
Mobile Manipulation Tutorial

Jiawei Hou1∗, Yizheng Zhang∗, Andre Rosendo and Sören Schwertfeger2

I. INTRODUCTION

As service robots stepped into the public view in re-
cent years, the development of mobile manipulators has
rapidly increased. A mobile manipulator is a robot system
composed of a robotics arm installed on a mobile robotic
platform. Through this combination, robots have an unlim-
ited workspace and the ability to operate in a multitude of
environments.

Remote-controlled mobile manipulators are used in certain
scenarios, like bomb disposal and planetary exploration.
However, autonomous mobile manipulation is far more inter-
esting, as it opens applications in many different areas like
service robotics, manufacturing, logistics and construction.

Autonomous mobile manipulation is a highly complicated
task, involving many different components. Those include
the mechatronics system of the mobile platform, the robotic
arm and the end effector, powerful sensors and a complex
software system. In this tutorial it is assumed that the
hardware problem is already solved, either with a real robot
or in simulation. The emphasis is then on the software and
algorithms.

In this tutorial we concentrate on one of the most basic
applications of mobile manipulation: fetching an object. Ob-
viously, mobile manipulation includes more scenarios than
just this pick and place action. For example, the DARPA
Robotics Challenge required the use of power tools and the
operation of valves and the opening of doors [8].

Given the complex nature of mobile manipulation, the
easiest, simplest hardware for the task is assumed here: Using
a wheeled base, a commercial robot arm with at least six
degrees of freedom (DoF), such that most end-effector poses
up to a certain distance are reachable, and a simple parallel
gripper. Laser scanners are used for mapping, for their wide
field of view, long range and high accuracy. An RGB-
D camera is used for object recognition and localization.
The robot starts at a known location with a known map
and the semantic information for the mapping of rooms to
coordinates is provided. The simple task is then to: 1) drive
to a given location; 2) there, identify and grasp a specified

∗Both authors are first author and denote equal contribution.
1Jiawei Hou is with the School of Information Science and Technol-

ogy, ShanghaiTech University, Shanghai 201210, China, and also with
the University of Chinese Academy of Sciences, Beijing 100049, China,
and also with the Shanghai Institute of Microsystem and Information
Technology, Chinese Academy of Sciences, Shanghai 200050, China
houjw@shanghaitech.edu.cn

2Yizheng Zhang, Andre Rosendo and Sören Schwertfeger are
with the School of Information Science and Technology, Shang-
haiTech University, Shanghai 201210, China {zhangyzh1, andre,
soerensch}@shanghaitech.edu.cn

Localization

Mapping/ 
SLAM

Path 
Planning

Navigation/
Path 

Following

Object 
Recognition

Arm 
Planning/

IK

Object 
Recognition

Grasp 
Planning

Arm Control

Human 
Robot 

Interaction
Simulation

Autonomy/
State 

Machine

Mobile Robotics Manipulation

Robot
Calibration

Training for 
Object 

Recognition

Mapping &
Semantic 

Annotation

Offline Tasks

Autonomous Mobile Manipulation

Simulation 
Modelling

Fig. 1. Overview of the most important problems for a mobile manipu-
lation pick and place task.

object; 3) drive to a different location and 4) place the object
on a specific QR code.

Even this simple task already requires all the software
components shown in Fig. 1. This assumes that all the
more benign robotics software tasks like sensor and actuator
drivers, communication, visualization, data recording and
error logging are already solved by a middleware. This
tutorial is using the Robot Operating System (ROS version
1) for this, as it is widely in robotics research. Thanks to the
robotics community many open source software solutions
are available for the components shown in Fig. 1. Whenever
possible, this tutorial is using well known and established
open source ROS packages.

Typically, individual software packages come with their
own documentation and tutorials. However, most packages
require users to configure parameters according to the practi-
cal situation of their robots, the official documents are often
too broad for beginners, and the example code cannot be
applied to the users’ robots directly. Additionally, the system
integration of the individual components to a working system
is more complex than just the sum of the complexity of the
components.

Through our tutorial, readers can learn what components
are needed to complete such a task, what software packages
are recommended for these components, how to configure
the packages according to the operational demo, what func-



tions each component undertakes, and how to connect these
components. The tutorial also warns of common pitfalls and
provides a good starting point for beginning the research on
autonomous mobile manipulation.

The tutorial comes in several parts. This text provides
an overview and system overview (Section II) of a typical
mobile manipulation software stack. Section III gives infor-
mation of how to run our simulation demo in docker and how
it install is natively. In Section IV some select modules are
described. A longer, supplementary text is available online,
that goes into the details of all the modules. The Mobile
Manipulation Tutorial (MoManTu) GitHub webpage1 pro-
vides videos, recorded sensor data and other supplementary
data of the tutorial. It also points to the GitHub repositories
of all the software.

The MoManTu provides four demos based on two robots,
running on both in real and simulation environments, and
the corresponding code - see Figure 2. The commercially
available Fetch robot features a back-drivable 7 DoF robot
arm with a parallel gripper, a torso lift joint, a pitch, yaw
head with an RGB-D camera as well as a 2D Laser Scanner.
The other robot was build from commercial components at
the Mobile Autonomous Robotic Systems Lab (MARS Lab)
of ShanghaiTech University. It is a Clearpath Jackal mobile
base, that offers higher mobility and speed than the Fetch.
The robot uses a Kinova Jaco Gen 2, 6 DoF manipulator
with a three finger hand. The sensors consists of a wrist-
mounted RGB-D camera (Intel RealSense D435) and a 16-
beam 3D LRF (Velodyne Puck). We thus have two very
common camera placement covered: head-mounted and arm-
mounted.

The simulation is using Gazebo. Other robot simulation
software exists, like CoppeliaSim (V-Rep) or Webots, but
Gazebo was chosen for its popularity and tight integration
of ROS. We provide the MoManTu system for the two sim-
ulated robots ready to use in virtual apartment environment.
To enable the reader to test and run the software very easily
on their own computer, we provide a docker image. After
connecting to the docker with a VNC viewer, the demo is
ready to run.

In Table I the packages needed during running the “bring
object” task are listed, as well as the the packages which are
needed offline as a preparation to actually run the system.
It can be seen that for several packages two alternatives
are offered. This is to keep the tutorial general, educate the
reader how to easily switch between the packages, to make
the interfaces between the modules clearer and to enable the
reader to modify the system and use their own modules.
Supporting two different robots serves the same purpose.

II. SYSTEM OVERVIEW

The Mobile Manipulation Tutorial (MoManTu) teaches the
reader such a complex system on the example of the simple
task of fetching and bringing a bottle from one place to

1https://momantu.github.io/
2Not all items/ code are finished at the time of the initial submission of

the paper. We are continuing working on the system and paper.

Fig. 2. Mobile Manipulation Systems used in MoManTu: Fetch, real and
simulated; Jackal & Kinova, real and simulated.

another. From the software side we distinguish the offline
tasks of calibration, training for object recognition, mapping
the environment and building simulation models for the robot
and the environment from the online parts of actually running
the robot. Fig. 1 depicts those most important software
modules. As a simple solution, MoManTu keeps the path
planning problem, the arm planning problem and the task
planning of the autonomy separated, while more advanced
systems may opt for combined task and motion planning
[15]. We can thus separate the problem into a mobile robotics
part, that is responsible for driving the robot to a certain
location, the manipulation part, that is responsible for finding
the object to be picked and the according arm motions, and
the more general autonomy part with a simple state machine
and the human robot interaction part.

Table I shows which open source software we use for
the different modules. The mobile robotics part is making
full use of the ROS Navigation stack. The robot is provided
with a map of the environment, so it does not have to do
exploration. AMCL is used to localize the robot in this map.
In order to drive to a specified 2D coordinate in the map,
ROS Navigation is building costmaps (global and local) that
combine the provided map with current scan data. A global
path planner is then planning a path to the coordinates, taking
the kinematic constraints of the robot (e.g. differential drive
for the systems in this paper and the robot size) into account.
A local planner is then actively avoiding obstacles while



TABLE I
MODULES USED IN THE MOMANTU SYSTEM

Role Package
Localization AMCL

Local Costmap ROS Navigation
Path Planning ROS Navigation

Path Following ROS Navigation
Arm Control 1 kinova ros
Arm Control 2 fetch ros

Category Detection & Pose NOCS
Object Detection & Pose (todo2)

Object Place Pose AprilTag ROS
Grasp Planning /

Arm Planning 1 & IK MoveIt Pick and Place
Arm Planning 2 & IK MoveIt directly (todo)

Human Robot Interaction 1 RViz & FlexBE App
Human Robot Interaction 2 Speech (todo)

Decision Making FlexBE
Offline Packages

Simulation World Building Gazebo
SLAM 2D Cartographer
SLAM 3D Cartographer (todo)

Camera Calibration camera calibration
Camera Pose Detection AprilTag ROS
Hand-eye Calibration easy handeye

following the global path.
In MoManTu, the goal coordinates come from the state

machine that is coordinating and controlling all actions of
the robot. Fig. 3 is showing the simple machine, depicting
the steps needed to pickup and place the bottle. In our demo
the coordinates for robot navigation are saved as attributes
in the state machine, while more sophisticated systems may
store those in a semantic map, for example with coordinates
for ”kitchen” or ”office”. We are using FlexBE, which allows
to create complex robot behaviors as a state machine without
the need for manually coding them. It also serves as a
Graphical User Interface (GUI) to start and control the robot,
thus also being a simple form of Human Robot Interaction.
An additional interface to the robot, that closely interacts
with FlexBE, is the speech control (ToDo).

Once the robot has driven to the goal position, it is using
the RGB-D camera to find the object to be picked up.
The color image is used to recognize the object, while the
depth data is essential to find the 6D pose of the object.
Through deep learning, computer vision has seen tremendous
developments for object recognition in the recent years. We
are providing three approaches to this problem, which can
be used interchangeably. In the simplest case AprilTags are
used to specify an object’s pose. The second option we
implemented in MoManTu is to use the Normalized Object
Coordinate Space for Category-Level (NOCS) 6D object
pose and size estimation [14]. We wrapped this into a ROS
service. This software can distinguish different categories
(e.g. bottle and bowl), but not different objects (e.g. coke
vs. water bottle). As a third option we implement a Deep
Learning object detection solution (ToDo).

Once an object’s pose is detected, complex manipulation
systems typically do grasp planning, i.e. they find the optimal
ways of how to grasp the object with the given end effector.

Fig. 3. States of the FlexBE State Machine.

This tutorial is skipping this step by simply assigning a grasp
pose with zero roll, pitch and yaw w.r.t. the manipulator base
and the bottle’s center as position. This approach works for
this simple task, but may fail for more complex objects.

ROS comes with a sophisticated arm planning and control
system called MoveIt!, which is also used in this tutorial.
Once it is properly setup with the arm parameters, robot
collision information, calibration data and access to live
depth information, it can solve the Inverse Kinematics (IK)
of the arm, plan trajectories and control the execution of
those trajectories all while avoiding collisions with itself,
the known robot base and dynamic objects it knows from
the depth camera. We provide two approaches of how to
use MoveIt. The first implementation uses the basic MoveIt
commands to plan trajectories, execute them and use the
gripper (ToDo). The second approach is using Pick and
Place, an extension to MoveIt to simplify such pick and place
tasks.

The video attached to the tutorial, which can also be found
on the MoManTu website, shows how the system is solving
our simple mobile manipulation task.

A. Offline Modules

There are several tasks that need to be done before the
robot can be run. The first of those offline tasks is the
extrinsic calibration of the camera that is used to find the
object with the robot arm. The tutorial is providing a detailed
discussion on how to solve this hand-eye calibration problem.

The object recognition with deep learning relies on train-
ing images with ground truth labels. In the final version
of this tutorial we will provide one such module and also
describe how to collect the training data and do the training.
(ToDo).

In a typical mobile manipulation scenario a map of the
environment is already provided, possibly with semantic
information about the names of rooms, etc. More advanced
systems might also update the map while driving around -
but this is not part of MoManTu. But we provide detailed
instructions on how to create such a map using 2D and 3D
laser scanning data. Cartographer [6] is used for that. It is
also explained how to store and then use this map in the live
system.

For many robot researchers the use of a simulator is
important to do experiments and tests without the additional



Fig. 4. Our Gazebo simulation world.

complexity that real robot systems pose. MoManTu is provid-
ing models of the two different models and also two different
environments - Fig. 4 is showing one of them. It is also
outlined how to model new robots and environments and
how to use the Gazebo simulator.

III. RUNNING MOMANTU

A. MoManTu Simulation from Docker

The easiest way to get started with playing with the tutorial
is to use the provided Docker image.
1. Pull our docker image and run the demo by:

$ docker run --name momantu -i -t -p
6900:5900 -e RESOLUTION=1920x1080 yz16/
momantu

2. Open a VNC client like “VNC viewer”, and connect to the
“127.0.0.1:6900”. It will open a GUI and we can interact
with it like our local computer. Our two workspace are
put in the “root” folder and ready to use.

3. Other operation like stop/ restart from a stopped contain-
er/close the docker container by:
$ docker stop momantu
$ docker start momantu
$ docker kill momantu

Launch the simulator and the MoManTu software by
running this command in the terminal:
$ roslaunch fetch_sim demo.launch

Our pose estimation module based on NOCS, which runs
under a conda environment of Python3.5. We activate the
environment and launch the object pose estimation module
with:
$ conda activate NOCS #activate environment
$ source ˜/nocs_ws/devel/setup.bash
$ roslaunch nocs_srv pose_estimation_server.

launch

Finally, launch the flexbe app and robot server node to
connect other modules and start the FSM. The demo video
can be found on our web page.
$ roslaunch fetch_sim robot_service.launch

B. MoManTu from Source

Besides using the provided Docker container, users are
encouraged to work with the system natively. Thus, this
section introduces how to fetch, compile and run the code by
hand. This tutorial is based on the assumption that the readers
are already familiar with ROS (Robot Operating System). All
the examples in this tutorial will be run on ROS Melodic
version under Ubuntu 18.04. Before starting the tutorial, one
should install ROS under a Linux Operating System.

We build two catkin workspaces, one named “mo-
mantu fetch ws” for the Fetch robot examples, and the other
named “momantu kinova ws” for the Kinova-Jackal robot
examples. We provide all code and configuration files men-
tioned in this tutorial on GitHub3. The main dependencies
should be installed through apt by using the command
provided in the readme of the momantu fetch repository. The
two repositories above both include the simulation and real-
robot parts. Let’s first download the sources and their further
dependencies, and compile them:
$ cd
$ source /opt/ros/melodic/setup.bash
$ mkdir -p momantu_fetch_ws/src
$ cd momantu_fetch_ws/src
$ git clone https://github.com/momantu/

momantu_fetch.git
$ cd momantu_fetch
$ git submodule update --init --recursive
$ cd ../..
$ rosdep install --from-paths src --ignore-

src -y -r
$ catkin_make
$ source ˜/momantu_fetch_ws/devel/setup.

bash

In order to get the Jackal-Kinova version simply replace
”fetch” with ”kinova”.

The last line of the listing is sourcing the ROS environment
of the momantu workspace to the current terminal session.
Any new terminal instance that is created needs to run that
line if any program or ROS message from the workspace is
to be used.

We also provide the NOCS wrapper repository4 for 6D
object pose estimation, which needs to be installed in an-
other workspace according to its README file. The startup
procedure for the whole system is then the same as in docker.

IV. MODULES

Some more details for a few modules are presented in this
section, while in-depth tutorials for all modules are provided
in the extended online version of the mobile manipulation
tutorial.

A. MoveIt

MoveIt is an open-source robotics manipulation platform.
MoveIt[9] integrates modules like motion planning, manip-
ulation, perception, collision detection and provides a node
called move group, which pulls all the individual components

3https://github.com/momantu/momantu_fetch
4https://github.com/momantu/nocs_ros

https://www.realvnc.com/en/connect/download/viewer
https://momantu.github.io/
http://docs.ros.org/melodic/api/moveit_tutorials/html/index.html
https://github.com/momantu/momantu_fetch
https://github.com/momantu/nocs_ros


Fig. 5. Integrate with OctoMap.

together to provide a set of ROS actions and services for
users to use. We demonstrate how to use move group C++
interface to pick an object and put it on another table by
Fetch mobile manipulator.

After installing MoveIt, you can bring up our robot with
in Gazebo by:

$ roslaunch fetch_sim gazebo_simulation.
launch

$ roslaunch fetch_common moveit.launch

move group integrates different components, each com-
ponents needs parameters, which are loaded from a
ROS Param Server, to configure itself. The parameters for
our robots have been setup already. A MoveIt Setup Assistant
exists to help configuring custom robot arms.

1) Perception pipeline: To take advantage of the 3D
sensor, MoveIt allows for seamless integration of it using
OctoMap. This function is implemented by MoveIt’s Oc-
cupancy Map Updater, which uses a plugin architecture to
process different types of input. Fetch robot has an RGB-
D camera and gives point cloud, so we use thePointCloud
plugin to handle this information.

2) Pick and Place: The most common usage of robotic
arms is to pick and place objects. The prerequisite for this
task is knowing the pose of the object, which is done by the
object recognition step. MoveIt provides several modules to
do the pick and place task, including Pick and Place, MoveIt
grasp or the MoveIt Task Constructor. Third party packages,
like the Grasp Pose Detection (GPD)[12], use learning-based
methods to detect 6-DOF grasp poses for a 2-finger robot
hand in 3D point clouds.

MoManTu is demonstrating two ways of how to use
MoveIt: 1) using the API directly to directly control each
step and 2) use the Pick and Place package. More details on
both can be found in the online version of this tutorial.

B. Navigation

Navigation is the technique that supports the robot to
move from one place to another place. Since our the mobile
robot base only needs to navigate in the 2D plane, we
employ the widely-used ROS Navigation Stack, including

Fig. 6. Navigation given a map. The global map is padding and shown as
costmap. The colorful points are the obstacle points scanned by the Lidar.
Based on it, the padded obstacles are shown in the local costmap. The red
arrow series are the robot poses provided by the odometry. The green arrow
is the given goal.

move base as a main component. The move base package
contains a local planner to avoid obstacles and a global
planner to plan a path for the robot to reach the given
goal. A well-configured version of move base for Jackal is
Jackal navigation, installed with:

$ sudo apt install ros-melodic-jackal-
navigation

1) Navigation given Map: A map is required to navigate
to a specified goal. In MoManTu, the environmental map
created beforehand is loaded and published by a map sever.

The move base node is then responsible for the navigation.
The input requirements of move base include sensor data,
sensor transformations, odometry and a goal.

The odometry data is provided by the robot. The default
subscribing topics of laser data and odometry to move base
are “/scan” and “/odom”, respectively. If other topics are
specified to subscribed instead, remapping of topics will
be needed. If the robot subscribes to another controller
topic rather than “/cmd vel”, e.g., a topic with namespace, a
remapping for it is needed, too. The parameter configurations
for the navigation are loaded as yaml files. Users can check
these files to explore the effect of various parameters. [16]
gives a detailed navigation tuning guide, which helps readers
to tune the navigation parameters efficiently.

With a given map, we localize the robot in the environment
with the amcl package, which is a probabilistic 2D localiza-
tion system. Besides the map, amcl requires odometry data,
laser sensor data and an initial pose as inputs.

Fig. 6 shows the RViz interface during navigation, in which
the sensor scan points overlap with the map pixels and the
robot is moving toward the given goal.

C. Object Pose Estimation

Before gripping a specific object, first we need to discover
the target object and estimate its 6D pose to tell the gripper
where to move. Although there is more work on instance-
level 6D pose estimation, in order to allow users to easily use
our examples in their actual work without having to train the

https://fetchrobotics.com/robotics-platforms/fetch-mobile-manipulator


(a) Predicted mask of the detected
object.

(b) Estimated pose of detected object
with NOCS representation.

Fig. 7. NOCS model predicted results.

model, we will introduce a method based on category-level
object detection. The work [14] is a state-of-the-art method to
estimate the 6D pose of unknown specific-category objects.
First, they train a region-based network to predict object
masks and class labels and to directly correspond the ob-
served pixels with their proposed representation, Normal-
ized Object Coordinate Space (NOCS), for object instances.
Then they combine the prediction and depth information
to estimate the 6D pose of multiple objects within given
categories. An advantage of category-level detection is that
the algorithm can detect unseen objects without requiring the
object meshes. If the target object is included in the trained
categories, the users can apply the pre-trained model directly
without training.

1) Call Pose Estimation in ROS: The 6D object pose
estimation work [14] is open-source on Github. However,
there is no ROS implementation of the work. To apply pose
estimation during our task, we wrap it to a ROS package and
the estimation can be called as a ROS service.

The environment and dependence installation is introduced
in the README file. After the installation, the topics and the
intrinsic matrix of the RGB-D camera need to be set in the
launch file “pose estimation server.launch”. The parameter
camera optical frame is the frame of your RGB image topic.

The detection and estimation results are saved under the
“output” folder. Fig. 7(a) shows the predicted mask with
the label of the detected object, while Fig. 7(b) shows its
predicted pose and its NOCS representation, a bounding box.

When the estimation is finished, the transform between
object and camera is published to a tf message, such that
the robot knows the object’s estimated pose in the world
coordinate system.

D. Decision Making

A state machine is needed to combine and coordinate
the execute of the different modules to generate complex
behaviors. This then allows the robot to finish different
tasks. There are two popular ROS packages that implement
state machines, SMACH[2] and FlexBE[11]. SMACH is a
task-level architecture for rapidly creating complex robot
behaviors. At its core, SMACH is a ROS-independent Python
library to build hierarchical state machines. FlexBE’s core
is based on SMACH and provides features like drag&drop

State Machine
Instantiated

Behavior 
starts Other states active

SM transitions 
to next state

State A 
execution loop

SM transitions 
to state A

Behavior stops

State A active

Fig. 8. State Machine state lifecycle.

behavior creation, automated code generation, which allows
us to create a behavior without coding. MoManTu is imple-
mented with FlexBE.

A state in FlexBE is defined by a Python class EventState.
This class contains six functions that are called sequentially
when the state is triggered. To define a custom state, it is
needed to inherit this class and then implement these six
functions. These functions and their roles are listed in Table
II. To connect with ROS, we can define some ROS publisher
or subscriber in the init function and enable them in the
on enter function. After a state is finished, it needs to transfer
to another state, so the state needs to define its outcomes
and using execute function to check conditions to trigger
outcomes.

TABLE II
FLEXBE STATE LIFECYCLE

Name Role
init state instantiated

on start (execute once) initialize resources
on enter start state actions, initialize variables
execute (execute periodic) check conditions to trigger outcomes
on exit to stop running processes
on stop to clean up

The states can be combined into a behavior. The workflow
of the state machine and the activity inside a state is shown
in Fig. 8.

FlexBE provides the flexbe app, an extensive user interface
allows us to use a graphical interface to directly design state
machines. The states defined for MoManTu can be found in
Fig. 3.

E. Hand-Eye Calibration

In order to allow the robotic arm to flexibly operate objects
in the environment, a camera is usually mounted on the robot.
All vision information obtained by the camera is in the cam-
era coordinate system. For the arm, in order to use the visual
information, we need to calculate the transformation between
the robot coordinate system and that of the camera. This is
the main problem solved by hand-eye calibration [13] and
can be done offline, before running the MoManTu system.
Two camera installations are common: eye-in-hand and eye-
on-base [4]. Eye-in-hand means mounting the camera on the
arm. This way, the camera will move with the movement of
the arm. In the second way, eye-on-base, the camera and the
robot base are relatively fixed.



A�

A1
B

C1

C�

B

Fig. 9. Eye-in-hand calibration.

Manipulators usually have a big operating space, which
typically larger than the field of view of the camera. A simple
solution to this problem is to mount the camera near the end-
effector of the arm, which corresponds to the eye-in-hand
calibration problem. The Jackal-Kinova robot used in this
tutorial has such a setup. Mounting the camera on the robot
with a pan, tilt mechanism is more complicated, but has the
advantage of a typically better view on the whole workspace.
The Fetch robot uses this setup and is thus calibrated using
the eye-on-base approach.

Here we only introduce hand-in-eye calibration, because
the calibration of the hand-on-base case is quite similar and
because the Fetch robot comes already calibrated.

Fig. 9 shows the eye-in-hand calibration theory. When
we move the end effector to two different poses, where the
camera can see the marker that is placed relatively fixed to
the robot base, the transformation relationship for different
coordinate systems in two poses can be represented as:

A1 ·B ·C−1
1 = A2 ·B ·C−1

2 , (1)

⇒ (A−1
2 ·A1) ·B = B · (C−1

2 ·C1) (2)

where Ai is the transformation from the end effector to the
robot base of the ith sample, which is provided by the arm
robot; B is the to-solve static transformation from the camera
to the end effector; Ci is the camera pose under the marker
coordinate system of the ith sample. Then it translates into a
problem of solving B with known Ai and Ci by moving the
hand effector to different poses to collect groups of samples.

The steps for the calibration, which are covered in more
detail in the supplementary material, are: 1) Intrinsic cal-
ibration of the camera (focal length, image sensor format,
principal point, lens distortion). 2) Collecting synchronized
motion samples from of the end effector (w.r.t. the robot
base, through forward kinematics) and the camera (w.r.t. a
global frame, using an AprilTag). 3) Solving the hand-eye-
calibration by calculating the transform B between the end
effector and the camera, through optimization. 4) Publishing
B in the live system.

F. Mapping

The goal of mapping is creating a map of the environment
so that the robot can navigate with the recorded environ-

mental information in the future. The main technique behind
is simultaneous localization and mapping (SLAM) [3], [1].
SLAM is a process that builds the map while figuring out
where the agent is located in the environment. Building a 2D
map saves computation resource and sensor costs, compared
to building a 3D map, and is usually sufficient for ground
navigation. A basic input requirement of mapping is a range
measurement device. For the 2D case, a 2D laser scanner
meets the requirement, which is cheap and widely used.
Besides, the data from the Inertial Measurement Unit (IMU)
or odometry helps the localization. 2D mapping is a fairly
mature research field, for which there are some popular
open-source packages. Their different back-end algorithms
determine their different application scenarios. Gmapping [5]
is a 2D laser SLAM based on a particle filter framework,
combining odometry and laser information. Hetor SLAM [7]
matches laser data between frames with an optimization
method without requiring odometry information. Karto [10]
is a graph optimization SLAM based on matrix sparseness,
including loop closure, which has advantages in large-scale
mapping. In the tutorial we are using Cartographer [6],
which is a complete real-time laser SLAM system. It contains
a robust front end and a pose graph back end based on
submaps and node constraints.

When using 3D laser scanners such as Velodyne’s VLP-
16 Lidar sensor, its 3D sensor data can be converted to
a simulated 2D scan, and it is thus also suitable for 2D
mapping. In MoManTu cartographer is used to crate and
save a map in a separate mapping run, before the actual
demo system is run. More details can be found in the online
tutorial.

V. CONCLUSIONS

This paper provides demo code for a simple mobile ma-
nipulation task. Open source modules are used and detailed
descriptions and steps how to use them are provided in
the extended online version of the tutorial. The system
was demonstrated on two different real mobile manipulation
platforms, but is also working in the Gazebo simulator.
To lower the entry barrier for trying out the software, a
docker image is provided that can run the demo out of the
box. The MoManTu website provides additional content like
videos, ros bagfiles from the real robot runs and links to
all the github repositories used. The repositories additionally
provide documentation in the readme files and provide issue
trackers to answer questions about the system. The website
is also the place where future updates to the tutorial will be
announced.

REFERENCES

[1] Tim Bailey and Hugh Durrant-Whyte. Simultaneous localization and
mapping (slam): Part ii. IEEE robotics & automation magazine,
13(3):108–117, 2006.

[2] J. Bohren and S. Cousins. The smach high-level executive [ros news].
IEEE Robotics Automation Magazine, 17(4):18–20, 2010.

[3] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and
mapping: part i. IEEE robotics & automation magazine, 13(2):99–110,
2006.

[4] Marco Esposito. Ifl-camp/easy handeye.



[5] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for
grid mapping with rao-blackwellized particle filters. IEEE Transac-
tions on Robotics, 23(1):34–46, 2007.

[6] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. Real-
time loop closure in 2d lidar slam. pages 1271–1278, 05 2016.

[7] S. Kohlbrecher, O. von Stryk, J. Meyer, and U. Klingauf. A flexible
and scalable slam system with full 3d motion estimation. In 2011 IEEE
International Symposium on Safety, Security, and Rescue Robotics,
pages 155–160, 2011.

[8] Eric Krotkov, Douglas Hackett, Larry Jackel, Michael Perschbacher,
James Pippine, Jesse Strauss, Gill Pratt, and Christopher Orlowski.
The darpa robotics challenge finals: Results and perspectives. Journal
of Field Robotics, 34(2):229–240, 2017.

[9] MoveIt. Concept of moveit. https://moveit.ros.org/
documentation/concepts/, 2020.

[10] E. B. Olson. Real-time correlative scan matching. In 2009 IEEE
International Conference on Robotics and Automation, pages 4387–
4393, 2009.

[11] Philipp Schillinger, Stefan Kohlbrecher, and Oskar von Stryk. Human-
Robot Collaborative High-Level Control with an Application to Res-
cue Robotics. In IEEE International Conference on Robotics and
Automation, Stockholm, Sweden, May 2016.

[12] Andreas ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt.
Grasp pose detection in point clouds. The International Journal of
Robotics Research, 36(13-14):1455–1473, 2017.

[13] Roger Y Tsai, Reimar K Lenz, et al. A new technique for fully
autonomous and efficient 3 d robotics hand/eye calibration. IEEE
Transactions on robotics and automation, 5(3):345–358, 1989.

[14] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran
Song, and Leonidas J. Guibas. Normalized object coordinate space
for category-level 6d object pose and size estimation. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

[15] Jason Andrew Wolfe, Bhaskara Marthi, and Stuart J Russell. Com-
bined task and motion planning for mobile manipulation. In ICAPS,
pages 254–258, 2010.

[16] Kaiyu Zheng. Ros navigation tuning guide. arXiv preprint
arXiv:1706.09068, 2017.

https://moveit.ros.org/documentation/concepts/
https://moveit.ros.org/documentation/concepts/

	INTRODUCTION
	System Overview
	Offline Modules

	Running MoManTu
	MoManTu Simulation from Docker
	MoManTu from Source

	Modules
	MoveIt
	Perception pipeline
	Pick and Place

	Navigation
	Navigation given Map

	Object Pose Estimation
	Call Pose Estimation in ROS

	Decision Making
	Hand-Eye Calibration
	Mapping

	Conclusions
	References

