Lecture 1

Introduction to Electronics and Switches

Haoyu Wang ShanghaiTech University

Introduction to Information Science and Technology (Electronics)

ShanghaiTech University

Outlines

- Administration
- Motivation
- Scope
- Switch Basis
- Switch Evolvement
- A CMOS NOT Gate
- Discussion

Introduction to Information Science and Technology (Electronics)

Outlines

- Administration
- Motivation
- Scope
- Switch Basis
- Switch Evolvement
- A CMOS NOT Gate
- Discussion

Introduction to Information Science and Technology (Electronics)

ShanghaiTech University

Instructors

- Prof. Haoyu Wang
 - » Email: wanghy@shanghaitech.edu.cn
 - » Website: http://pearl.shanghaitech.edu.cn
 - » Office: Research Bldg. Rm 210
 - » Office hours: Monday & Thursday 9:15am-10:15am
- Prof. Junrui Liang
 - » Email: liangir@shanghaitech.edu.cn
 - » Website: http://sist.shanghaitech.edu.cn/faculty/liangjr/
 - » Office: Research Bldg. Rm 212
 - » Office hours: Tuesday 9:15am-11:15am

Introduction to Information Science and Technology (Electronics)

TAs

weitw@shanghaitech.edu.cn Tianwei Wei

liyang@shanghaitech.edu.cn Yang Li

Minhua Chen chenmh@shanghaitech.edu.cn

TA Office Hours

» Weeks 13&15 (5/30/2015,6/13/2015)

- 19:00pm - 21:00pm

- 宿舍1号楼成长驿站

» Weeks 14&16 (6/6/2015,6/20/2015)

- 9:00am - 6:00pm

- Research center, Rm. 211 (Lab)

Introduction to Information Science and Technology (Electronics)

ShanghaiTech University

Course Website

http://shtech.org/course/ee100/

13	05-25	Introduction to Electronics and Switches	DDCA 1	Homework 0, Vocabulary, Administration
	05-28	Digital Logic		
14	06-01	Combinational Digital Circuits		
	06-04	Lab 1 Digital Circuits Lab		
15	06-08	Sequential Digital Circuits		
	06-11	Computing Units		
16	06-15	Electronics, Beyond the Logical Switches		
	06-18	Lab 2 Analog Circuits Lab		

Description

- [ICPY] John V. Guttag, 2013. Introduction to Computation and Programming Using Python. MIT Press. (accessible only on campus)

- Python documentation
 LaValle, Mobile Robotics (draft)
 LaValle, Planning Algorithms
 [DDCA] David M. Harris and Sarah L. Harris, Digital Design and Computer Architecture

Introduction to Information Science and Technology (Electronics)

Schedule

Week	Date	Topic	Location
13	5/25	Introduction to Electronics	Auditorium
13	5/28	Digital logic	Auditorium
	6/1	Combinational digital circuits	Auditorium
14	6/4	Lab 1: digital circuits	Auditorium
	6/6	Lab session	Research Bldg. Rm. 211
15	6/8	Sequential digital circuits	Auditorium
15	6/11	Digital building blocks	Auditorium
	6/15	Beyond the logic switches	Auditorium
16	6/18	Lab 2: analog circuits	Auditorium
	6/20	Lab session	Research Bldg. Rm. 211

ShanghaiTech University

• Reference texts

Introduction to Information Science and Technology (Electronics)

- » David M. Harris and Sarah L. Harris, *Digital Design and Computer Architecture*
- » Ronald J. Tocci and Neal Widmer, *Digital Systems Principles and Applications*, 11th edition

Grading

» Homework 50%» Quiz 20%» 2 Labs 30%

Introduction to Information Science and Technology (Electronics)

Labs

Week	Date	Topic	Location
13	5/25	Introduction to Electronics	Auditorium
15	5/28	Digital logic	Auditorium
	6/1	Combinational digital circuits	Auditorium
14	6/4	Lab 1: digital circuits	Auditorium
	6/6	Lab session	Research Bldg. Rm. 211
15	6/8	Sequential digital circuits	Auditorium
15	6/11	Computing units	Auditorium
	6/15	Beyond the logic switches	Auditorium
16	6/18	Lab 2: analog circuits	Auditorium
	6/20	Lab session	Research Bldg. Rm. 211
oduction to Information Science and Technology (Electronics) ShanghaiTech Unive			

Labs

- Digital circuit lab (select 1 out of 2)
 - » 光控路障闪烁警示灯 (page 189)
 - » 停电自锁开关 (page 214)
- Analog circuit lab (select 1 out of 2)
 - » TBD
 - » TBD
- Reference book
 - » 王晓鹏,《面包板电子制作68例》

Introduction to Information Science and Technology (Electronics)

Teams and sessions

- 207 students
- 104 teams (self-formed)
- 5 sessions (assigned; 6/6/2015,6/20/2015)
 - » Session 1: 9:00am 10:30am
 - » Session 2: 10:30am 12:00am
 - » Session 3: 1:00pm 2:30pm
 - » Session 4: 2:30pm 4:00pm
 - » Session 5: 4:00pm 5:30pm
- Name lists of sessions will be posted on the course website

Introduction to Information Science and Technology (Electronics)

ShanghaiTech University

Outlines

- Administration
- Motivation
- Scope
- Switch Basis
- Switch Evolvement
- A CMOS NOT Gate
- Discussion

Introduction to Information Science and Technology (Electronics)

Impact of Electronics

Electronics have revolutionized our world
 Cell phones, automobiles, medical devices, etc.

 The semiconductor industry has grown from \$21 billion in 1985 to \$305 billion in 2013.

Introduction to Information Science and Technology (Electronics)

ShanghaiTech University

Robert Noyce, 1927 - 1990

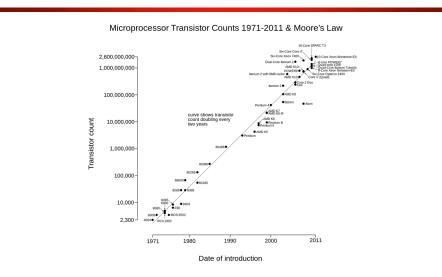
- Nicknamed "Mayor of Silicon Valley"
- Cofounded Fairchild Semiconductor in 1957
- Cofounded Intel in 1968
- Co-invented the integrated circuit (IC)

Introduction to Information Science and Technology (Electronics)

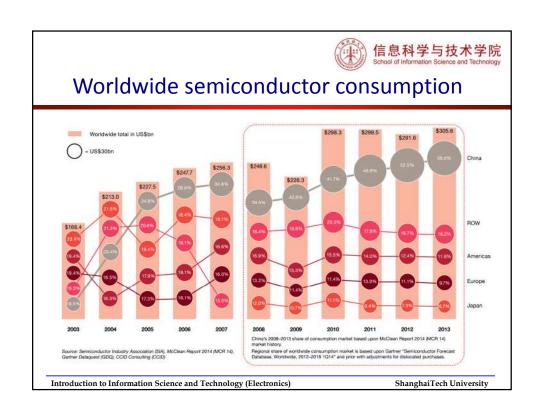
Gordon Moore, 1929 -

- Cofounded Intel in 1968 with Robert Noyce.
- Moore's Law: the number of transistors on a computer chip doubles every year (observed in 1965)
- Since 1971, transistor counts have doubled every two years.

Introduction to Information Science and Technology (Electronics)


Introduction to Information Science and Technology (Electronics)

ShanghaiTech University


ShanghaiTech University



Since 1971: IC industry follows Moore's Law

8

Outlines

- Administration
- Motivation
- Scope
- Switch Basis
- Switch Evolvement
- A CMOS NOT Gate
- Discussion

Introduction to Information Science and Technology (Electronics)

ShanghaiTech University

What are you going to learn

- What logic signals look like
- Model logic signals
- Boolean algebra for logic analysis
- Gates that process logic signals
- How to design basic logic circuits
- Flip-flops and memory elements that store logic signals
- What is beyond digital switches

Introduction to Information Science and Technology (Electronics)

Topics covered

- Switch basis
- Boolean algebra
- Logic gates
- Logic circuits design
- Flip-flops and memory elements
- Computing units
- Beyond the logic switches

Introduction to Information Science and Technology (Electronics)

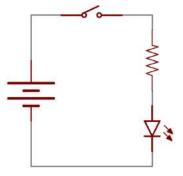
ShanghaiTech University

Outlines

- Administration
- Motivation
- Scope
- Switch Basis
- Switch Evolvement
- A CMOS NOT Gate
- Discussion

Introduction to Information Science and Technology (Electronics)

What is switch?


Introduction to Information Science and Technology (Electronics)

ShanghaiTech University

School of Informatio

Switch

 A switch is a component which controls the open-ness or closed-ness of an electric circuit.

Introduction to Information Science and Technology (Electronics)

Key features of switch

- On/Off
 - » ON ⇔ Short circuit ⇔ a piece of conducting wire.
 - » OFF ⇔ Open circuit ⇔ an open gap in the circuit.
- Control
 - » On and off states of a switch is under control

Introduction to Information Science and Technology (Electronics)

ShanghaiTech University

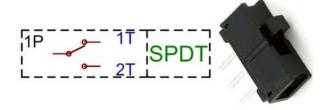
Poles and Throws

- Poles-count
 - » # of separate circuits the switch can control.
- Throws-count
 - » # of positions each of the switch's poles can be connected to.

Introduction to Information Science and Technology (Electronics)

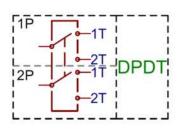
Some examples

- Single pole single throw
 - » The switch will either be closed or completely disconnected



Introduction to Information Science and Technology (Electronics)

ShanghaiTech University


- Single pole double throw
 - » 3 terminals: 1 common pin and 2 pins which vie for connection to the common.

Introduction to Information Science and Technology (Electronics)

- Double pole double throw
 - » 6 terminals: 2 SPDT switches
 - » Control two separate circuits
 - » Switched together by a single actuator

Introduction to Information Science and Technology (Electronics)

ShanghaiTech University

信息科学与技术学院 School of Information Science and Technology

Outlines

- Administration
- Motivation
- Scope
- Switch Basis
- Switch Evolvement
- A CMOS NOT Gate
- Discussion

Introduction to Information Science and Technology (Electronics)

Mechanical Switch

- On/Off
 - » On-state: terminals mechanically attached
 - » Off-state: terminals mechanically detached
- Control
 - » mechanically actuated (push, pull, toggle, etc.)

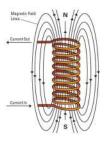
Introduction to Information Science and Technology (Electronics)

Mechanical Keyboard

Introduction to Information Science and Technology (Electronics)

ShanghaiTech University

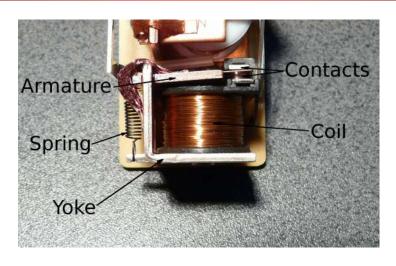
Electric Switch


- Relay
 - » On/Off
 - On-state: terminals mechanically attached
 - Off-state: terminals mechanically detached
 - » Control
 - Electromechanically actuated
 - Weak signal control large current

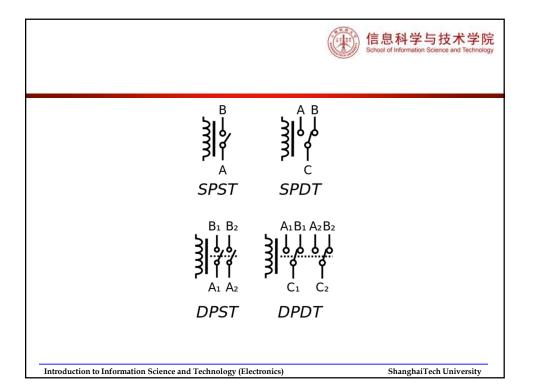
Introduction to Information Science and Technology (Electronics)

Electromagnets

- With an electric current passing through, the coils behave like a magnet
- When the electricity stops flowing, the coils don't act like a magnet anymore

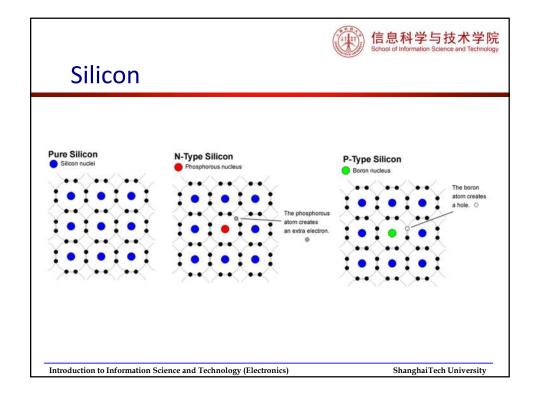

Introduction to Information Science and Technology (Electronics)

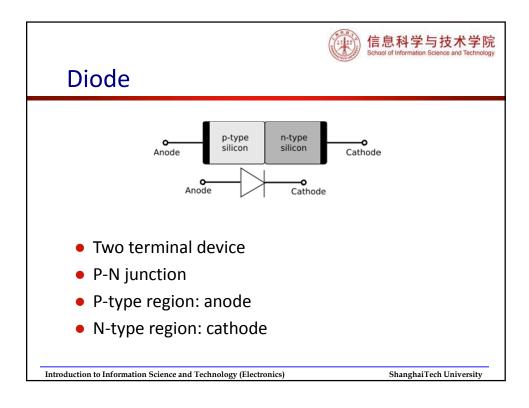
ShanghaiTech University


信息科学与技术学院 School of Information Science and Technology Animation Introduction to Information Science and Technology (Electronics) Shanghai Tech University

The structure of a relay

Introduction to Information Science and Technology (Electronics)





Electronic Switch

- Diode
 - » Passive switch
- MOSFET
 - » Actively controlled switch

Introduction to Information Science and Technology (Electronics)

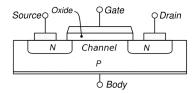
Diode (ctd.) ON » Forward biased » Anode voltage > cathode voltage OFF » Reverse biased » Anode voltage < cathode voltage Cathode Cathode Introduction to Information Science and Technology (Electronics) Shanghai Tech University

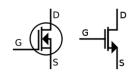
Animation

Introduction to Information Science and Technology (Electronics)

ShanghaiTech University

MOSFET

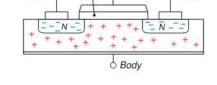

- Metal-Oxide-Semiconductor Field-Effect Transistor
- On/Off
 - » On-state: carrier channel formed, where the current can flow
 - » Off-state: carrier channel does not exist, no path for current to pass
- Control
 - » Actively controlled by electric field


Introduction to Information Science and Technology (Electronics)

MOSFET (n channel)

- Gate
- Source
- Drain
- Substrate (Body)

Introduction to Information Science and Technology (Electronics)


ShanghaiTech University

信息科学与技术学院

Q Drain

/ac = 0

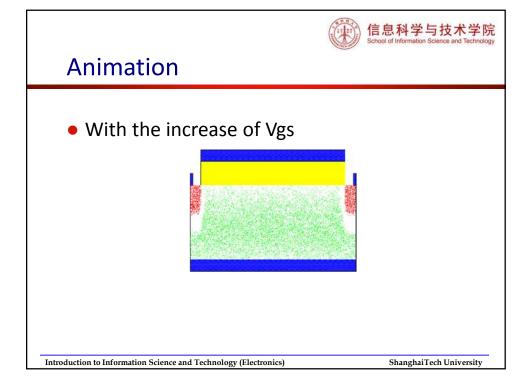
- Vgs = 0
- Source & Drain
 - » N-type
- Substrate
 - » P-type

- No channel exists for the carriers to pass from source to the drain
 - » OFF!

Introduction to Information Science and Technology (Electronics)

○ Gate

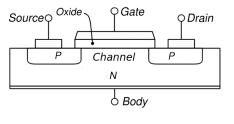
Body

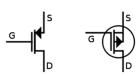

○ Drain

Vgs ≥ Vth

- Vth: Threshold voltage
- Vgs repels all holes and attracts electrons into the channel
- The p-type region in the channel has been inverted in doping
- Carrier channel is formed

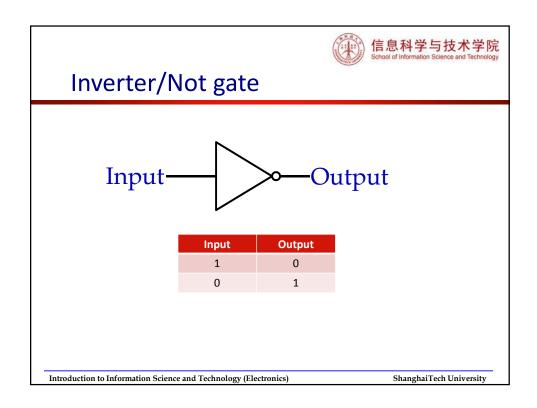
» ON!

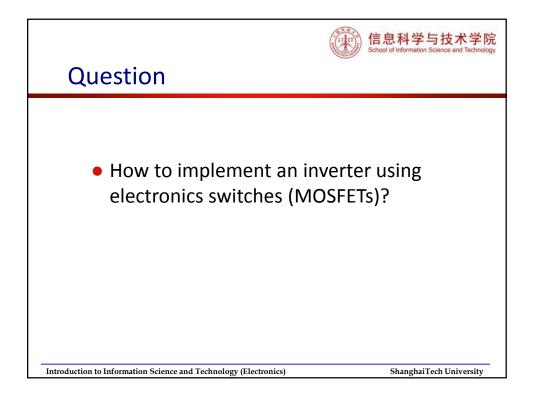

Introduction to Information Science and Technology (Electronics)

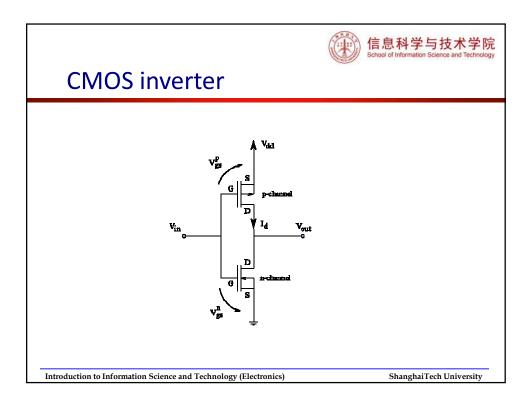


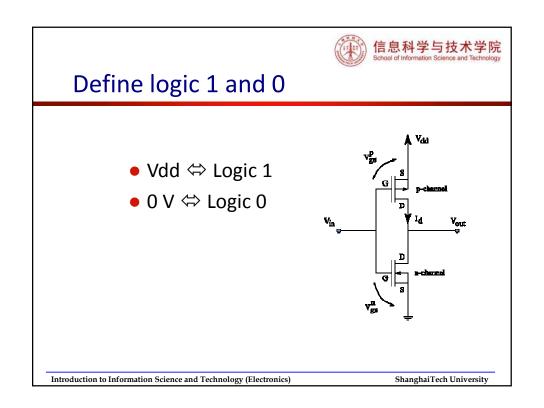
- Source & Drain
 - » P-type
- Substrate
 - » N-type
- Vgs = 0
 - » No channel => OFF!
- Vgs ≤ | Vth |
 - » P channel is formed!
 - » ON!

Introduction to Information Science and Technology (Electronics)

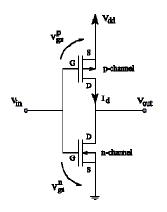

ShanghaiTech University


信息科学与技术学院 School of Information Science and Technology


Outlines


- Administration
- Motivation
- Scope
- Switch Basis
- Switch Evolvement
- A CMOS NOT Gate
- Discussion

Introduction to Information Science and Technology (Electronics)

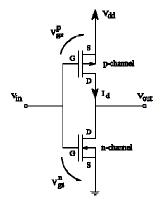


If Vin = 0 V

- Vgsp = -Vdd ≤ | Vthp |
 - » PMOS is ON!
 - » Vout = Vdd
- Logic 0 => Logic 1

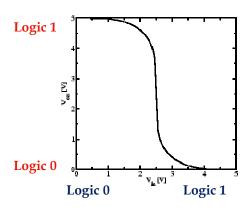
Input	Output
1	0
0	1

Introduction to Information Science and Technology (Electronics)


ShanghaiTech University

If Vin = Vdd

- Vgsn = Vdd ≥ Vthn
 - » NMOS is ON!
 - » Vout = 0
- Logic 1 => Logic 0


Input	Output
1	0
0	1

Introduction to Information Science and Technology (Electronics)

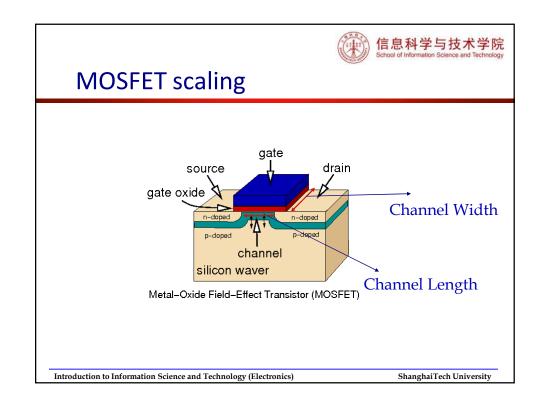
Voltage transfer characteristics

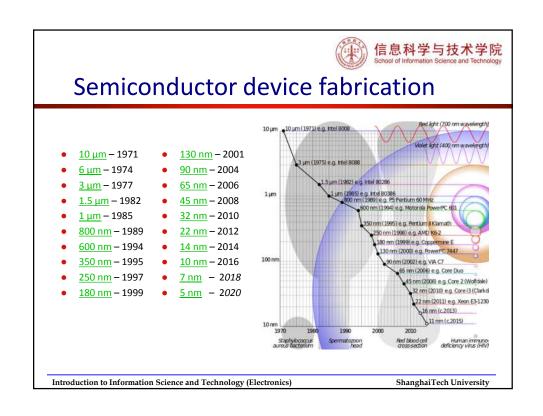
Introduction to Information Science and Technology (Electronics)

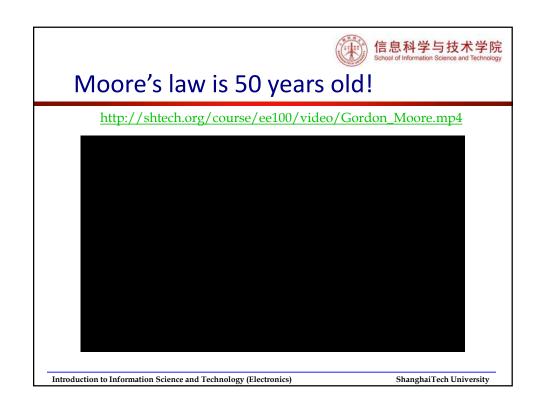
ShanghaiTech University

What is CMOS

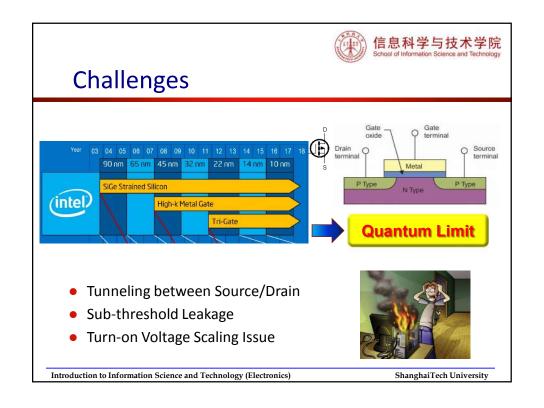
- Complementary Metal—Oxide—Semiconductor
- Application of CMOS
 - » Digital circuits: Microprocessors, microcontrollers, static RAM, and other digital logic circuits.
 - » Analog circuits: image sensors (CMOS sensor), data converters,
 - » Radio frequency circuits: transceivers

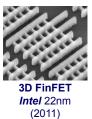

Introduction to Information Science and Technology (Electronics)

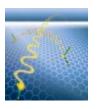


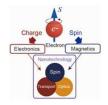

Outlines

- Administration
- Motivation
- Scope
- Switch Basis
- Switch Evolvement
- A CMOS NOT Gate
- Discussion


Introduction to Information Science and Technology (Electronics)







- What's the technology after 5nm?
 - » 3D FinFET
 - » Graphene
 - » Spintronics

Spintronics

graphene channel

Introduction to Information Science and Technology (Electronics)

Foundry & Fabless

- What is Foundry?
- What is Fabless?

Introduction to Information Science and Technology (Electronics)

ShanghaiTech University

Foundry & Fabless

- Foundry:
 - » A factory where ICs are manufactured

- Fabless:
 - » Design and sell ICs
 - » Device fabrication outsourced to foundries

Introduction to Information Science and Technology (Electronics)

Foundry & Fabless in mainland China

- Foundry
 - » SMIC, 5th worldwide
 - 40nm; 28nm will be released in 2015

- Fabless
 - » Huawei Hisilicon, 12th worldwide
 - 6% of Qualcomm
 - » Spreadtrum, 14th worldwide

Introduction to Information Science and Technology (Electronics)

