

Introduction to Information Science and Technology (EE 100) Part II: Intelligent Machines and Robotics Artificial Intelligence - AI

Sören Schwertfeger / 师泽仁

ShanghaiTech University

General Control Scheme for Mobile Robot Systems

Lecture 6: Artificial Intelligence (AI)

3

A BRIEF OVERVIEW OF AI

Artificial Intelligence

- Artificial intelligence (AI) is the branch of computer science that develops machines and software with intelligence.
 - AI: Intelligence = rationality
 - Rationality: maximize goal achievement given available information

Foundations of AI

- Philosophy
 - Logic, reasoning, mind as a physical system, foundations of learning, language and rationality.
- Mathematics
 - Formal representation and proof algorithms, computation, (un)decidability, (in)tractability, probability.
- Psychology
 - adaptation, phenomena of perception and motor control.
- Economics
 - formal theory of rational decisions, game theory.
- Linguistics
 - knowledge representation, grammar.
- Neuroscience
 - physical substrate for mental activities.
- Control theory
 - homeostatic systems, stability, optimal agent design.

History of Al

- 1943: early beginnings
 - McCulloch & Pitts: Boolean circuit model of brain
- 1950: Turing
 - Turing's "Computing Machinery and Intelligence"
- 1956: Birth of Al
 - Dartmouth meeting: "Artificial Intelligence" name adopted
- 1950s: initial promise
 - Early AI programs, including
 - Samuel's checkers program
 - Newell & Simon's Logic Theorist
- 1955-65: "great enthusiasm"
 - Newell and Simon: GPS, general problem solver
 - Gelertner: Geometry Theorem Prover
 - McCarthy: invention of LISP

History of AI

- 1966—73: Reality dawns
 - Realization that many AI problems are intractable
 - Limitations of existing neural network methods identified
 - Neural network research almost disappears
- 1969—85: Adding domain knowledge
 - Development of knowledge-based systems
 - Success of rule-based expert systems,
 - Very narrow field; did not scale well in practice
- 1986-- Rise of machine learning
 - Neural networks return to popularity
 - Major advances in machine learning algorithms and applications
- 1990-- Role of uncertainty
 - Bayesian networks as a knowledge representation framework
- 1995-- Al as Science
 - Integration of learning, reasoning, knowledge representation
 - Al methods used in vision, language, data mining, etc

HAL: from the movie 2001

- 2001: A Space Odyssey
 - classic science fiction movie from 1969
- HAL
 - part of the story centers around an intelligent computer called HAL
 - HAL is the "brains" of an intelligent spaceship
 - in the movie, HAL can
 - speak easily with the crew
 - see and understand the emotions of the crew
 - navigate the ship automatically
 - diagnose on-board problems
 - make life-and-death decisions
 - display emotions
- In 1969 this was science fiction: is it still science fiction?

2001: A SPACE ODYSSEY

er called HAL

Consider what might be involved in building a computer like Hal....

- What are the components that might be useful?
 - Fast hardware?
 - Chess-playing at grandmaster level?
 - Speech interaction?
 - speech synthesis
 - speech recognition
 - speech understanding
 - Image recognition and understanding ?
 - Learning?
 - Planning and decision-making?

Can we build hardware as complex as the brain?

- How complicated is our brain?
 - a neuron, or nerve cell, is the basic information processing unit
 - estimated to be on the order of 10¹² neurons in a human brain
 - many more synapses (10¹⁴) connecting these neurons
 - cycle time: 10 ⁻³ seconds (1 millisecond)
- How complex can we make computers?
 - 10⁸ or more transistors per CPU
 - supercomputer: hundreds of CPUs, 10¹² bits of RAM
 - cycle times: order of 10 9 seconds
- Conclusion
 - YES: in the near future we can have computers with as many basic processing elements as our brain, but with
 - far fewer interconnections (wires or synapses) than the brain
 - much faster updates than the brain
 - but building hardware is very different from making a computer behave like a brain!

Can Computers beat Humans at Chess?

- Chess Playing is a classic AI problem
 - well-defined problem
 - very complex: difficult for humans to play well

Conclusion:

• YES: today's computers can beat even the best human

Can Computers Recognize Speech?

- Speech Recognition:
 - mapping sounds from a microphone into a list of words
 - classic problem in AI, quite difficult
- Recognizing single words from a small vocabulary
 - systems can do this with high accuracy (order of 99%)
 - e.g., directory inquiries
 - limited vocabulary (area codes, city names)
 - computer tries to recognize you first, if unsuccessful hands you over to a human operator
 - saves millions of dollars a year for the phone companies

Recognizing human speech (ctd.)

- Recognizing normal speech is much more difficult
 - speech is continuous: where are the boundaries between words?
 - e.g., "John's car has a flat tire"
 - large vocabularies
 - can be many thousands of possible words
 - we can use context to help figure out what someone said
 - e.g., hypothesize and test
 - try telling a waiter in a restaurant:
 "I would like some dream and sugar in my coffee"
 - background noise, other speakers, accents, colds, etc
 - Modern systems become more and more accurate
- Conclusion:
 - NO, normal speech is too complex to accurately recognize but we are getting better (Siri)
 - YES, for restricted problems (small vocabulary, single speaker)

Can Computers Understand speech?

- Understanding is different to recognition:
 - "Time flies like an arrow"
 - assume the computer can recognize all the words
 - how many different interpretations are there?

Can Computers Understand speech?

- Understanding is different to recognition:
 - "Time flies like an arrow"
 - assume the computer can recognize all the words
 - how many different interpretations are there?
 - 1. time passes quickly like an arrow?
 - 2. command: time the flies the way an arrow times the flies
 - 3. command: only time those flies which are like an arrow
 - 4. "time-flies" are fond of arrows

Can Computers Understand speech?

- Understanding is different to recognition:
 - "Time flies like an arrow"
 - assume the computer can recognize all the words
 - how many different interpretations are there?
 - 1. time passes quickly like an arrow?
 - 2. command: time the flies the way an arrow times the flies
 - 3. command: only time those flies which are like an arrow
 - 4. "time-flies" are fond of arrows
 - only 1. makes any sense,
 - but how could a computer figure this out?
 - clearly humans use a lot of implicit commonsense knowledge in communication
- Conclusion: NO, much of what we say is beyond the capabilities of a computer to understand at present

Can Computers Learn and Adapt?

- Learning and Adaptation
 - consider a computer learning to drive on the freeway
 - we could teach it lots of rules about what to do
 - or we could let it drive and steer it back on course when it heads for the embankment
 - systems like this are under development (e.g., Daimler Benz)
 - machine learning allows computers to learn to do things without explicit programming
 - many successful applications:
 - requires some "set-up": does not mean your PC can learn to forecast the stock market or become a brain surgeon
- Conclusion: YES, computers can learn and adapt, when presented with information in the appropriate way

Can Computers "see"?

- Recognition v. Understanding (like Speech)
 - Recognition and Understanding of Objects in a scene
 - look around this room
 - you can effortlessly recognize objects
 - human brain can map 2d visual image to 3d "map"
- Why is visual recognition a hard problem?

- Conclusion:
 - mostly NO: computers can only "see" certain types of objects under limited circumstances but we are getting better!
 - YES for certain constrained problems (e.g., face recognition)

Summary of State of AI Systems in Practice

- Speech synthesis, recognition and understanding
 - very useful for limited vocabulary applications
 - unconstrained speech understanding is still too hard
- Computer vision
 - works for constrained problems (hand-written zip-codes)
 - understanding real-world, natural scenes is still too hard
- Learning
 - adaptive systems are used in many applications: have their limits

- Planning and Reasoning
 - only works for constrained problems: e.g., chess
 - real-world is too complex for general systems

- Overall:
 - many components of intelligent systems are "doable"
 - there are many interesting research problems remaining

19

Acting humanly: Turing test

- Turing (1950) "Computing machinery and intelligence"
- "Can machines think?" → "Can machines behave intelligently?"
- Operational test for intelligent behavior: the Imitation Game

- Suggests major components required for AI:
 - knowledge representation
 - reasoning,
 - language/image understanding,
 - learning
- * Question: is it important that an intelligent system act like a human?

Thinking humanly

- Cognitive Science approach
 - Try to get "inside" our minds
 - E.g., conduct experiments with people to try to "reverse-engineer" how we reason, learning, remember, predict

Problems

- Humans don't behave rationally
 - e.g., insurance, fasten seatbelts
- The reverse engineering is very hard to do
- The brain's hardware is very different to a computer program

Thinking rationally

- Represent facts about the world via logic
- Use logical inference as a basis for reasoning about these facts
- Can be a very useful approach to AI
 - E.g., theorem-provers
- Limitations
 - Does not account for an agent's uncertainty about the world
 - E.g., difficult to couple to vision or speech systems

Acting rationally

- Decision theory/ Economics
 - Set of future states of the world
 - Set of possible actions an agent can take
 - Utility = gain to an agent for each action/state pair
 - An agent acts rationally if it selects the action that maximizes its "utility"
 - Or expected utility if there is uncertainty
- Emphasis is on autonomous agents that behave rationally (make the best predictions, take the best actions)
 - on average over time
 - within computational limitations ("bounded rationality")

Subfields of AI: Knowledge Representation and Reasoning

- Ontology: formal naming and definition of:
 - types,
 - properties, and
 - interrelationships
 - of entities.

Subfields of Al

- Reasoning: Decision Tree Example
- Give credit to applicant?

Subfields of AI

Planning

Subfields of AI

Machine Learning

Subfields of Al

Natural Language Processing

Subfields of AI

Computer Vision

Applications of AI

- Financial trading
- Robots in industrial manufacturing
- Game AI
- Search engine

Applications of AI

- Spam email filter
- Handwriting and speech recognition
- Modern Chinese IME
- Advertisement display on webpages

Applications of AI

- Post Office
 - automatic address recognition and sorting of mail
- Digital Cameras
 - Automated face detection and focusing

- Banks
 - automatic check readers, signature verification systems
 - automated loan application classification

- Customer Service
 - automatic voice recognition

Applications of AI: Machine Translation

- Language problems in international business
 - e.g., at a meeting of Japanese, Korean, Vietnamese and Swedish investors, no common language
 - or: you are shipping your software manuals to 127 countries
 - solution; hire translators to translate
 - would be much cheaper if a machine could do this

- How hard is automated translation
 - very difficult! e.g., English to Russian
 - "The spirit is willing but the flesh is weak" (English)
 - "the vodka is good but the meat is rotten" (Russian)
 - not only must the words be translated, but their meaning also!
- Nonetheless....
 - commercial systems can do a lot of the work very well (e.g., restricted vocabularies in software documentation)
 - algorithms which combine dictionaries, grammar models, etc.
 - Recent progress using "black-box" machine learning techniques

Strong AI vs. Weak AI

- Weak AI (Applied AI)
 - AI that accomplishes specific tasks

Strong AI vs. Weak AI

- Strong AI (General AI)
 - human-like intelligence AI that could successfully perform any intellectual task that a human can

Central problems of strong AI

- Knowledge Representation (KR)
 - Knowledge: facts, beliefs, concepts, skills, ... that are accumulated over time

Central problems of strong AI

- Inference
 - How to utilize knowledge to derive new information based on existing information

Central problems of strong Al

- Learning
 - How to accumulate knowledge from experience and education

- Symbolism
 - Physical symbol system hypothesis

"A physical symbol system has the necessary and sufficient means for general intelligent action."

— Allen Newell and Herbert A. Simon (1976)

- Symbolism
 - Representing knowledge with symbols and their compositions (expressions)
 - Inference and learning is done by manipulating symbols (e.g., logic)

$\forall x \forall y, Human(x) \land Place(y) \land At(x, y) \land Rain(y)$

 $\rightarrow \exists z, Umbrella(z) \land Use(x, z)$

- Connectionism
 - Representing knowledge with interconnected networks of simple units
 - Neural networks

- Connectionism
 - Inference
 - computed based on the activation functions of the nodes in the network
 - Learning
 - optimization of connection weights

- Statistical approaches
 - Representing knowledge with probabilistic models
 - Inference and learning is done by probabilistic inference
 - History: become popular since 1990s

43

COMPUTERS PLAYING GAMES

Game Playing and Search

- Game playing a long-studied topic in AI
 - Seen as a proxy for how more complex reasoning can be developed

Search

- Understand set of possible states
- Find "best" state or best path to goal state
- "State" is the condition of the environment
 - e.g. in theorem proving, can be the state of things known
 - By applying known theorems, can expand the state, until reaching the goal theorem

Game Playing

- Abstract AI problem
- Nice and challenging properties
 - Usually state can be clearly, concisely represented
 - Limited number of operations (but can still be large)
 - Unknown factor account for opponent
 - Search space can be huge
 - Limit response based on time forces making good "decisions"

Computer Chess

- 2/96: Kasparov vs Deep Blue
 - Kasparov victorious: 3 wins, 2 draws, 1 loss
- 3/97: Kasparov vs Deeper Blue
 - First match won against world champion
 - 512 processors: 200 million chess positions per second

Really Basic State Search Example

• Given a=b, b=c, c=d, prove a=d.

Operators

- Transition from one state to another
 - Fly from one city to another
 - Apply a theorem
 - Move a piece in a game
 - Add person to a meeting schedule
- Operators and states are both usually limited by various rules
 - Can only fly certain routes
 - Only valid moves in game

Search

- Examine possible states, transitions to find goal state
- Interesting problems are those too large to explore exhaustively
- Uninformed search
 - Systematic strategy to explore options
- Informed search
 - Use domain knowledge to limit search => Heuristic

Types of games

- Deterministic vs. random factor
- Known state vs. hidden information

Examples	Deterministic	Chance
Perfect Info	Chess, Checkers, Othello, Go	Monopoly, Backgammon
Imperfect Info	Stratego, Bridge?	Poker, Scrabble Bridge?

- How to program an AI to play Tick-Tack-Toe?
- 2 players take alternate moves, placing X or O, respectively
- Win if three X or O in one line (horizontal, vertical, diagonal)
- Try all possible moves => exhaustive search
- 3 x 3 = 9 fields => 9 possibilities for first turn
 - 8 fields left for the enemy
 - ... 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 games = 9! = 362,880
 - Not really:
 - Game ends with 3 in a row
 - Symmetries: Rotated or mirrored states require the same strategy

- 3 x 3 = 9 fields => 9 possibilities for first turn
 - Really?
 - Can always rotate or reflect the field => symmetries
 - => 3 possibilities: in the center; on the edge; in the corner:

- Only 138 terminal board positions:
 - 91 unique positions are won by (X)
 - 44 unique positions are won by (O)
 - 3 unique positions are drawn

- Two-player zero-sum game:
 - The gain of the one is the loss of the other
- Minimax algorithm:
 - Assume the opponent does what looks best.
 - When it is the human's turn, pick move that looks best for human;
 - When it is the computer's turn, pick the move that looks best for the computer
 - *minimizing the possible loss for a worst case (maximum loss) scenario*
 - Associate a value for each position
 - Working backwards from the end of the game
- Tick-Tack-Toe: Whole state space can be computed => optimal strategy (path)

Chess Automaton: Mechanical Turk

- Chess-playing machine: 1770
- By Wolfgang von Kempelen (1734–1804) for Empress Maria Theresa of Austria
- Complex mechanical system
- Strong chess game
- Very high public interest
- Hoax / Lie:
 - Human chess master hidden inside
 - Revealed 1820
 - Amazon Mechanical Turk: Humans perform tasks
 Human Intelligence tasks that AI cannot do and get paid for it

Chess

- Legal positions: 10⁴³ 10⁴⁷
- Opening: Book of known successful openings
 - Ends with:
 - End of book or
 - Move that is not in book
- Mid Game: Search the tree; use heuristics to evaluate move result:
 - Count and compare sum of value of pieces
 - Development; Control of the center; King safety; Pawn structure; …
- End Game: Very few pieces left => book of all moves possible!
 - Computer plays perfectly can often win a draw against human even if theoretically lost

Go(围棋)

- Number of possible games exceed atoms in the universe $(maybe 10^{82})$
- Best Go programs only manage to reach amateur dan level
- Go much harder than chess:
 - More field on the board: 361 vs. 64
 - About possible 150–250 moves per turn (always more than 50); chess: about 37
 - Depth 4: 3.2×10¹¹ combinations; Depth 8: 5.12×10²⁰ (fastest supercomputer would need hours for that)
 - Single stone placement can affect game in 100 moves
 - Heuristic to estimate strength quite hard; Chess much easier (count pieces)

NEXT WEEK: SIGNALS AND SYSTEMS