipulator can go through without resulting in a collision.
After the trajectory is obtained by the motion planner,
the inverse kinematics algorithm is used to calculate joint
positions for the given pose. Finally, the low level hardware
controllers execute the time-parameterized joint trajectories,
which allows the end effector to move to the target pose.

B. MoveIt

MoveIt is an open-source robotics manipulation platform,
and its system architecture is shown in Fig. 3. MoveIt
integrates modules (e.g. motion planning, manipulation, per-
ception, collision detection) and provides a node called
move group, which pulls all the individual components to-
gether to provide a set of ROS actions and services for users.
The framework of move group is shown in Fig. 4. It provides
a variety of interfaces, and we will demonstrate how to use
move group C++ interface to pick an object and put it on
another table with a Fetch mobile manipulator.

Firstly, install MoveIt and the ROS package provided by
the Fetch robot:
$ sudo apt install ros-melodic-moveit
$ sudo apt install ros-melodic-fetch-gazebo-

demo
$ sudo apt install ros-melodic-moveit-visual-

tools

https://github.com/pal-robotics/gazebo_ros_link_attacher
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https://fetchrobotics.com/robotics-platforms/fetch-mobile-manipulator


Fig. 3. MoveIt pipeline[13].

Fig. 4. Move group[13].

$ sudo apt install ros-melodic-moveit-
resources

Bring up our robot with MoveIt in Gazebo by:
$ roslaunch fetch_sim gazebo_simulation.

launch
$ roslaunch fetch_common moveit.launch

As Fig. 3 shows, move group integrates the compo-
nents, where each component needs parameters to con-
figure itself. This is done by load these parameters from
ROS Param Server. However, we don’t need to set these
parameters one by one, as most of these parameters are
already properly set inside the downloaded package. If you

Fig. 5. Integration with OctoMap.

build your own robot manipulator, it is recommended using
MoveIt Setup Assistant to perform the initial set up of your
manipulator, since this tool can configure most of the pa-
rameters automatically according to your manipulator model.
The ROS package fetch moveit config ’s subfolder config
contains the yaml files which store the MoveIt parameters.
These parameters can be modified according to our needs.

C. Perception pipeline

To take advantage of the 3D sensor, MoveIt allows for
seamless integration of it using OctoMap. This function is
implemented by MoveIt’s Occupancy Map Updater, which
uses a plugin architecture to process different types of input.
Fetch robot has an RGBD camera and gives point cloud, so
we use the PointCloud plugin to handle this information. The
configuration stores in the file “sensor.yaml” is shown here:
sensors:
- sensor_plugin: occupancy_map_monitor/

PointCloudOctomapUpdater
point_cloud_topic: /head_camera/

depth_downsample/points
max_range: 1.5
point_subsample: 1
padding_offset: 0.05
padding_scale: 1.0

To enable the plugin, the yaml file should be loaded by a
launch file.
<rosparam command="load" file="$(find

fetch_moveit_config)/config/sensors.yaml"
/>

The OctoMap needs to be configured by adding the following
lines into the launch file:
<param name="octomap_frame" type="string"

value="base_link" />
<param name="octomap_resolution" type="double

" value="0.05" />
<param name="max_range" type="double" value="

5.0" />

For fetch robot, these parameters are set and loaded in the
file “fetch moveit sensor manager.launch.xml” .

http://wiki.ros.org/Parameter%20Server
https://ros-planning.github.io/moveit_tutorials/doc/setup_assistant/setup_assistant_tutorial.html
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http://docs.ros.org/melodic/api/moveit_tutorials/html/doc/perception_pipeline/perception_pipeline_tutorial.html


D. Pick and Place

The most common use of robotic arms is to pick and place
objects. The prerequisite for this task is knowing the pose of
the object, which is done by section VIII. MoveIt provides
several modules to do pick and place task, including pick
and place, MoveIt grasp, MoveIt Task Constructor. The third
party packages, like Grasp Pose Detection (GPD)[18], uses
learning based method to detect 6-DOF grasp poses for a
2-finger robot hand in 3D point clouds.

We demonstrate two methods to do this task, one is using
the move group to plan a trajectory directly. The other is
using the MoveIt pick and place module.

1) Vanilla move group: The pipeline of grasp and place
an object usually contains these steps:
1. Move the end effector directly over the object.
2. Drop vertically and grab the object.
3. Vertically upward
4. Move to a place directly above the plane to be placed.
5. Drop vertically and place the object.

MoveIt operates on sets of joints called “planning groups”
and stores them in an object named the JointModelGroup.
The first step is to specify the planning group with Move-
GroupInterface.
moveit::planning_interface::

MoveGroupInterface move_group("
arm_with_torso");

Then, we define 5 poses corresponding to the steps above.
A pose contains the position and orientation. We can define
these pose according to the target object and the place we
want to put the object.

Set the pose through our move group.
geometry_msgs::Pose target_pose1;
target_pose1.orientation.w = 1.0;
target_pose1.position.x = 0.28;
target_pose1.position.y = -0.2;
target_pose1.position.z = 0.5;
move_group.setPoseTarget(target_pose1);

Calling the motion planner to compute the trajectory, if
the pose you set is out of the manipulator’s workspace, the
planner will not find the path. So make sure the planner
computes the path successfully.
moveit::planning_interface::

MoveGroupInterface::Plan my_plan;
bool success = (move_group.plan(my_plan) ==

moveit::planning_interface::
MoveItErrorCode::SUCCESS);

The Open Motion Planning Library(OMPL) provides
asymptotically-optimal planners like RRT*[9], PRM*[9],
LazyPRM* and BFMT, giving you alternative choose of the
planner.

Finally, assuming the trajectory is computed successfully,
we need to execute it on a real robot using the move()
method.
move_group.move();

2) Pick and Place API: On the other side, since the vanilla
move group method requires us to define a lot of pose,
which can be complicated. MoveIt provides pick and place
function to do these steps. For the pick action, it defines a
message named moveit msgs::Grasp. This message contains
the first three steps mentioned above. According to our pick
requirement, define a variable of this type named grasp pose
and set the support surface to specify the fact that attached
objects are allowed to touch the support surface.
move_group.setSupportSurfaceName("table1");

After that, we can call the move group’s pick function to
grasp the target object.
move_group.pick("object", grasp_pose);

The place action is similar with the pick action. It uses
the message named moveit msgs::PlaceLocation to specify
the place information. Define a variable of this type named
place location according to our place scenario, and set the
support surface as pick action.
move_group.setSupportSurfaceName("table2");

Finally, we can call the move group’s place function to place
the target object.
move_group.place("object", place_location);

The MoveIt tutorials of pick and place shows examples of
using moveit msgs::Grasp and moveit msgs::PlaceLocation.

V. HAND-EYE CALIBRATION

A. Introduction

In order to allow the robotic arm to flexibly operate objects
in the environment, a camera is usually mounted on the
robot. Because all vision information obtained by the camera
is under the camera coordinate system. For the arm, in
order to use the visual information, we need to calculate the
transformation between the robot coordinate system and that
of the camera. This is the main problem solved by hand-eye
calibration [20]. There are two camera installations normally:
eye-in-hand (Fig. 6(a)) and eye-on-base (Fig. 6(b)) [5]. Eye-
in-hand means mounting the camera on the arm. In this way,
the camera will move with the movement of the arm. In the
second way, eye-on-base, the camera and the robot base are
relatively fixed.

Fig. 7(a) shows the eye-in-hand calibration theory. When
we move the end effector to two different poses, where the
camera can see the marker that is placed relatively fixed to
the robot base, the transformation relationship for different
coordinate systems in two poses can be represented as:

A1 ·B ·C−1
1 = A2 ·B ·C−1

2 , (1)

⇒ (A−1
2 ·A1) ·B = B · (C−1

2 ·C1) (2)

where Ai is the transformation from the end effector to the
robot base of the ith sample, which is provided by the arm
robot; B is the to-solve static transformation from the camera
to the end effector; Ci is the camera pose under the marker
coordinate system of the ith sample. Then it translates into a

http://docs.ros.org/melodic/api/moveit_tutorials/html/doc/pick_place/pick_place_tutorial.html
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http://docs.ros.org/melodic/api/moveit_msgs/html/msg/Grasp.html
http://docs.ros.org/melodic/api/moveit_msgs/html/msg/PlaceLocation.html
https://github.com/ros-planning/moveit_tutorials/blob/master/doc/pick_place/src/pick_place_tutorial.cpp


(a) An example of eye-in-hand. (b) An example of eye-on-base.

Fig. 6. Two camera installation for arm robot [19].
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(a) Calibration of eye-in-hand case.
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(b) Calibration of eye-on-base case.

Fig. 7. Transformation relationship for two camera-installation styles.

problem of solving B with known Ai and Ci by moving the
hand effector to different poses to collect groups of samples.

For the eye-on-base case, whose calibration is explained
by Fig. 7(b). We move the robot’s end effector to two
different poses, and ensure that in both poses the camera can
see the marker fixed at end effector of the arm. Because the
relative transformation between robot base and the camera
is fixed, we have this equation:

A1 ·D ·C1 = A2 ·D ·C2, (3)

⇒ (A−1
2 ·A1) ·D = D · (C2 ·C−1

1 ) (4)

where D is the to-solve static transformation from the marker
to the end effector.

B. Necessary Precursor Stages

In our demo, we calibrate a Kinova Gen2 robot with a
Intel Realsense D435 camera mounted at its end effector,

in eye-in-hand installation. The hand-eye calibration only
needs to be done once after the camera is mounted fixedly
on the robot. As the equations derived above, the hand-eye
calibrations for both camera mounting cases are the problem
of solving a static transformation matrix from an equation
set. For this purpose, we need to record enough groups of
Ai and Ci to obtain enough equations.

1) End Effector Transformation from Robot Base: Trans-
formation A is the pose of the robot arm end effector in
the robot base coordinate system, which is the positive
kinematics solution in robotics. It usually can be provided by
the robot driver. For the robot with ROS support, this robot
joint transform information is published in the tf message.

To support the Kinova arm in ROS, the repository kinova-
ros needs to be downloaded and compiled first. Then the
tf messages for the Kinova (our Kinova’s robot type is
j2n6s300) are published when the robot is started:
$ roslaunch kinova_bringup kinova_robot.

launch kinova_robotType:=j2n6s300

Then you can plug in the joystick and use it to move the arm.
Alternatively, the arm can also be moved with the Motion
Planning Plugin in RViz. For our Kinova, start MoveIt and
the RViz with Motion Planning Plugin with:
$ roslaunch j2n6s300_moveit_config

j2n6s300_demo.launch

In RViz, the Motion Planning Plugin can be added in this
way: 1) Press “Add” in the RViz Displays tab; 2) choose
“MotionPlanning” from the moveit ros visualization folder
and press “OK”. With this plugin, you can drag the arm to
change its position and orientation, then select the “Planning
Group” in the Planning tab and click “Plan” then “Execute”
buttons to move the arm to the given goal state.

2) Camera in World Coordinate System: As for matrix C,
the external parameters for camera, it is the transformation
from the marker coordinate system to the camera’s.

To capture images with camera, first you need to start the
camera driver. If you use other cameras instead of Realsense,
you need to install their drivers according to their manual.
To launch Realsense camera, first install librealsense-dkms
and librealsense2-utils as dependencies by:
$ sudo apt-key adv --keyserver keys.gnupg.net

--recv-key
F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE
|| sudo apt-key adv --keyserver hkp://
keyserver.ubuntu.com:80 --recv-key
F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE

$ sudo add-apt-repository "deb http://
realsense-hw-public.s3.amazonaws.com/
Debian/apt-repo bionic main" -u

$ sudo apt install librealsense2-dkms
$ sudo apt install librealsense2-utils

Intel Realsense can be started and publish images as ROS
topic with realsense-ros, which is installed and run with:
$ sudo apt install ros-melodic-realsense2-

camera #install
$ roslaunch realsense2_camera rs_rgbd.launch

#run

https://www.kinovarobotics.com/en/products/gen2-robot
https://www.intelrealsense.com/depth-camera-d435/
https://github.com/Kinovarobotics/kinova-ros
https://github.com/Kinovarobotics/kinova-ros
https://github.com/IntelRealSense/realsense-ros#installation-instructions


Note that USB3.0 is needed to connect this camera. Then
you can see the two aligned topics: “/camera/color/im-
age raw” and “/camera/aligned depth to color/image raw”.
Other RGBD cameras should also have similar topics.

In the camera coordinate system, a 3D point in space and
its corresponding 2D point on the image satisfy the following
relationship:

λ

xc
yc
1

=

 fx 0 x0
0 fy y0
0 0 1

Xc
Yc
Zc

 (5)

where the transform matrix in middle is the camera internal
parameters, which can be obtained by camera calibration.
But you don’t have to calibrate the camera, because most
products, e.g., the Realsense cameras, are well-calibrated
and their /camera info topics already contain their intrinsic
matrices. An easy-use camera calibration package is camera-
calibration, which can be installed with:
$ sudo apt install ros-melodic-camera-

calibration

Some arguments should be set when calibrating the camera
with the node camera calibration. In this example, an 8*6
chessboard with 2.25cm side length is used, while the
arguments image and camera should also be set according to
your topic. Thus, run this command to start the calibration:
$ rosrun camera_calibration cameracalibrator.

py --size 8x8 --square 0.033 image:=/
camera/color/image_raw camera:=/camera/
color --no-service-check

Then move the chessboard and take enough images including
the chessboard in different positions and orientations until
the “save” button is available. Because the Realsense driver
doesn’t implement service /camera/color/set camera info,
we use the option “–no-service-check”. Without this option,
the camera calibration results, the internal parameters, can be
written into /camera info by this node directly. Otherwise,
you need to save the calibration information to the driver
manually. For rectifying the image, use the ROS package
image proc.

The intrinsic matrix can project the 3D points in the
camera coordinate system into 2D. However, the camera pose
in the world coordinate system is unknown, while the 3D
points are needed to be described in the world coordinate
system. If the correspondence between 2D points and the 3D
points described in the world coordinate can be obtained, the
transformation from the world system to the camera system
can be derived. Combining the intrinsic matrix and extrinsic
matrix, we got the complete model:

p = KIntrinstic×KExtrinsic×PW (6)

=

 fx 0 x0
0 fy y0
0 0 1

[R3×3 t3×1
01×3 1

]
XW
YW
ZW
1

 (7)

where p is a 2D point in image and PW is its corresponding
3D point in the world coordinate system.

apriltag ros [12], [3], [22] is a ROS package that can
provide relative transformation between the camera frame
and the given detected tag’s, which can be seen as the world
coordinate system with the tag as coordinate origin. The
package can be installed with:
$ sudo apt install ros-melodic-apriltag-ros

Here we use tag “TAG36H11 - 7”. First we modify
“setting.yaml” to tell which tag family to use and if trans-
formation should be published to the tf message.
tag_family: ’tag36h11’
publish_tf: true

Then modify “tag.yaml” to tell which tag you will use.
The parameter “size” requests the length of the inside black
rectangle in meters.
standalone_tags:
[
{id: 7, size: 0.1485},
]

In the launch file “continuous detection.launch”, which is
copied from the apriltag ros package, fill the camera frame
and published topic in the arguments. Then we can start the
AprilTags detection with:
$ roslaunch apriltag_cfg continuous_detection

.launch

If the tag is detected, in the image published by the topic
“/tag detections image”, you can see the tag is marked with
a rectangle and labeled with its id. Besides, a frame “tag 7”
appears in the tf tree.

C. Hand-eye Calibration Stages

After a series of steps above, we have obtained the end
effector pose in the robot base frame and the camera pose
in the tag’s frame. Everything is ready for the hand-eye
calibration. We recommend a easy-using ROS package for
hand-eye calibration easy handeye as a solution. Its required
input is the transformations between the frames of robot base,
end effector, camera and the marker, which should already be
published correctly if you have finished the steps described
in last sub-section.

Since it includes the routine from the ViSP library, the
visp hand2eye calibration package should be installed before
building the easy handeye package.
$ sudo apt install ros-melodic-visp-hand2eye-

calibration

The package easy handeye is included as a git submodule
in our source. Otherwise, you can get it from the GitHub
repository IFL-CAMP/easy handeye.

Then fill the required tf frame names to the arguments
of the launch file “kinova realsense tag7 calibration.launch”,
created referring to official Github README file, to launch
the calibration GUI. Run this command to start the calibra-
tion:
$ roslaunch handeye_cfg

kinova_realsense_tag7_calibration.launch

http://wiki.ros.org/image_proc
https://github.com/AprilRobotics/apriltag_ros
https://github.com/IFL-CAMP/easy_handeye
http://wiki.ros.org/visp_hand2eye_calibration
https://github.com/IFL-CAMP/easy_handeye
https://github.com/IFL-CAMP/easy_handeye


Move the arm and make sure in each pose the camera can
detect the given tag and press the “take sample” button.
When you take enough samples, press “compute”, and press
“save” when you satisfy with the calibration results.

The package includes a file “publish.launch” that can
publish the transformation into the tf message. Here we
also create a launch file “kinova camera tf publisher.launch”
to run “publish.launch” and fill some required parameters.
Henceforth, you can run this launch file to publish the
transformation when you want to use the visual information
to cooperate with the arm:
$ roslaunch easy_handeye

kinova_camera_tf_publisher.launch

D. Fetch Calibration

The Fetch Robot is already calibrated by the factory,
whose transform between the camera and the robot base is
included in its URDF file. Nevertheless, the Fetch Robotics
encourages users to re-calibrate the robot and provide a con-
vinent tool calibrate robot in the package fetch calibration.

VI. MAPPING

If we want the robot to arrive at some specific place
to accomplish some tasks, a map is necessary. The goal
of mapping is creating a map of the environment so that
the robot can navigate with the recorded environmental
information in the future. The main technique behind is
simultaneous localization and mapping (SLAM) [4], [1].
SLAM is a process that building a map while figuring out
where the agent is located in the environment. Building a 2D
map saves computation resource and sensor costs, comparing
to building a 3D map, and is normally sufficient for ground
navigation. But if we consider the arm status in the space
while the mobile platform is moving, a 3D map helps. From
the point of this view, both 2D mapping and 3D mapping
are included in this tutorial. Cartographer provides both 2D
and 3D SLAM in its ROS package, which will be used in
our following 2D and 3D mapping.

A. 2D Mapping Introduction

A basic input requirement of mapping is a range mea-
surement device. For the 2D case, a 2D laser scanner meets
the requirement, which is cheap and widely used. Besides,
the data from the Inertial Measurement Unit (IMU) or
odometry helps the localization. 2D mapping is a fairly
mature research field, for which there are some popular open-
source packages. Their different back-end algorithms deter-
mine their different application scenarios. Gmapping [6], [7]
is a 2D laser SLAM based on particle filter framework,
combining odometry and laser information. The algorithm
needs to calculate the posterior probability of each particle
for robot localization. Thus this method is suitable for small
scenes mapping needing high accuracy. Hetor SLAM [10]
matches laser data between frames with optimized method
without requiring odometry information. But its performance
is affected by radar frequency. Karto [14], [11] is a graph
optimization SLAM based on matrix sparseness, including

loop closure, which has advantages in large-scale mapping.
Cartographer [8] is a very complete real-time laser SLAM
system, including rich interfaces. It contains a robust front
end and an pose graph back end based on submap and node
constraints. We will introduce how to configure and use its
ROS package for 2D mapping in the following.

B. 2D Mapping Stages

1) Input Data: First of all, the sensor to measure the
environment should be decided. For example, Hokuyo Laser
Scanners have well ROS interface “hokuyo node”, which
publishes 2D laser data to topic “/scan”. This topic message
is in the type of sensor msgs::LaserScan, which can be the
input of the 2D mapping ROS package directly.

In our mapping and navigation examples, a 3D surround-
ing sensor, Velodyne’s VLP-16 Lidar sensor, mounted on
Jackal is used. The data from Velody VLP-16 sensor is
published with velodyne pointcloud package, which provides
point cloud conversions for Velodyne’s 3D Lidar sensors. It
can be installed and run with:
$ sudo apt install ros-melodic-velodyne-

pointcloud
$ roslaunch velodyne_pointcloud VLP16_points.

launch

Make sure the correct transformation from “base link” to
“velodyne” is included in the tf message so that the mapping
algorithm can obtain correct height information of the point
cloud. If the transformation is not declared in the URDF
file, it can be published as static transform with tf2 ros in
the format of:
$ rosrun static_transform_publisher 0 0 0.09

0 0 0 front_mount velodyne

where “front mount” is a frame of Jackal, whose trans-
formation to “base link” already exists in the tf message.
The Velodyne sensor center is 9 cm higher than the frame
“front mount”. The parameters above are set in this order:
$ static_transform_publisher x y z yaw pitch

roll parent_frame_id child_frame_id

To use 3D laser data as input for 2D mapping, normally
we convert its topic from message sensor msgs::PointCloud2
to sensor msgs::LaserScan before transferring the data to
the mapping node, which can be done by a ROS tool
pointcloud to laserscan. For example,
$ rosrun pointcloud_to_laserscan

pointcloud_to_laserscan_node cloud_in:=/
velodyne_points _min_height:=-0.3
_max_height:=1.05

In the above command, the input point cloud topic is
“/velodyne points” from the Velodyne sensor. Besides, the
input point cloud height range can be limited with the
parameter min height and max height, which is decided
by your robot height and how high is the Velodyne from
the ground. Above operations are wrapped into a launch file
“velodyne pc2scan.launch” in our source.

http://docs.fetchrobotics.com/calibration.html
https://github.com/cartographer-project/cartographer_ros
https://github.com/ros-perception/slam_gmapping
https://github.com/tu-darmstadt-ros-pkg/hector_slam
https://github.com/ros-perception/slam_karto
https://autonomoustuff.com/product-category/lidar/hokuyo-laser-scanners/
https://autonomoustuff.com/product-category/lidar/hokuyo-laser-scanners/
http://docs.ros.org/melodic/api/sensor_msgs/html/msg/LaserScan.html
https://velodynesupport.zendesk.com/hc/en-us/sections/115000457134-VLP-16-LiDAR-sensor
http://wiki.ros.org/velodyne_pointcloud
http://wiki.ros.org/tf2_ros
http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html
http://wiki.ros.org/pointcloud_to_laserscan


2) Cartographer ROS Configuration: The ROS package
of Cartographer can be installed with:
$ sudo apt install ros-melodic-cartographer-

ros

First fill some sensor information in a lua file, which can
be copied from the templates given in the folder “configu-
ration files”. For example, “revo lds.lua” is a template for
low-cost 2D lidar. The most important thing in this file is to
set tracking frame and published frame. The tracking frame
is set according to which frame will be tracked by the SLAM
algorithm, sensor frame is a common choice. Make sure the
tf message including the transformation between the tracking
frame and the robot base frame. The published frame is the
frame that is already published and will be the child frame
of the Cartographer-providing frame. In our configuration,
since the Cartographer algorithm provides “odom”, the pub-
lished frame is set to “base link”.

For the explanation of other parameters, please refer
to their official tutorial. Then write a launch file to start
cartographer node to start mapping. Remember to point to
your own lua file and then remap the “scan” topic to the
one your laser scan publishing. For example, Fetch’s laser
publishes “/base scan”, for which the remapping is needed:
<remap from="scan" to="base_scan" />

For the Jackal robot in our source, the Cartographer mapping
can be started with:
$ roslaunch carto_setting cartographer_2d.

launch

3) Save Map: When you change the Fixed Frame to
“map” and add a map topic “/map” in RViz, you will see
a 2D map is generating. When you think the map building
has been finished, the map can be saved with the following
command:
$ rosrun map_server map_saver -f 2d_map

Where “2d map” is the name of the map file name. Then
the files “2d map.yaml” and “2d map.pgm” are created in
the current directory. The pgm file saves the 2D map as an
image. The yaml file saves the map information, including
the map origin, resolution, occupied/free threshold, and so
on.

C. 3D Mapping Introduction

For laser SLAM in 3D case, there are also some ROS
package. Here we introduce some famous ones. LOAM is a
system for 3D Lidar odometry and mapping in real-time [25],
based on features matching for localization. It is currently
closed source, but there are a lot of SLAM open source
packages developed on it, such as A-LOAM, LeGO-LOAM
[17] and Lio-mapping [24]. BLAM is an easy-used and open-
source package only requiring laser data as input, having fast
loop closure. Cartographer is also a famous ROS package for
3D mapping with laser point cloud as input while allowing
combination with IMU data and odometry information. In
our 3D mapping example, the Cartographer ROS package is

used, with the Velodyne’s point cloud and the IMU data as
inputs.

D. 3D Mapping Stages
1) Input Data: We run a Jackal carrying a 3D laser sensor,

Velodyne’s VLP-16 Lidar Sensor, in a laboratory of about
two hundred square meters to create a 3D indoor map as
an example. Firstly, start the Velodyne sensor to publish 3D
point cloud and publish the transformation between the robot
and the sensor if it is not included:
$ roslaunch velodyne_pointcloud VLP16_points.

launch
$ rosrun static_transform_publisher 0 0 0.09

0 0 0 front_mount velodyne

These two commands are wrapped into “velodyne tf.launch”
in our source.

2) Cartographer ROS Configuration: Same as the first
step in 2D configuration, the sensor information should
be filled into a lua file. The file “taurob tracker.lua” in
the cartographer ros package is a good template for
3D laser configuration. We refer to it and create the
configuration file “velodyne 3d.lua” for our example. Set
the parameters “tracking frame” and “published frame”
as we do for 2D case. That is, we still require the
Cartographer algorithm to provides “odom” frame.
Another highly-influential parameter is “TRAJEC-
TORY BUILDER 3D.num accumulated range data”, which
decides the number of range data to accumulate in a
single map. The higher the number is set, the better
the map would be, however, the slower the generation
becomes. It is tuned to 360 according to the area of our
laboratory, 200 square meters. Note that, a large “TRAJEC-
TORY BUILDER 3D.num accumulated range data” leads
to high computational load. You can refer to this page to
tune the parameters for lower latency. Then a launch file is
needed to start the cartographer mapping node and point
to our configuration file, which is “cartographer 3d” in the
package “carto setting”. The launch file is started with:
$ roslaunch carto_setting cartographer_3d.

launch

In RViz, the mapping point cloud is shown (Figure 8(a)).
3) Save 3D Map as PCD File: Then you can drive the

Jackal robot around to scan the environment point cloud.
When all the areas that need to be built are scanned, the 3D
map can be saved as a pcd file with:
$ rosrun pcl_ros pointcloud_to_pcd input:=/

scan_matched_points2 _prefix:=pcd_

Running the command before starting mapping can save the
point clouds under construction. Then a list of pcd files are
created in the folder. These pcd files can be viewed with
pcl viewer (Fig. 8(b)), which can be installed from “pcl-
tools” and run with:
$ sudo apt install pcl-tools # installation
$ pcl_viewer -multiview 1

pcd_1591271240335105.pcd # view the
point cloud saved as "
pcd_1591271240335105.pcd"

https://google-cartographer-ros.readthedocs.io/en/latest/configuration.html
https://github.com/HKUST-Aerial-Robotics/A-LOAM
https://github.com/RobustFieldAutonomyLab/LeGO-LOAM
https://github.com/hyye/lio-mapping
https://github.com/erik-nelson/blam
https://google-cartographer-ros.readthedocs.io/en/latest/tuning.html#example-tuning-local-slam


(a) Mapping point cloud in RViz.

(b) Saved point cloud viewed with pcl viewer.

Fig. 8. Environment point cloud.

VII. NAVIGATION

A. Introduction

Navigation is the technique that supports the robot to move
from place to another specific place. Normally, a map, at
least a local map, is required to navigate to the goal. A local
map can be provided directly by a range sensor mounted on
the robot. However, without prior environmental knowledge,
the robot can only move step by step carefully, without a
global plan. With a map recording known environmental
information, the goal can be described with an accurate
coordinate and the robot can plan a global path before
navigation. A map can be created in ahead with SLAM,
which is introduced in the mapping section (Section VI).
Due to the mobile chassis only need to navigate on 2D
plane, we use the widely-used Navigation Stack, including
move base as a main component. The move base package
contains a local planner to avoid obstacles and a global
planner to plan a path for the robot to reach the given
goal. A well-configured version of move base for Jackal is
Jackal navigation, installed with:
$ sudo apt install ros-melodic-jackal-

navigation

B. Navigation without Map

The input requirements of move base without map include
sensor data, sensor transformations, odometry and a goal.
The introduction of how to publish data from our 3D laser
sensor, Velodyne Lidar, and its transformation to the robot
are in Section VI-B.1. The odometry data is provided by
the robot. For Jackal the topic “/odometry/filtered” is used,
which fuses the IMU data and the encoder data through
extended Kalman filter (EKF). Then move base publishes
a controller topic “cmd vel”, which provides a stream of
velocity commands.

A template to start move base without map
is “odom navigation demo.launch” under package
jackal navigation. We create package mb setting for
the real Jackal robot and package sim nav for simulation
to save the configuration files and launch files related to
navigation. The default subscribing topics of laser data
and odometry are “/scan” and “/odom” respectively. If
other topics are specified to subscribed instead, remap the
topics when including the “move base.launch”. If your robot
subscribes to another controller topic rather than “/cmd vel”,
e.g., a topic with namespace, a remapping for it is needed
before include the “move base.launch”. As mentioned in
Section III-A.4, we add namespace for Jackal’s topic in
simulation to avoid name conflict. Thus, for the Jackal in
our simulation, the move base node is included as:
<remap from="/cmd_vel" to="/$(arg ns)/cmd_vel

"/>
<include file="$(find mb_setting)/launch/

include/move_base.launch" >
<remap from="odom" to="/$(arg ns)/odometry/

filtered"/>
</include>

The parameter configurations are loaded as yaml files.
Users can check these files to explore the effect of various
parameters. The detailed parameters tuning will be discuss
in Section VII-E.

C. Navigation given Map

The environmental map can be loaded and published by
map sever. In launch file the node is included as:
<node name="map_server" pkg="map_server" type

="map_server" args="$(arg map_file)" />

where “map file” points to the yaml file of a saved map.
Then launch the move base node as introduced in last sub-
section. With a given map, we localize the robot in the
environment with the package amcl, which is a probabilistic
2D localization system. Besides the map, amcl requires
odometry data, laser sensor data and an initial pose as
inputs. The launch file to run the move base and amcl
nodes is modified from the template “amcl demo.launch”
under jackal navigation package and saved in our package
“mb setting” for the real Jackal robot, which can be run with:
$ roslaunch mb_setting amcl_demo.launch

Then start RViz, set the Fixed Frame under the Global
Options folder as “/map”, and a map can be shown by

http://wiki.ros.org/navigation
http://wiki.ros.org/move_base
http://wiki.ros.org/map_server
http://wiki.ros.org/amcl


Fig. 9. Navigation given a map. The global map is padding and shown as
costmap. The colorful points are the obstacle points scanned by the Lidar.
Based on it, the padded obstacles are shown in the local costmap. The red
arrow series are the robot poses provided by the odometry. The green arrow
is the given goal.

adding the map topic “/map”. Press “2D Pose Estimate” in
the GUI to set a rough initial robot position in the world
for AMCL algorithm if the robot is not at the same initial
pose given in the launch file. Then we can send a goal
with the “2D Nav Goal” button. A path to the goal will
be planned by move base, which can be shown in RViz by
adding the topic “/plan”. After moving several steps, AMCL
will publish better and better estimation of robot poses in
the world to the tf message. Fig. 9 shows the RViz interface
during navigation, in which the sensor scan points overlap
with the map pixels and the robot is moving toward the given
goal.

D. Fetch Navigation

Of course the mapping and navigation tutorials above are
suitable for Fetch Robot as well. While fetch navigation
package wraps the ROS 2D navigation stack so that it
fits fetch better. A detailed tutorial for Fetch mapping and
navigation is also provided here.

E. Parameter Tuning

Although both Fetch and Jackal provide configuration
files fitting their robots in their navigation packages, the
parameters need to be tuned according to the practical robot
situation. [26] is a detailed navigation tuning guide, which
helps readers to tune the navigation parameters efficiently.

Here we introduce some experience during our tuning.
First, we need to input an initial pose of the robot to the
AMCL algorithm. For the simulation case, the robot is
usually located at the same place when the simulation starts.
Thus, the initial pose can be set in the launch file fixedly.
While a real robot usually starts at different locations. In
this case, press the “2D Pose Estimate” button and drag an
arrow in the RViz to set the initial pose each time the robot
started. The initial pose doesn’t have to be set accurately.
As the robot moves, the AMCL algorithm updates the pose
estimation. The poses will converge correctly soon if the
AMCL parameters are set appropriately.

There are two AMCL parameters mainly affect the estima-
tion converge speed, update min a and update min d, which
decide the intervening movements needed before performing
the filter update. The default setting of update min a in Fetch
official configurations is 0.25. We decrease it to 0.05, which
makes the estimation converge much faster to a correct pose.

During the Fetch navigation, sometimes there are some
ghost obstacles that are not actually exist in the local
costmap. It is because the wrong setting of global frame
under local costmap namespace, which should be frame
“map” but not “odom”.

Goal tolerance parameters (yaw goal tolerance and
xy goal tolerance) need to be set carefully. Too-low tolerance
makes it difficult for robots to reach the given goal, in
which case the robot will start to rotate constantly when it
approaches the goal.

The rotating at the goal is necessary to reach the given
goal. This value of min in place vel theta is the minimum
in-place rotation angular velocity at the goal. The default
setting is 0.3 for Fetch, which lead to a slow moving, as a
result, the robot may move beyond the goal tolerance and
rotate in the normal given angular velocity and then miss
the given angle.

The footprint normally is set slightly larger than the
real contour of the robot base. However, in the mobile
manipulator application, the part of arm beyond the robot
base need to be taken into account.

F. Running ROS across Multiple Machines

It is dangerous and inconvenient to control the robot with
screen and keyboard directly while it is moving around. A
solution of this problem is communicating the robot with
another computer so that we can receive messages from the
robot and send command remotely to the robot.

To communicate the two machines, first we need to set a
machine as master, because only one roscore is needed. Here
we set the robot as master. On the master machine, open the
“.bashrc” file under home directory and add these two lines:
export ROS_MASTER_URI=http://R.R.R.R:11311
export ROS_IP=R.R.R.R

where “R.R.R.R” is the IP address of the robot.
And add these lines to “.bashrc” file of the PC:

export ROS_MASTER_URI=http://R.R.R.R:11311
export ROS_IP=M.M.M.M

where “M.M.M.M” is the IP address of the PC.
Add the two machines’ IP and hostname to their hosts file,

e.g., “/etc/hosts”, as follows:
R.R.R.R robot-hostname
M.M.M.M PC-hostname

where the hostname of computer can be found with this
commandline:
$ hostname

Then you can check if the PC can receive messages from
the robot with:

https://github.com/fetchrobotics/fetch_ros/tree/melodic-devel/fetch_navigation
http://wiki.ros.org/navigation
http://docs.fetchrobotics.com/navigation.html


$ rostopic list # To show received topics
$ rostopic echo /tf # To check data received

VIII. OBJECT POSE ESTIMATION

A. Introduction

Before grip a specific object, first we need to discover
the target object and estimate its 6D pose to tell the gripper
where to move. Although there is more work on instance-
level 6D pose estimation, in order to allow users to easily
use our examples in their actual work without having to train
the model, we will introduce a method based on category-
level object detection. Normally, there include two basic
steps to estimate 6D poses of objects: object detection from
the scene and pose estimation of the masked object. A
classical way to achieve this goal is training a network to
detect an object and obtain object masks, e.g., Mask R-
CNN, then applying an instance-level 6D pose estimation.
The work[21] is a state-of-the-art method to estimate the 6D
pose of unknown specific-category objects. First, they train
a region-based network to predict object masks and class
labels and to directly correspond the observed pixels with
their proposed representation, Normalized Object Coordinate
Space (NOCS), for object instances. Then they combine the
prediction and depth information to estimate the 6D pose
of multiple objects within given categories. An advantage
of their work is that it includes both the detection and
estimation steps so that we can skip the combination work.
Another advantage is that the category-level detection the
algorithm can detect unseen objects without requiring the
object meshes. If the target object is included in the trained
categories, the users can apply the pre-trained model directly
without training.

B. Use Data from RGBD camera

Because the computer on robot is usually not good enough
to run neural networks, a solution is transporting the camera
data to a PC with GPU and return the estimated poses of
detected objects to the robot. However, if we subscribe the
raw image topic from the robot directly, the message can
be lost frequently because it takes a lot of bandwidth to
transport images. When we transport compressed images
instead, the image transmission could be faster. Here we use
the ROS plugin image transport to send color images and
depth images from robot to a PC.

Before transporting data between machines, make sure
the machines can communicate with each other. Multiple
machines communication is introduced in Section VII-F. The
image transport ROS plugin can be installed with:
$ sudo apt install ros-melodic-image-

transport-plugins

Run the launch file “pub images.launch” on the robot
to publish compressed color image topics and depth image
topics, in which:
<launch>

<node pkg="image_transport" type="republish"
name="rgb_compress" args=" raw in:=/
head_camera/rgb/image_rect_color
compressed out:=/rgb_republish"/>

<node pkg="image_transport" type="republish"
name="dep_compress" args="raw in:=/
head_camera/depth_registered/image
compressedDepth out:=/depth_republish"/>

</launch>

The launch file launches the node image transport
to republish compressed color and depth messages.
The parameter setting in “args” means that the in-
put is raw data. The input topic of color image is
“/head camera/rgb/image rect color”, which is the images
de-distorted with the camera’s intrinsics. The depth input
topic is “/head camera/depth registered/image”, which pub-
lishes the depth images that is aligned to the color images.
Here we choose the depth data encoding with “16UC1”
because the detection model accepts 16-byte depth images as
input. The output data type is compressed for color messages
and compressedDepth for depth messages, and the output
topics are “/rgb republish” and “/depth republish”.

Subscribe and decompress these two topics on another
machine with the launch file “sub image.launch” correspond-
ingly:
<launch>
<node pkg="image_transport" type="republish"

name="rgb_decompress" args=" compressed
in:=/rgb_republish raw out:=/
rgb_trans_raw" >

<param name="compressed/mode" value="color"/>
</node>
<node pkg="image_transport" type="republish"

name="depth_decompress" args="
compressedDepth in:=/depth_republish raw
out:=/depth_trans_raw" >

<param name="compressed/mode" value="depth"/>
</node>
</launch>

The launch file decompresses the subscribed topics and
republishes as “/rgb trans raw” and “/depth trans raw”.

C. Call Pose Estimation in ROS

The 6D object pose estimation work [21] is open-source
on Github. However, there is no ROS implementation of the
work. To apply pose estimation during our task, we wrap it
to a ROS package and the estimation can be called as a ROS
service.

The environment and dependence installation is introduced
in the README file. After the installation, the topics and the
intrinsic matrix of the RGBD camera need to be set in the
launch file “pose estimation server.launch”. The parameter
camera optical frame is the frame of your rgb image topic.
Then the object pose estimation service can be started with:
$ roslaunch nocs_srv pose_estimation_server.

launch

Make sure the specific image topic are published. Then
you can call the estimation service with:
$ rosservice call /estimate_pose_nocs True

http://wiki.ros.org/image_transport
https://github.com/hughw19/NOCS_CVPR2019
https://github.com/hughw19/NOCS_CVPR2019


(a) Predicted mask of the detected
object.

(b) Estimated pose of detected object
with NOCS representation.

Fig. 10. NOCS model predicted results.

The detection and estimation results are saved under the
“output” folder. Fig. 10(a) shows the predicted mask with
the label of the detected object, while Fig. 10(b) shows its
predicted pose and its NOCS representation, a bounding box.

When the estimation is finished, the transform between
object and camera is published to tf message so that the robot
know the object’s estimated pose in the world coordinate
system.

IX. DECISION MAKING

A. Introduction

After having all the modules work, a framework like Be-
havior Trees(BT) and Finite State Machine(FSM) is needed
to combines all of them and creates complex behavior, which
allows the robot to finish different tasks. These methods have
existed for a long time and played a important role in the
game. Among them, we choose to use FSM, which is a
mature, widely used framework.

There are two ROS packages implement FSM, SMACH[2]
and FlexBE[16]. SMACH is a task-level architecture for
rapidly creating complex robot behaviors. At its core,
SMACH is a ROS-independent Python library to build hier-
archical state machines. FlexBE’s core is based on SMACH
and provides features like drag&drop behavior creation,
automated code generation, which allows us to create a
behavior without coding.

B. FlexBE

The FlexBE can be installed with:
$ sudo apt install ros-melodic-flexbe-

behavior-engine

Then, we create ROS packages through ROS node
flexbe widget to stores our states and behaviors.
$ rosrun flexbe_widget create_repo

mobile_manipulator

This command will creates two ROS pack-
ages, mobile manipulator flexbe states and mo-
bile manipulator flexbe behaviors.

State Machine
Instantiated

Behavior 
starts Other states active

SM transitions 
to next state

State A 
execution loop

SM transitions 
to state A

Behavior stops

State A active

Fig. 11. State Machine state lifecycle.

1) Custom FlexBE state: The state machine consists of
a series of states. The state in FlexBE is defined by Python
class EventState. This class contains 6 functions that will
called sequential when the state is triggered. To define a cus-
tom state, it is needed to inherit this class and then implement
these 6 functions. These functions and their roles are listed
in Table III. To connect with ROS, we can define some ROS
publisher or subscriber in the init function and enable
them in the on enter function. After a state is finished, it
needs to transfer to another state, so the state needs to define
its outcomes and using execute function to check conditions
to trigger outcomes. The FlexBE also provides userdata,
which allows data to flow between states and change at
runtime. The userdata can be treated as the input keys and
output keys. Here is an example of declare outcomes, and
userdata, which is at the file “example state.py”
class ExampleState(EventState):
def __init__(self):
# Declare outcomes, input_keys, and

output_keys by calling the super
constructor with the corresponding
arguments.

super(ExampleState, self).__init__(outcomes =
[’continue’, ’failed’], input_keys = [’

input_data’], output_keys = [’output_data
’])

TABLE III
FLEXBE STATE LIFECYCLE

Name Role
init state instantiated

on start (execute once) initialize resources
on enter start state actions, initialize variables
execute (execute periodic) check conditions to trigger outcomes
on exit to stop running processes
on stop to clean up

We have to develop some states according to our needs. In
our case, we regard different modules as servers that provide
different services. Each state is a client that sends request
to one server and enable it. We write a ROS node called
robot server in our ROS package fetch common that provides
different services to interact with FlexBE.

On the other hand, for standard ROS functional-
ity, there already exists some collections of states, like
generic flexbe states, vigir behaviors, youbot behaviors and
flexbe strands which can be used directly or for reference.

2) Custom Behavior: The states can be combined into a
behavior. The workflow of the state machine and the activity

https://en.wikipedia.org/wiki/Behavior_tree_(artificial_intelligence,_robotics_and_control)
https://en.wikipedia.org/wiki/Behavior_tree_(artificial_intelligence,_robotics_and_control)
https://en.wikipedia.org/wiki/Finite-state_machine
http://wiki.ros.org/smach
http://wiki.ros.org/flexbe
https://github.com/FlexBE/generic_flexbe_states
https://github.com/team-vigir/vigir_behaviors.git
https://github.com/FlexBE/youbot_behaviors
https://github.com/FlexBE/flexbe_strands


Fig. 12. FlexBE App

Fig. 13. FlexBE States

inside a state is shown in Fig. 11.
FlexBE provides the flexbe app, an extensive user inter-

face, shown in Fig. 12, allows us to use a graphical interface
to directly design state machine. The following command
launchs the flexbe app

$ roslaunch flexbe_app flexbe_full.launch

In the “Behavior Dashboard” page, the description of the
behavior can be written in the “Overview” and the userdata
should be declared in the “State Machine Userdata”.

In the menu bar, the “Statemachine Editor” page provides
functions like “add state”, “add behavior” and “add con-
tainer”. State can be added by “add state” button. A state
usually contains serveral outputs according to the execution
result of the state. To construct the FSM, drag the arrow to
connect states. An example FSM is shown in Fig. 13.

Finally, open the “Runtime Control” page and click the
“Start Execution” button to launch the FSM. This page
will visualize the current active state and report the state’s
status. Fig. 14 shows an example of this page, in which the
“nav pick” state is active.

X. DEMO

All the modules that are needed for our mobile manipula-
tor application have been discussed above. We are going to
demonstrate how to use FlexBE to finish a task that a mobile
robot navigates to a point A, recognizes a can on the table,
pick it up, and navigates to another place B, and place it on
another table.

We have four demos for this task: 1) run a real Fetch
robot to pick a bottle in a room and place it in another

Fig. 14. FlexBE FSM Running Control

room; 2) run a Fetch robot in the simulation environment
to pick a coke can from a room to another; 3) run the real
Kinova-Jackal robot to pick a bottle from a room and place
it in another room; 4) run a Kinova-Jackal robot in the same
Gazebo world as Fetch’s to do the same task as the Fetch
robot does in the simulation5.

Here we introduce the demo running on simulation for
Fetch robot and on real Fetch robot, respectively. Firstly,
mapping will be used to create a map for navigation.
In our case, the real environment map file is stored as
“fetch real/maps/sistD2.pgm”. The simulation map is stored
as “fetch sim/maps/big indoor.pgm”.

For the simulation demo, firstly, we launch simulation,
localization, navigation, MoveIt by
$ roslaunch fetch_sim demo.launch

While for the real robot demo, after bringing up the robot,
we start the localization, navigation and MoveIt with
$ roslaunch fetch_real demo.launch

Our pose estimation module based on NOCS, is also run
under a conda environment of Python3.5. We activate the
environment and launch the object pose estimation module
with:
$ conda activate NOCS #activate environment
$ source devel/setup.bash
$ roslaunch nocs_srv pose_estimation_server.

launch

Then launch the flexbe app and robot server node to
connect other modules.
$ roslaunch fetch_sim robot_service.launch

Load our “bring something from a to b” behavior by
clicking the “Load Behavior” button in “Behavior Dash-
board” page, which is shown in Fig. 12.

We add 12 states to this behavior, these states will called
sequential and their role are listed in Table IV. If any module
executes failed, the behavior will be ended.

Finally, run the behavior by clicking the “Start Execution”
button in “Runtime Control” page. The result is shown in Fig.
14.

5The last two demos for the Kinova-Jackal robot will be introduced in
the final version, because they have not be finished yet.



TABLE IV
FLEXBE STATE LIFECYCLE

State Name Role
init pose Reset the robot pose

nav pick navigate to point A
prepare state set the manipulator to a prepare pose to pick the can
detect obj estimate the can’s pose
pick obj using MoveIt pick API to pick the can
pick moving state set the manipulator to a pose that can move from the

pick pose
look up move the camera to look in front of the robot
nav place navigate to point B
find apriltag find the apriltag
detect plane using the apriltag to detect the place plane
place obj using MoveIt place API to place the can
finished pose set the robot to its original pose from the place pose

A. Run Simulation in Docker

In order to run our demo without being troubled by the
configuration environment, we provide a Docker image for
our reader.

1. Pull our docker image and run the demo by:
$ docker run --name momantu -i -t -p

6900:5900 -e RESOLUTION=1920x1080
yz16/momantu

2. Open a VNC client like “VNC viewer”, and connect to the
“127.0.0.1:6900”. It will open a GUI and we can interact
with it like our local computer. Our two workspace are
put in the “root” folder and ready to use.

3. Other operation like stop/ restart from a stopped contain-
er/close the docker container by:
$ docker stop momantu
$ docker start momantu
$ docker kill momantu
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