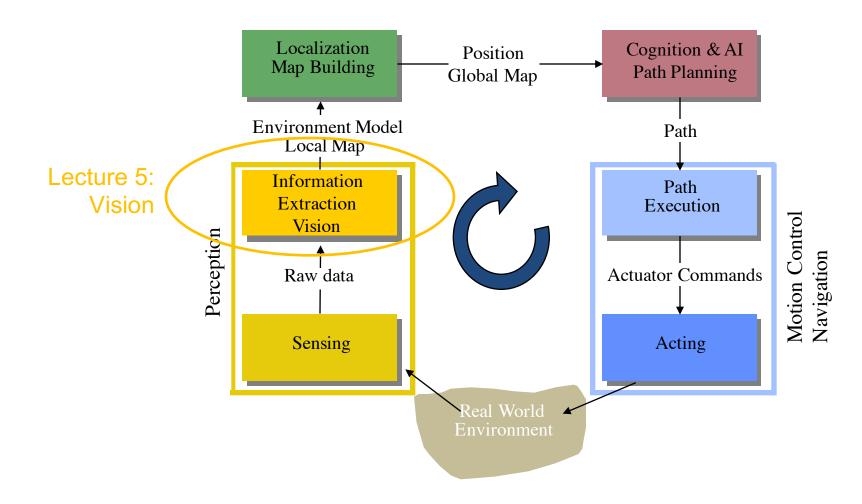


Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Vision

Sören Schwertfeger / 师泽仁

ShanghaiTech University

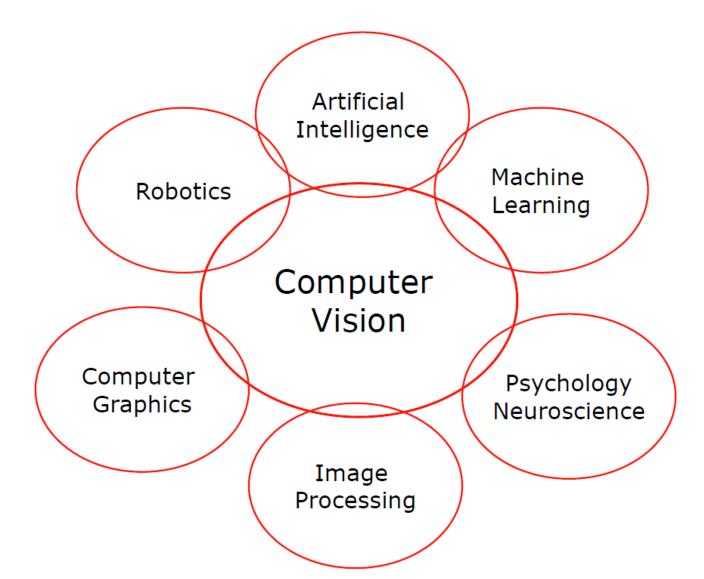
General Control Scheme for Mobile Robot Systems



COMPUTER VISION

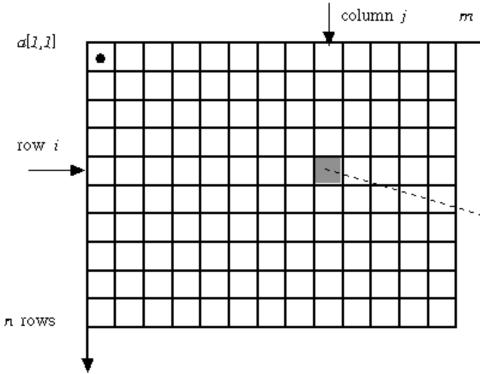
Camera Model

Connection to other disciplines



Digital Image

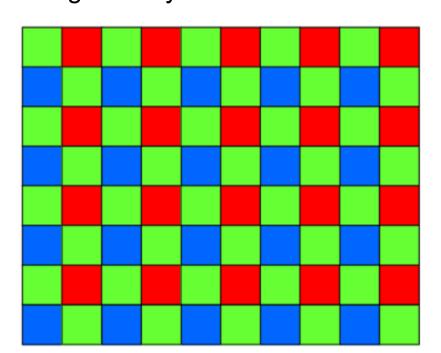
- Image: a two-dimensional array of pixels
- The indices [i, j] of pixels: integer values that specify the rows and columns in pixel values

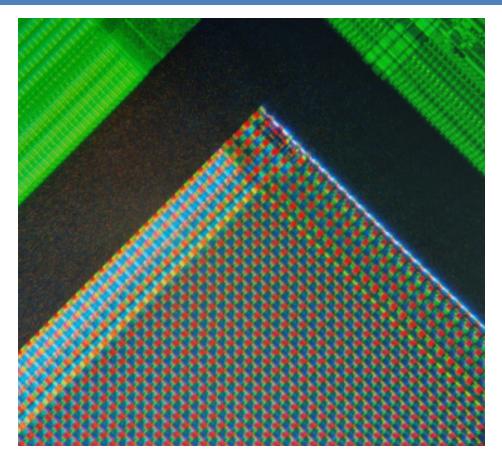




Digital Color Camera

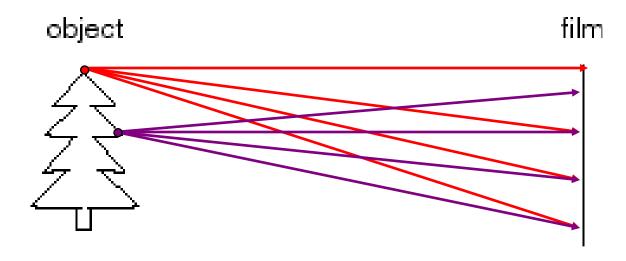
- Bayer Pattern:
 - 50% green, 25% red and 25% blue =>
 - RGBG or GRGB or RGGB.
 - 1 Byte per square
 - 4 squared per 1 pixel
 - More green: eyes are more sensitive to green (nature!)





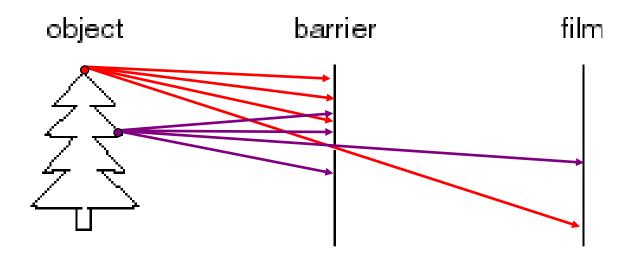
A micrograph of the corner of the photosensor array of a 'webcam' digital camera. (Wikimedia)

How do we see the world?



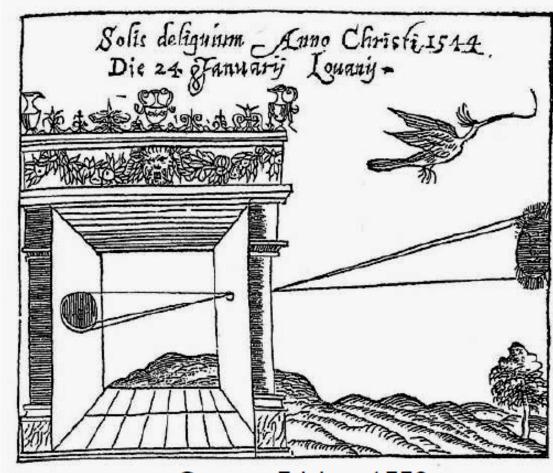
- Let's design a camera
 - Idea 1: put a piece of film in front of an object
 - Do we get a reasonable image?

Pinhole camera



- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the aperture

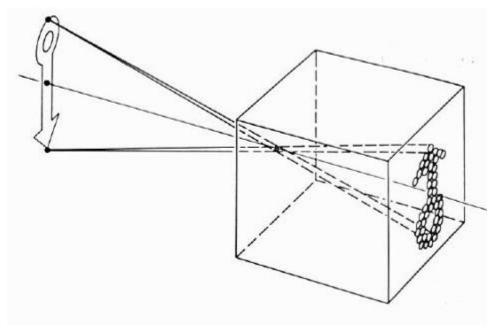
Camera obscura



Gemma Frisius, 1558

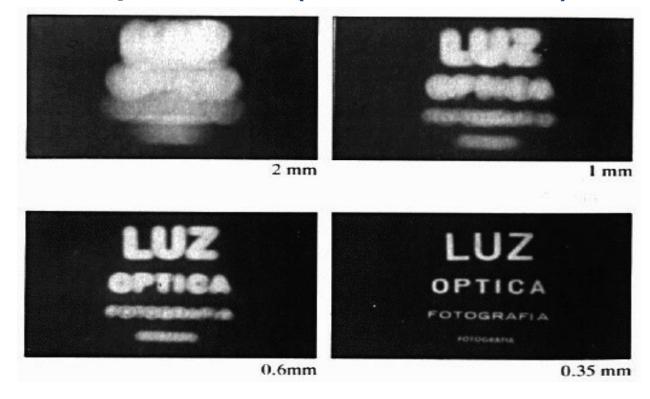
- Basic principle known to Mozi (470-390 BC), Aristotle (384-322 BC)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)
- Depth of the room (box) is the effective focal length

Pinhole camera model



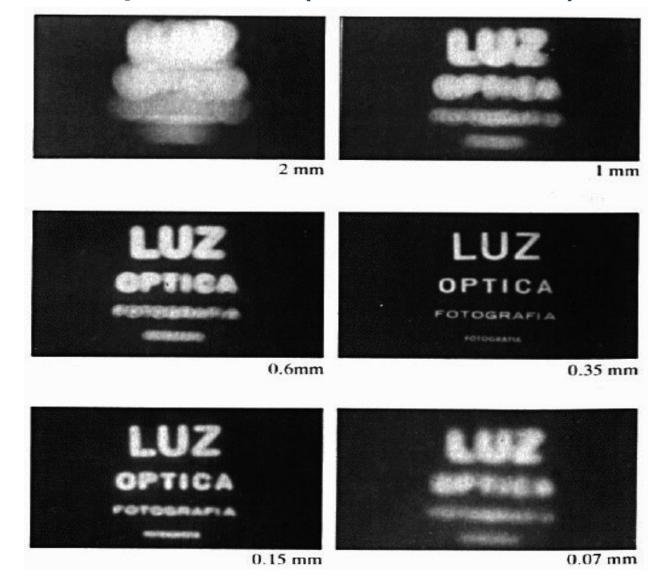
- Pinhole model:
 - Captures pencil of rays all rays through a single point
 - The point is called Center of Projection
 - The image is formed on the Image Plane

Shrinking the aperture (size of hole)

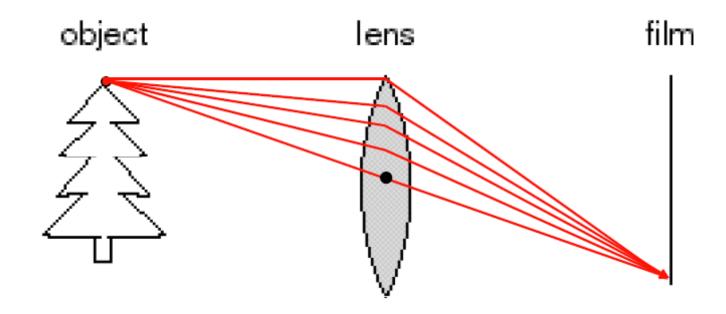


- Why not make the aperture as small as possible?
 - Less light gets through (must increase the exposure)
 - Diffraction effects...

Shrinking the aperture (size of hole)

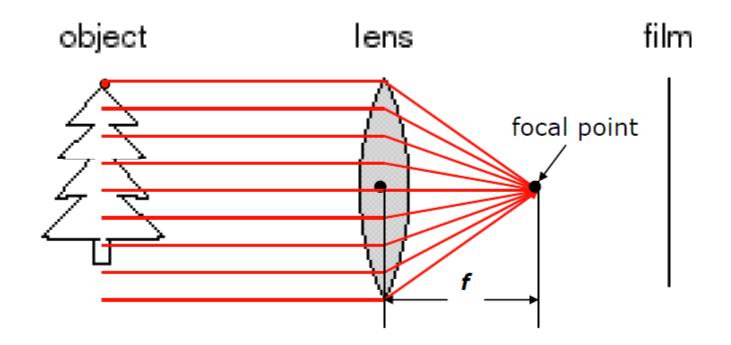


Solution: adding a lens



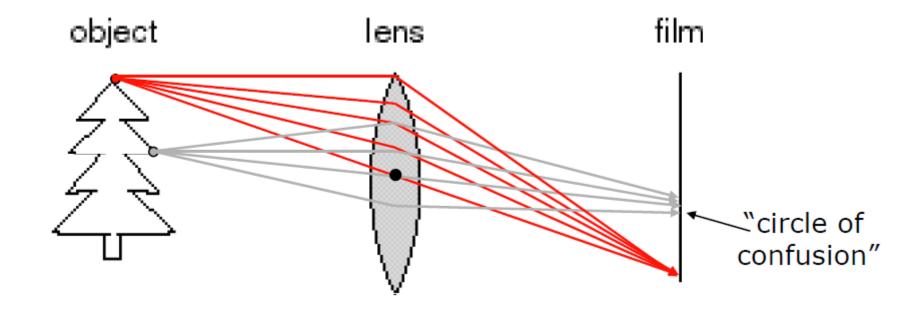
- A lens focuses light onto the film
 - Rays passing through the center are not deviated

Solution: adding a lens



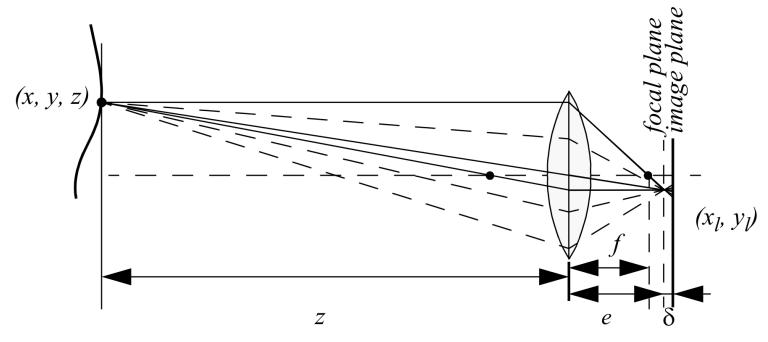
- A lens focuses light onto the film
 - Rays passing through the center are not deviated
 - All parallel rays converge to one point on a plane located at the focal length f

Solution: adding a lens



- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"
 - other points project to a "circle of confusion" in the image

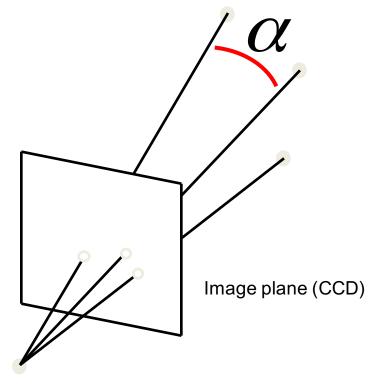
Thin lenses



- Thin lens equation: $\frac{1}{z} + \frac{1}{e} = \frac{1}{f}$
 - Any object point satisfying this equation is in focus
 - This formula can also be used to estimate roughly the distance to the object ("Depth from Focus")

Pin-hole Model

Perspective camera



C = optical center = center of the lens

- For convenience, the image plane is usually represented in front so that the image preserves the same orientation (i.e. not flipped)
- Notice: a camera does not measure distances but angles! Therefore it is a "bearing sensor"

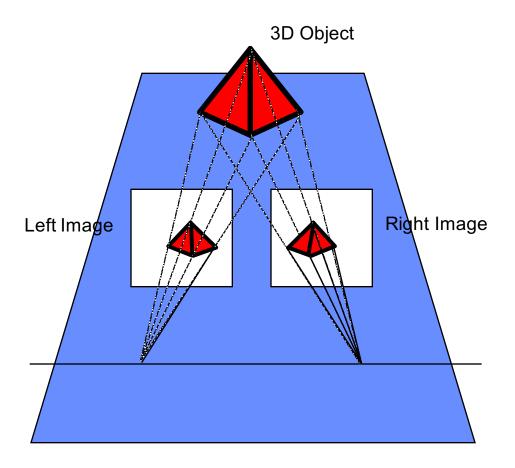
How do we measure distances with cameras?

- Structure from stereo (Stereo-vision):
 - > use two cameras with known relative position and orientation

- Structure from motion:
 - >use a single moving camera: both 3D structure and camera motion can be estimated up to a scale

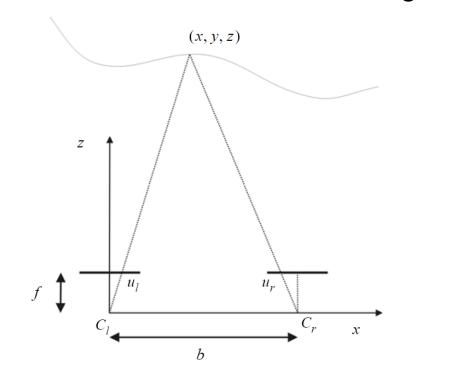
Stereo Vision

Allows to reconstruct a 3D object from two images taken at different locations



Stereo Vision - The simplified case

 The simplified case is an ideal case. It assumes that both cameras are identical and are aligned on a horizontal axis



$$\frac{f}{z} = \frac{u_l}{x},$$

$$z = b \frac{f}{u_l - u_r}$$

$$f = u_r$$
Distance

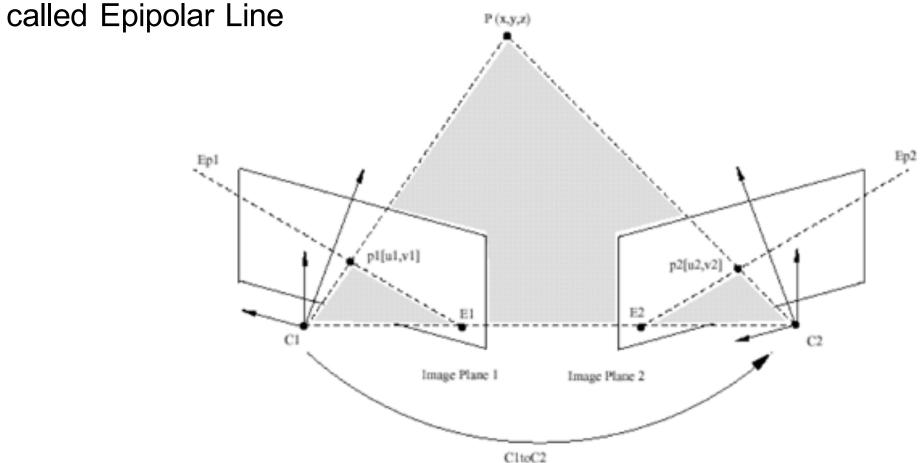
- **b** = baseline, distance between the optical centers of the two cameras
- f = focal length
- u_l - u_r = disparity

Stereo Vision: Correspondence Problem

- Matching between points in two images that are projection of same 3D real point
- Correspondence search:
 - Compare this point to all other points in other image?
 - Computationally very expensive!
 - => make correspondence search 1 dimensional...

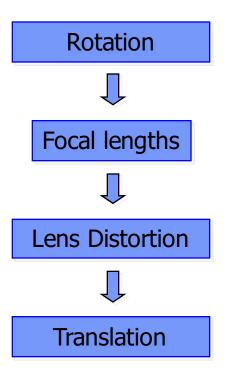
Correspondence Problem: Epipolar Constraint

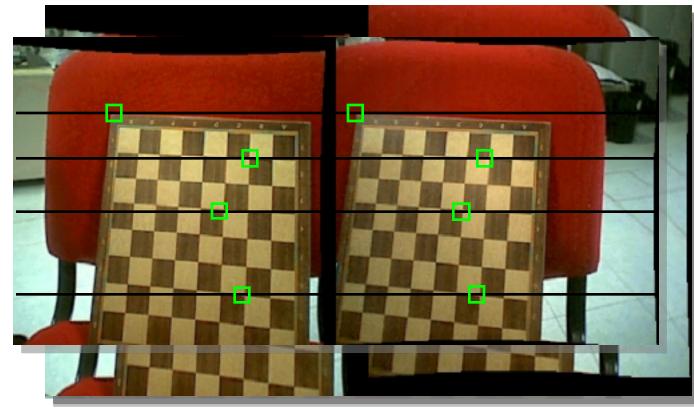
• The correspondent of a point in an image must lie on a line in the other image,



Epipolar Rectification

 Determines a transformation of each image plane so that pairs of conjugate epipolar lines become collinear and parallel to one of the image axes (usually the horizontal one)





Stereo Vision Output 1 – Disparity map

- Find the correspondent points of all image pixels of the original images
- For each pair of conjugate points compute the disparity d = v-v'
- d(x,y) is called Disparity map.

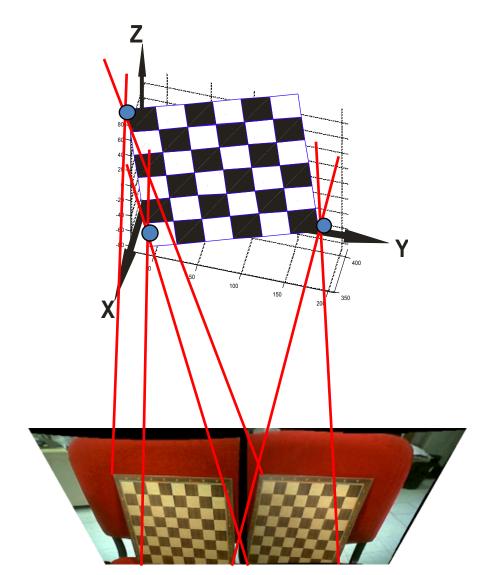
 Disparity maps are usually visualized as grey-scale images. Objects that are closer to the camera appear lighter, those who are further appear darker.

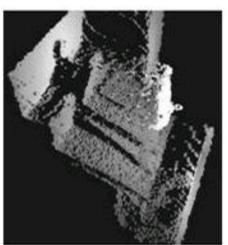
Left image

Right image

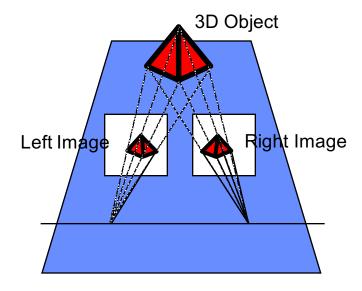
Disparity map

Stereo Vision Output 2 - 3D Reconstruction via triangulation





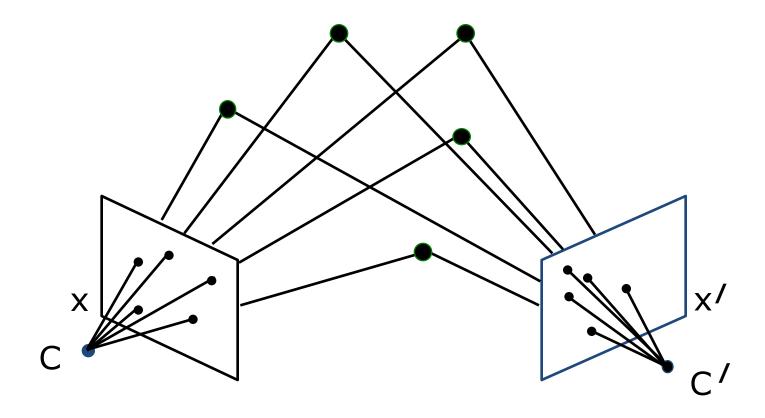
Stereo Vision - summary



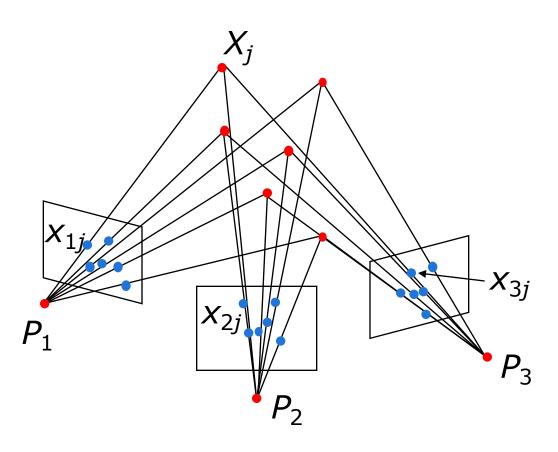
- 1. Stereo camera calibration -> compute camera relative pose
- Epipolar rectification -> align images
- 3. Search correspondences
- 4. Output: compute stereo triangulation or disparity map
- 5. Consider baseline and image resolution to compute accuracy!

Structure from motion

- Given image point correspondences, $x_i \leftrightarrow x_i'$, determine R and T
- Rotate and translate camera until stars of rays intersect
- At least 5 point correspondences are needed

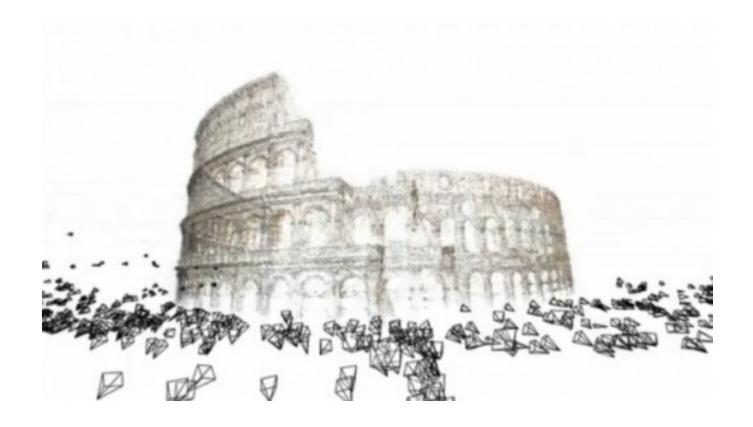


Multiple-view structure from motion



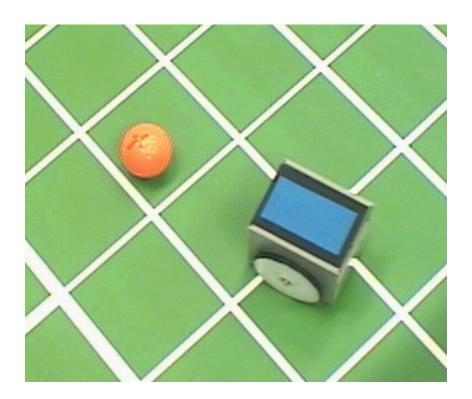
Multiple-view structure from motion

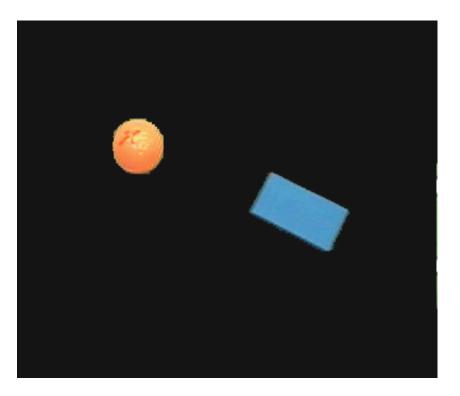
 Results of Structure from motion from 2 million user images from flickr.com



Color Tracking

Motion estimation of ball and robot for soccer playing using color tracking





Color segmentation with fixed thesholds

- Simple: constant thresholding:
 - selection only iff RGB values (r,g,b) simultaneously in R, G, and B ranges:
 - six thresholds [Rmin,Rmax], [Gmin,Gmax], [Bmin,Bmax]:

$$R_{min} < r < R_{max}$$
 and $G_{min} < g < G_{max}$ and $B_{min} < b < B_{max}$

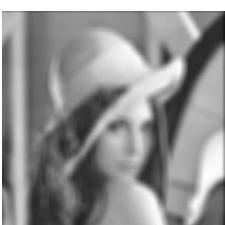
- Alternative: YUV color space
 - RGB values encode intensity of each color
 - YUV:
 - U and V together color (or chrominance)
 - Y brightness (or luminosity)
 - bounding box in YUV space => greater stability wrt. changes in illumination

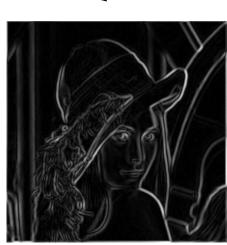
VISION

Image Processing

Image filtering

- Filter: frequency domain processing where "filtering" refers to the process of accepting or rejecting certain frequency components. E.g.:
 - Lowpass filer: pass only low frequencies => blur (smooth) an image
 - spatial filters (also called masks or kernels): same effect



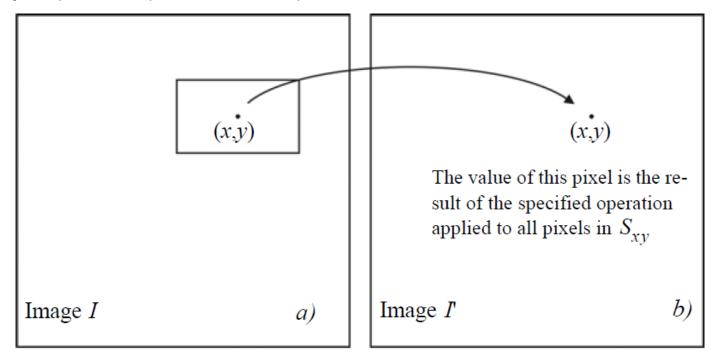


Highpass filtered image

Lena: Image processing standard test picture (512x512) since 1972

Spatial filters

- Let Sxy denote the set of coordinates of a neighborhood centered on an arbitrary point (x,y) in an image I
- Spatial filtering generates a corresponding pixel at the same coordinates in an output image *l'* where the value of that pixel is determined by a specified operation on the pixels in *Sxy*



For example, an averaging filter is:

$$T = \frac{1}{mn} \sum_{(r, c) \in S_{xv}} I(r, c)$$

Smoothing filters (1)

• A constant averaging filter yields the standard average of all the pixels in the mask. For a 3x3 mask this writes:

$$w = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- all coefficients sum to 1 => normalization
- Normalization important: keep the same value as the original image if region of filter is is uniform

This example was generated with a 21x21 mask

Smoothing filters (2)

A Gaussian averaging write as

$$G_{\sigma}(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

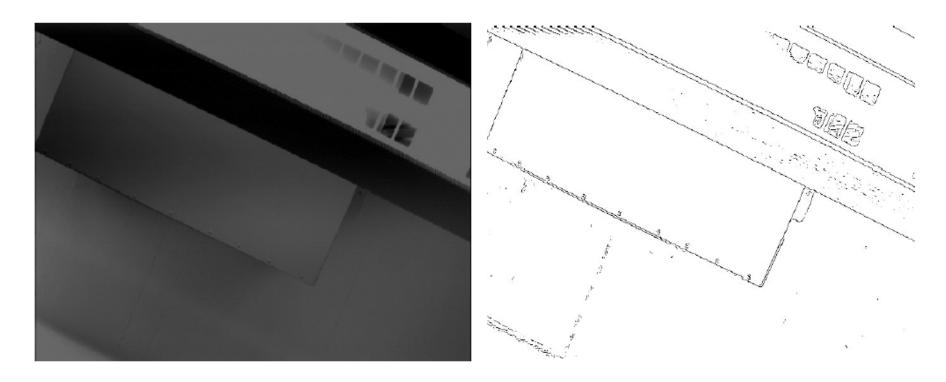
• To generate, say, a 3x3 filter mask from this function, we sample it about its center. For example, with σ =0.85, we get

$$G = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

- Very popular: Such low-pass filters effectively removes high-frequency noise =>
- Gradients and derivatives very important in image processing =>
- · Gaussian smoothing preprocessing popular first step in computer vision algorithms

Edge Detection

- Ultimate goal of edge detection:
 - an idealized line drawing
- Edge contours in the image correspond to important scene contours.



Edge is Where Change Occurs

- Edges correspond to sharp changes of intensity
- Change is measured by 1st derivative in 1D
- Biggest change, derivative has maximum magnitude
- Or 2nd derivative is zero.

Image gradient

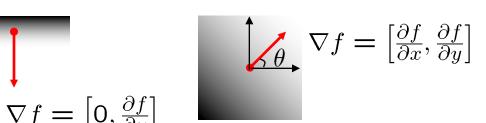
The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

$$\nabla f = \left[0, \frac{\partial f}{\partial y}\right]$$

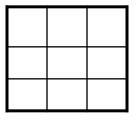


- The gradient direction is: $\theta = \tan^{-1} \left(\frac{\partial f}{\partial u} / \frac{\partial f}{\partial x} \right)$
- The gradient magnitude is: $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

The discrete gradient

- How can we differentiate a digital image f[x,y]?
 - Option 1: reconstruct a continuous image, then take gradient
 - Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx f[x+1,y] - f[x,y]$$



Gradient Edge Detectors

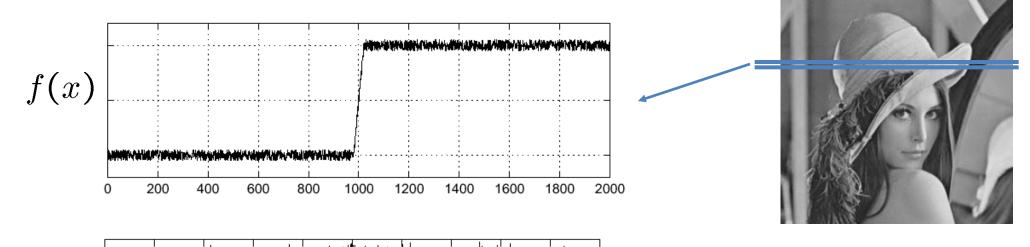
• Roberts
$$|G| \cong \sqrt{r_1^2 + r_2^2}$$
; $r_1 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$; $r_2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

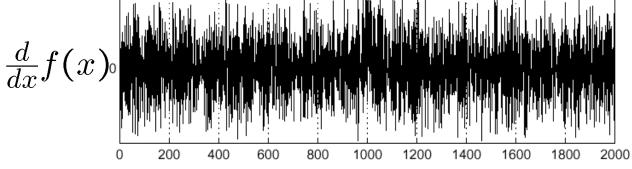
• Prewitt
$$|G| \cong \sqrt{p_1^2 + p_2^2}$$
; $\theta \cong \operatorname{atan}\left(\frac{p_1}{p_2}\right)$; $p_1 = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$; $p_2 = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$

• Sobel
$$|G| \cong \sqrt{s_1^2 + s_2^2}$$
; $\theta \cong \operatorname{atan}\left(\frac{s_1}{s_2}\right)$; $s_1 = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$; $s_2 = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$

Effects of noise

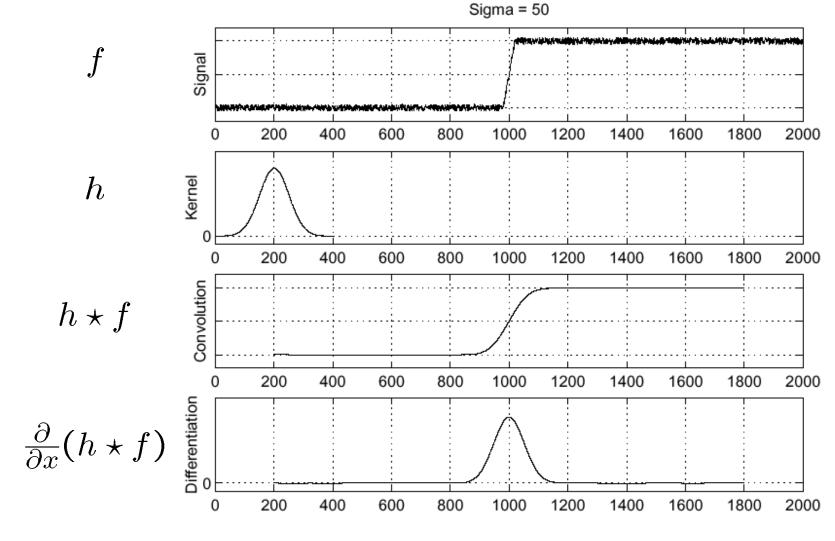
- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal





Where is the edge?

Solution: smooth first



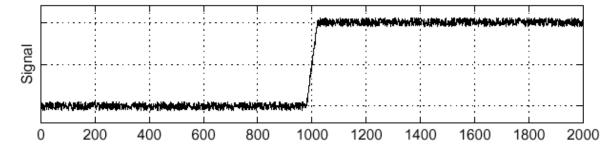
- Where is the edge?
- Look for peaks in $\frac{\partial}{\partial x}(h\star f)$

Derivative theorem of convolution

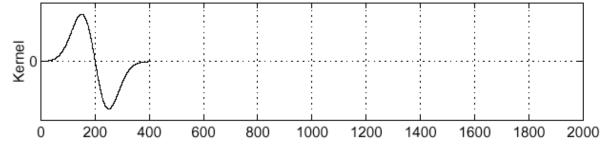
$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

• This saves us one operation: Sigma = 50

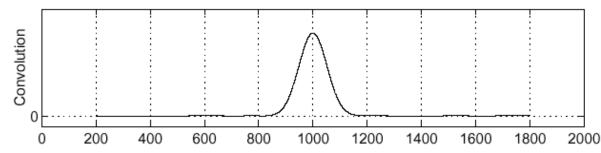
f



 $\frac{\partial}{\partial x}h$



 $(\frac{\partial}{\partial x}h)\star f$

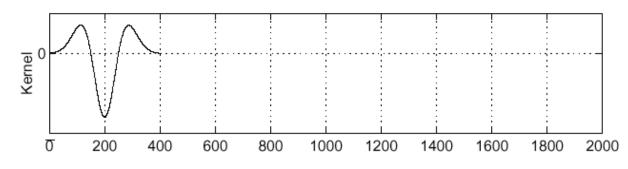


The Canny Edge Detector

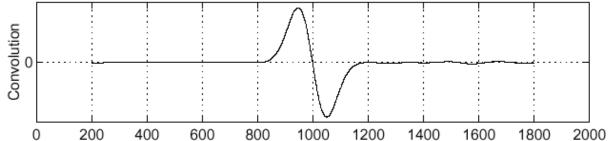
• Consider $\frac{\partial^2}{\partial x^2}(h \star f)$

Sigma = 50 200 400 600 800 1000 1200 1400 1600 1800 2000

Laplacian of Gaussian $\frac{\partial^2}{\partial x^2}h$

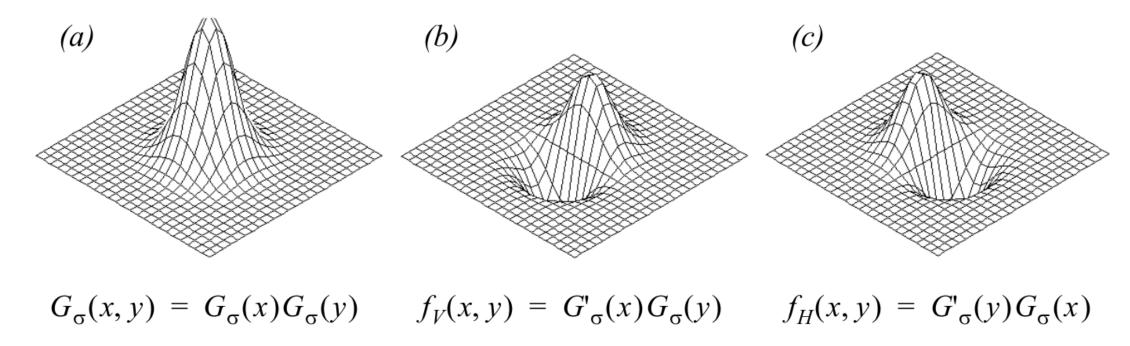


$$(\frac{\partial^2}{\partial x^2}h) \star f$$



- Where is the edge?
- Zero-crossings of bottom graph

2D Canny edge detector



- Two perpendicular filters:
 - Convolve imge I(x,y) with $f_V(x,y)$ and $f_H(x,y)$ obtaining $R_V(x,y)$ and $R_H(x,y)$
 - Use square of gradient magnitude: $R(x,y) = R_V^2(x,y) + R_H^2(x,y)$
 - Mark peaks in R(x, y) above a threshold

original image (Lena image)

norm of the gradient

thresholding

thinning (non-maxima suppression)

IMAGE FEATURES

- Lines
- Points
 - Harris
 - •SIFT

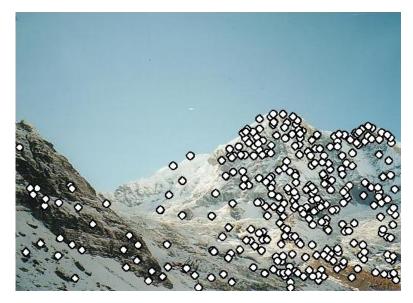
Example: Build a Panorama

This panorama was generated using **AUTOSTITCH** (freeware), available at http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

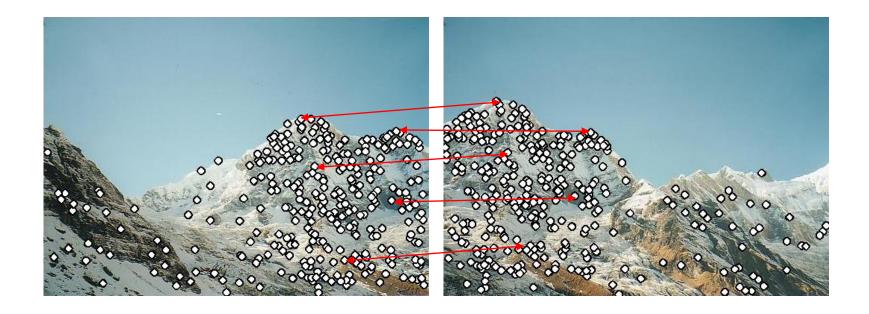
How do we build panorama?

We need to match (align) images

Detect feature points in both images

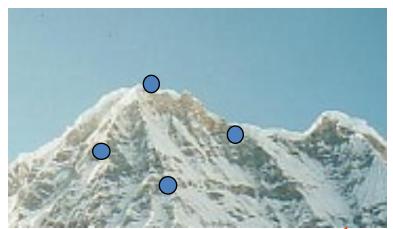


- Detect feature points in both images
- Find corresponding pairs



- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align images

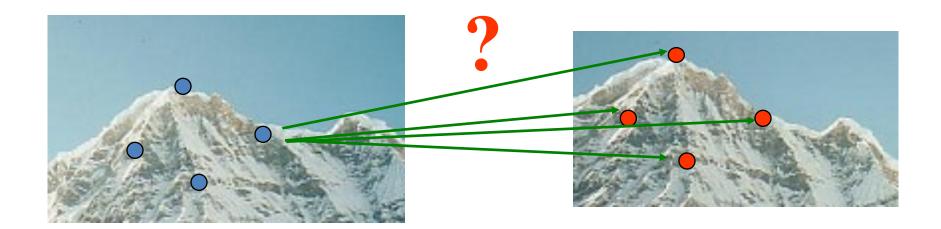
- Problem 1:
 - Detect the *same* point *independently* in both images



no chance to match!

We need a repeatable detector

- Problem 2:
 - For each point correctly recognize the corresponding one

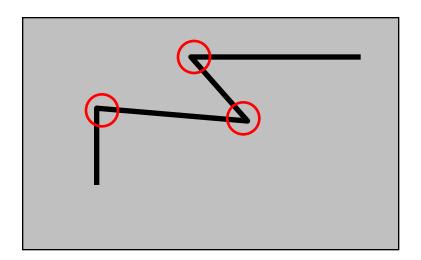


We need a reliable and distinctive descriptor

More motivation...

- Feature points are used also for:
 - Robot navigation
 - Object recognition
 - Image alignment (panoramas)
 - 3D reconstruction
 - Motion tracking
 - Indexing and database retrieval -> Google Images
 - ... other

HARRIS CORNER DETECTOR



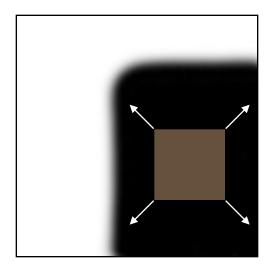
C.Harris, M.Stephens. "A Combined Corner and Edge Detector". 1988

Finding Corners

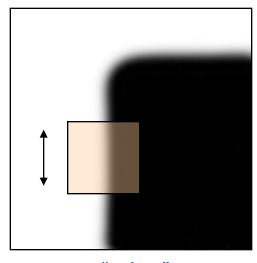
- Key property: in the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive

The basic idea

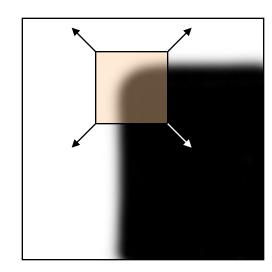
- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity
- => define a corner response function



"flat" region: no change in all directions

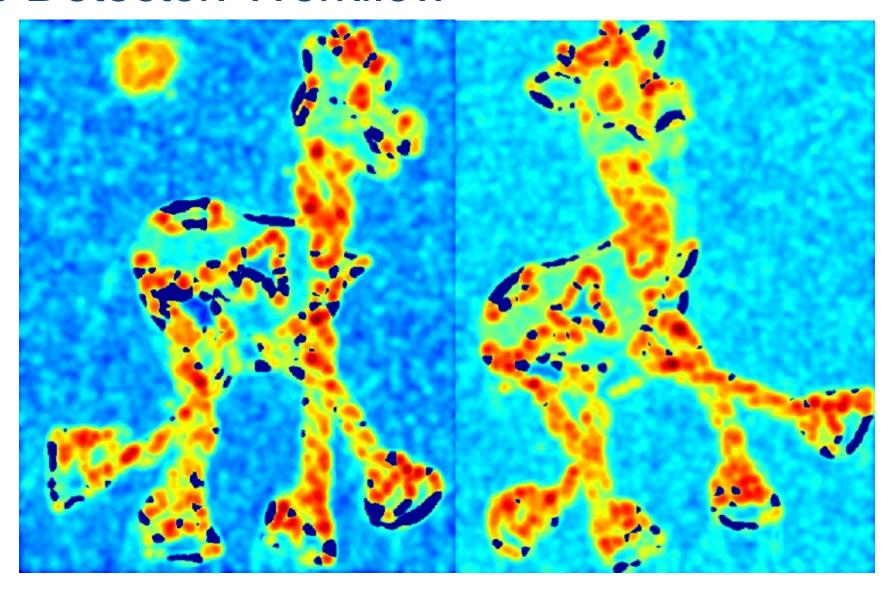


"edge": no change along the edge direction



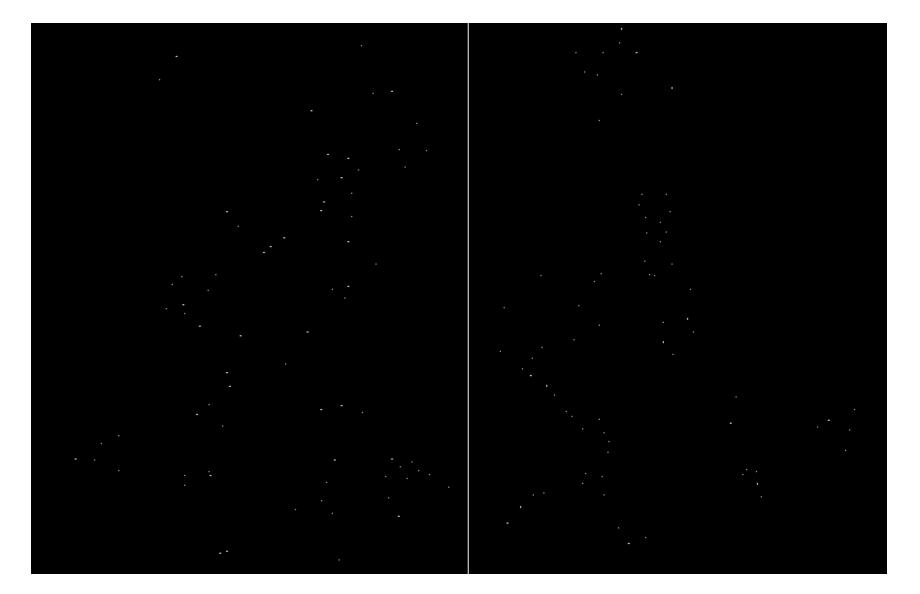
"corner":
significant change in
all directions

Compute corner responseR



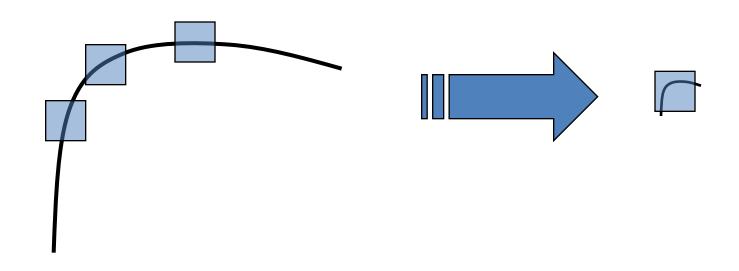
Find
 points
 with
 large
 corner
 response:
 R >
 threshold

 Take only the points of local maxima of R



Harris Detector: Some Properties

• But: non-invariant to *image scale*!



All points will be classified as edges

Corner!

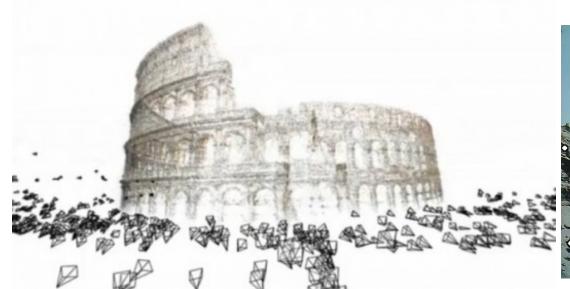
Summary on Harris properties

- Harris detector is an approach for detecting and extracting corners (i.e. points with high intensity changes in all directions)
- The detection is Invariant to
 - Rotation
 - Linear intensity changes
- The detection is NOT invariant to
 - Scale changes
 - Geometric affine changes (e.g. look at the image from the side)

Scale Invariant Feature Transform: SIFT

- Approach for detecting and extracting local feature descriptors
- They are reasonably invariant to changes in =>

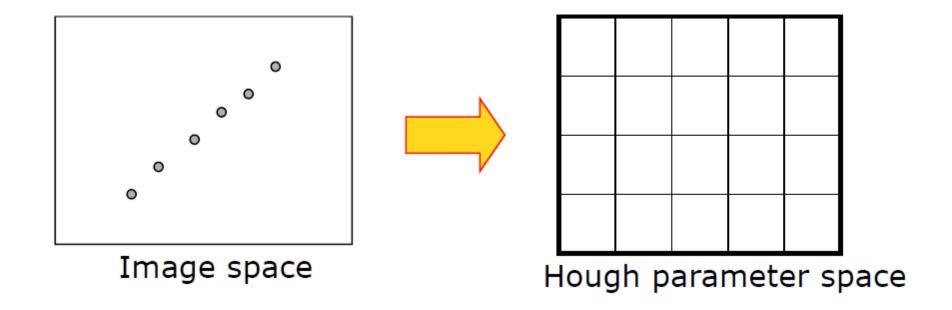
- rotation
- scaling
- small changes in viewpoint
- illumination



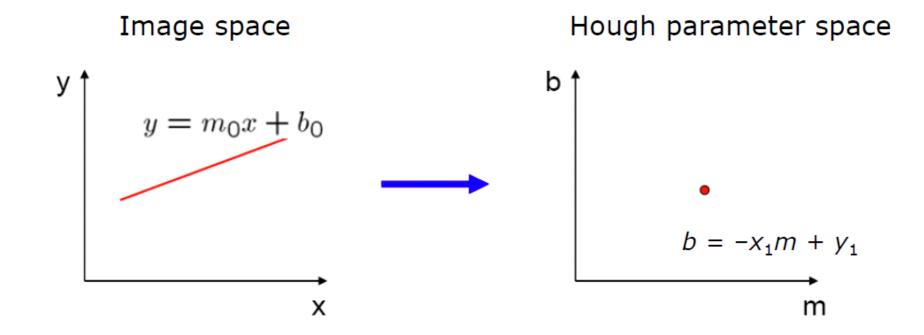
COMPUTER VISION

Hough Transform

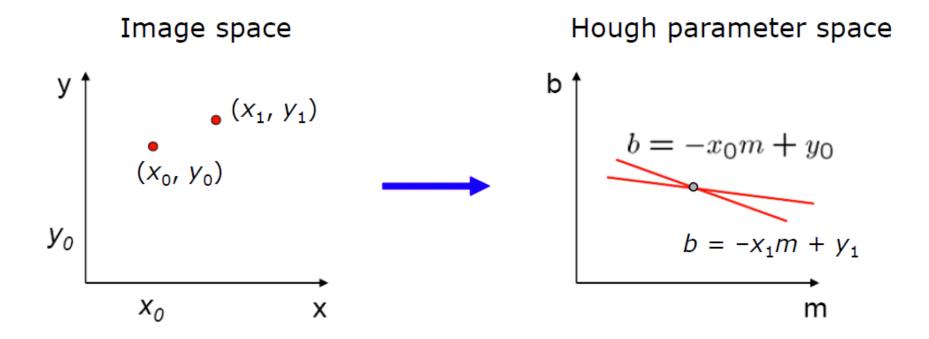
Hough Transform uses a voting scheme



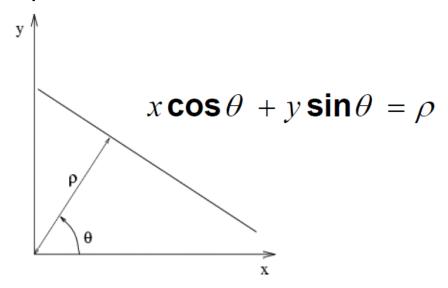
- Line detection example
- A line in the image corresponds to a point in Hough space



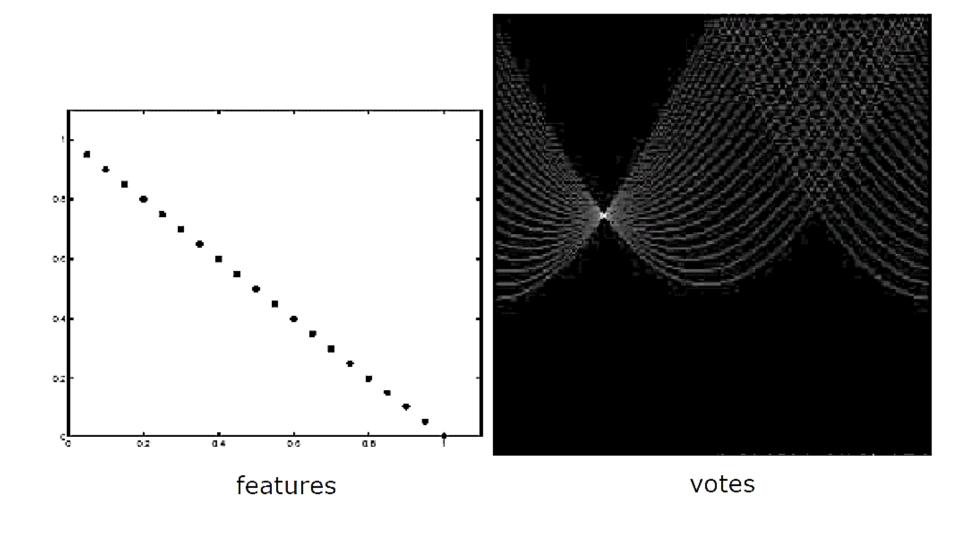
- Where is the line that contains both (x_0, y_0) and (x_1, y_1) ?
 - It is the intersection of the lines $b = -x_0m + y_0$ and $b = -x_1m + y_1$



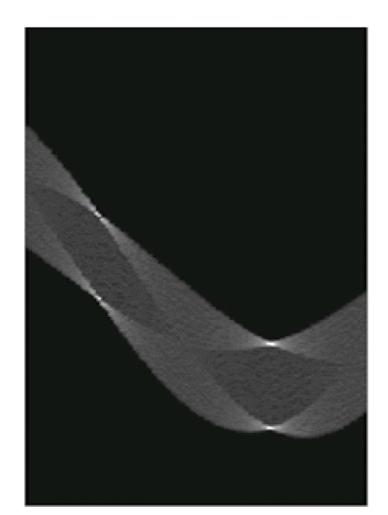
- Problems with the (m,b) space:
 - Unbounded parameter domain
 - Vertical lines require infinite m
- Alternative: polar representation

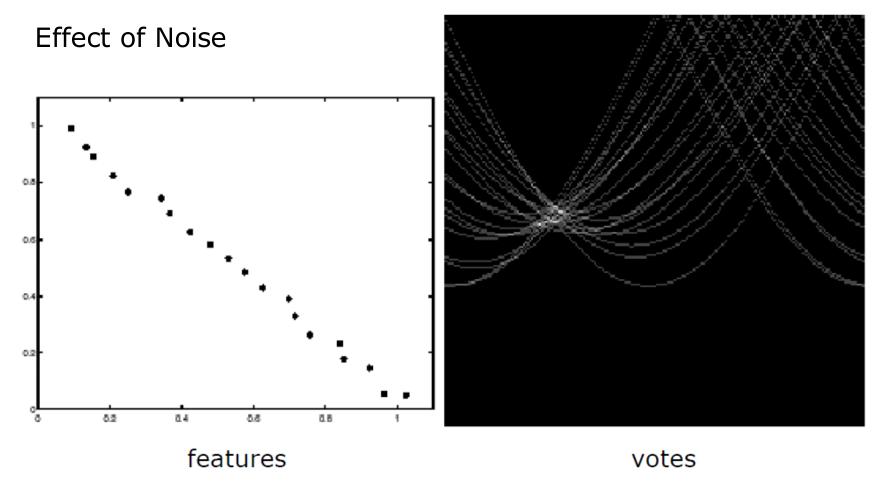


Each point will add a sinusoid in the (θ, ρ) parameter space



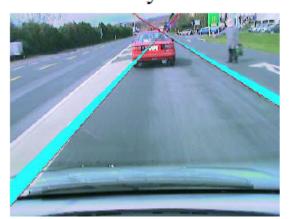
Square





Peak gets fuzzy and hard to locate

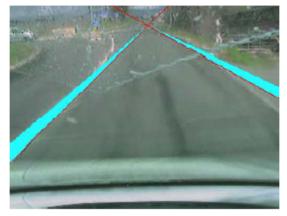
Inner city traffic



Tunnel exit

Ground signs

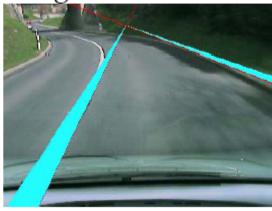
Obscured windscreen



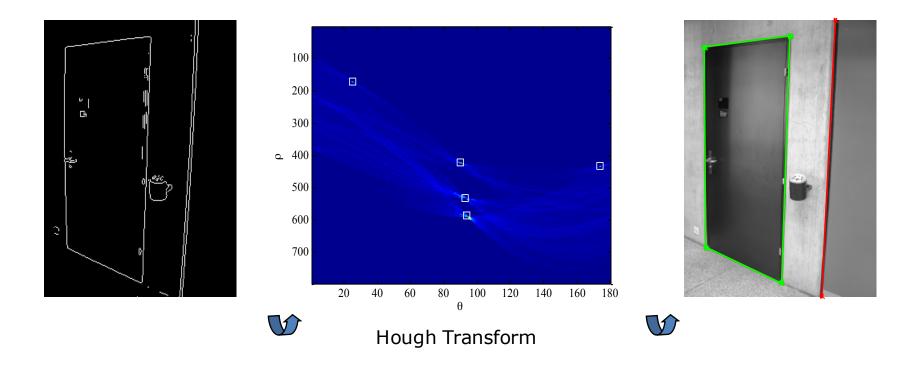
Application: Lane detection

Country-side lane

High curvature



Example – Door detection using Hough Transform



Hough Transform

- Advantages
 - Noise and background clutter do not impair detection of local maxima
 - Partial occlusion and varying contrast are minimized
- Negatives
 - Requires time and space storage that increases exponentially with the dimensions of the parameter space