
CS	110
Computer	Architecture	

Lecture	3:	Introduction	to	C,	Part	II

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Agenda

• C	Syntax
• Pointers
• C	Memory	Management

2

A	First	C	Program:	Hello	World
Original C:

main()
{
printf("\nHello World\n");

}

ANSI Standard C:

#include <stdio.h>

int main(void)
{
printf("\nHello World\n");
return 0;

}

3

C	Syntax:	main

• When	C	program	starts
– C	executable	a.out is	loaded	into	memory	by	
operating	system	(OS)

– OS	sets	up	stack,	then	calls	into	C	runtime	library,
– Runtime	1st initializes	memory	and	other	libraries,
– then	calls	your	procedure	named	main	()

• We’ll	see	how	to	retrieve	command-line	
arguments	in	main()	later…

4

A	Second	C	Program:
Compute	Table	of	Sines

#include <stdio.h>
#include <math.h>

int main(void)
{

int angle_degree;
double angle_radian, pi, value;
/* Print a header */
printf("\nCompute a table of the
sine function\n\n");

/* obtain pi once for all */
/* or just use pi = M_PI, where */
/* M_PI is defined in math.h */
pi = 4.0*atan(1.0);
printf("Value of PI = %f \n\n",
pi);

printf("angle Sine \n");

angle_degree = 0;
/* initial angle value */
/* scan over angle */
while (angle_degree <= 360)
/* loop until angle_degree > 360 */

{
angle_radian = pi*angle_degree/180.0;
value = sin(angle_radian);
printf (" %3d %f \n ",

angle_degree, value);
angle_degree = angle_degree + 10;
/* increment the loop index */

}
return 0;
}

5

Second	C	Program
Sample	Output

Compute a table of the sine
function

Value of PI = 3.141593

angle Sine
0 0.000000

10 0.173648
20 0.342020
30 0.500000
40 0.642788
50 0.766044
60 0.866025
70 0.939693
80 0.984808
90 1.000000

100 0.984808
110 0.939693
120 0.866025
130 0.766044
140 0.642788
150 0.500000
160 0.342020
170 0.173648
180 0.000000

190 -0.173648
200 -0.342020
210 -0.500000
220 -0.642788
230 -0.766044
240 -0.866025
250 -0.939693
260 -0.984808
270 -1.000000
280 -0.984808
290 -0.939693
300 -0.866025
310 -0.766044
320 -0.642788
330 -0.500000
340 -0.342020
350 -0.173648
360 -0.000000

6

C	Syntax:	Variable	Declarations

• All	variable	declarations	must	appear	before	they	
are	used	(e.g.,	at	the	beginning	of	the	block)	

• A	variable	may	be	initialized	in	its	declaration;	
if	not,	it	holds	garbage!

• Examples	of	declarations:
– Correct: {

int a = 0, b = 10;
...

−Incorrect: for (int i = 0; i < 10; i++)
}

7
Newer	C	standards	are	more	flexible	about	this,	more	later

C	Syntax	:	Control	Flow	(1/2)
• Within	a	function,	remarkably	close	to	Java	
constructs	in	terms	of	control	flow
– if-else

• if (expression) statement
• if (expression) statement1
else statement2

– while
• while (expression)

statement
• do

statement
while (expression);

8

C	Syntax	:	Control	Flow	(2/2)

– for
• for (initialize; check; update)
statement

– switch
• switch (expression){

case const1: statements
case const2: statements
default: statements

}
• break

9

C	Syntax:	True	or	False

• What	evaluates	to	FALSE	in	C?
– 0	(integer)
– NULL	(a	special	kind	of	pointer:	more	on	this	later)
– No	explicit	Boolean	type

• What	evaluates	to	TRUE	in	C?
– Anything	that	isn’t	false	is	true
– Same	idea	as	in	Python:	only	0s	or	empty	
sequences	are	false,		anything	else	is	true!

10

C	operators

• arithmetic:	+,	-,	*,	/,	%
• assignment:	=
• augmented	assignment:	
+=,	-=,	*=,	/=,	%=,	&=,	
|=,	^=,	<<=,	>>=

• bitwise	logic:	~,	&,	|,	^
• bitwise	shifts:	<<,	>>
• boolean logic:	!,	&&,	||
• equality	testing:	==,	!=

• subexpression
grouping:	()

• order	relations:	<,	<=,	>,	
>=

• increment	and	
decrement:	++	and	--

• member	selection:	.,	->
• conditional	evaluation:	
?	:

11

Address	vs.	Value
• Consider	memory	to	be	a	single	huge	array
– Each	cell	of	the	array	has	an	address	associated	
with	it

– Each	cell	also	stores	some	value
– For	addresses	do	we	use	signed	or	unsigned	
numbers?	Negative	address?!

• Don’t	confuse	the	address	referring	to	a	
memory	location	with	the	value	stored	there

12

23 42 101 102	103	104	105	...

Pointers
• An	address	refers	to	a	particular	memory	
location;	e.g.,	it	points	to	a	memory	location

• Pointer:	A	variable	that	contains	the	address	
of	a	variable

13

23 42 101	102	103	104	105	...

x y

Location	(address)

name
p

104

Pointer	Syntax

• int *x;
– Tells	compiler	that	variable	x is	address	of	an	int

• x = &y;
– Tells	compiler	to	assign	address	of	y to	x
– & called	the	“address	operator”	in	this	context

• z = *x;
– Tells	compiler	to	assign	value	at	address	in	x to	z
– * called	the	“dereference	operator”	in	this	context

14

Creating	and	Using	Pointers

15

• How	to	create	a	pointer:
& operator:	get	address	of	a	variable
int *p, x;

p ? x ?

x = 3;
p ? x 3

p = &x;
p x 3

•How	get	a	value	pointed	to?
“*” (dereference	operator):	get the	value	that	the	pointer	points	to

printf(“p points to value %d\n”,*p);

Note	the	“*”	gets	used	
2	different	ways	in	this	
example.		In	the		
declaration	to	indicate	
that	p is	going	to	be	a	
pointer,		and	in	the	
printf to	get	the	
value	pointed	to	by	p.

Using	Pointer	for	Writes

• How	to	change	a	variable	pointed	to?
– Use	the	dereference	operator	* on	left	of	
assignment	operator	=

16

p x 5*p = 5;

p x 3

Pointers	and	Parameter	Passing
• C	passes	parameters	“by	value”
– Procedure/function/method	gets	a	copy	of	the	
parameter,	so	changing	the	copy	cannot	change	the	
original

void add_one (int x) {
x = x + 1;

}
int y = 3;
add_one(y);

y remains	equal	to	3

17

Pointers	and	Parameter	Passing
• How	can	we	get	a	function	to	change	the	value	
held	in	a	variable?

void add_one (int *p) {
*p = *p + 1;
}

int y = 3;

add_one(&y);

y is	now	equal	to	4

18

What	would	you	use	in	C++?

Call	by	reference:
void	add_one (int &p)	{
p	=	p	+	1;				//	or		p	+=	1;

}

Types	of	Pointers

• Pointers	are	used	to	point	to	any	kind	of	data	
(int,	char,	a	struct,	etc.)

• Normally	a	pointer	only	points	to	one	type	
(int,	char,	a	struct,	etc.).
– void * is	a	type	that	can	point	to	anything	
(generic	pointer)

– Use	void * sparingly	to	help	avoid	program	bugs,	
and	security	issues,	and	other	bad	things!

19

More	C	Pointer	Dangers
• Declaring	a	pointer	just	allocates	space	to	hold	
the	pointer	– it	does	not	allocate	the	thing	
being	pointed	to!

• Local	variables	in	C	are	not	initialized,	they	
may	contain	anything	(aka	“garbage”)

• What	does	the	following	code	do?

20

void f()
{

int *ptr;
*ptr = 5;

}

Pointers	and	Structures
typedef struct {

int x;
int y;

} Point;

Point p1;
Point p2;
Point *paddr;

/* dot notation */
int h = p1.x;
p2.y = p1.y;

/* arrow notation */
int h = paddr->x;
int h = (*paddr).x;

/* This works too */
p1 = p2;

21

Note:	C	structure	assignment	is	not	a	”deep	copy”.
All	members	are	copied,	but	not	things	pointed	to	
by	members.

Pointers	in	C
• Why	use	pointers?
– If	we	want	to	pass	a	large	struct or	array,	it’s	easier	/	
faster	/	etc.	to	pass	a	pointer	than	the	whole	thing

– In	general,	pointers	allow	cleaner,	more	compact	code

• So	what	are	the	drawbacks?
– Pointers	are	probably	the	single	largest	source	of	bugs	
in	C,	so	be	careful	anytime	you	deal	with	them
• Most	problematic	with	dynamic	memory	management—
coming	up	next	week

• Dangling	references	and	memory	leaks

22

Why	Pointers	in	C?
• At	time	C	was	invented	(early	1970s),	compilers	
often	didn’t	produce	efficient	code
– Computers	25,000	times	faster	today,	compilers	better

• C	designed	to	let	programmer	say	what	they	want	
code	to	do	without	compiler	getting	in	way
– Even	give	compilers	hints	which	registers	to	use!

• Today’s	compilers	produce	much	better	code,	so	
may	not	need	to	use	pointers	in	application	code

• Low-level	system	code	still	needs	low-level	access	
via	pointers

23

Quiz:	Pointers
void foo(int *x, int *y)
{ int t;

if (*x > *y) { t = *y; *y = *x; *x = t; }
}
int a=3, b=2, c=1;
foo(&a, &b);
foo(&b, &c);
foo(&a, &b);
printf("a=%d b=%d c=%d\n", a, b, c);

24

A:	a=3 b=2 c=1
B:	a=1 b=2 c=3
C:	a=1 b=3 c=2
D:	a=3 b=3 c=3
E:	a=1 b=1 c=1

Result	is:

Administrivia
• OH	started	– use	when	you	need	help!
• Questions	regarding	HW1?

25

iPhone7	Teardown
ifixit.com

26

27

Apple	64bit	System	on	a	chip	(SoC):	
quad	core	(2	high	performance,	2	low	power;	only	2	at	a	time)
125 mm2,	3.3	billion	transistors	(including	the	GPU	and	caches)
2.34	GHz	ARMv8	 TSMC	16 nm 6-core	GPU							4	Samsung LPDDR4 RAM	chips

28

29

30

C	Arrays

• Declaration:
int ar[2];

declares	a	2-element	integer	array:	just	a	block	of	
memory	

int ar[] = {795, 635};

declares	and	initializes	a	2-element	integer	array

31

C	Strings
• String	in	C	is	just	an	array	of	characters

char string[] = "abc";

• How	do	you	tell	how	long	a	string	is?
– Last	character	is	followed	by	a	0	byte	
(aka	“null	terminator”)

32

int strlen(char s[])
{

int n = 0;
while (s[n] != 0) n++;
return n;

}

Array	Name	/	Pointer	Duality
• Key	Concept:	Array	variable	is	a	“pointer”	to	the	first	
(0th)	element

• So,	array	variables	almost	identical	to	pointers
– char *string and	char string[] are	nearly	
identical	declarations

– Differ	in	subtle	ways:	incrementing,	declaration	of	filled	
arrays

• Consequences:
– ar is	an	array	variable,	but	works	like	a	pointer
– ar[0] is	the	same	as	*ar
– ar[2] is	the	same	as	*(ar+2)
– Can	use	pointer	arithmetic	to	conveniently	access	arrays

33

Changing	a	Pointer	Argument?

• What	if	want	function	to	change	a	pointer?
• What	gets	printed?

void inc_ptr(int *p)
{ p = p + 1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(q);
printf(“*q = %d\n”, *q);

*q = 50

50 60 70

A q

Pointer	to	a	Pointer

• Solution!	Pass	a	pointer	to	a	pointer,	declared	
as	**h

• Now	what	gets	printed?
void inc_ptr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q q

C	Arrays	are	Very	Primitive
• An	array	in	C	does	not	know	its	own	length,	
and	its	bounds	are	not	checked!
– Consequence:	We	can	accidentally	access	off	the	
end	of	an	array

– Consequence:	We	must	pass	the	array	and	its	size	
to	any	procedure	that	is	going	to	manipulate	it

• Segmentation	faults	and	bus	errors:
– These	are	VERY	difficult	to	find;	
be	careful!	

36

Use	Defined	Constants
• Array	size	n;	want	to	access	from	0 to	n-1,	so	you	should	use	

counter	AND	utilize	a	variable	for	declaration	&	incrementation
– Bad	pattern
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

– Better	pattern
const int ARRAY_SIZE = 10;
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

• SINGLE	SOURCE	OF	TRUTH
– You’re	utilizing	indirection	and	avoiding	maintaining	two	copies	of	the	

number	10
– DRY:	“Don’t	Repeat	Yourself”

37

Pointing	to	Different	Size	Objects
• Modern	machines	are	“byte-addressable”

– Hardware’s	memory	composed	of	8-bit	storage	cells,	each	has	a	
unique	address

• A	C	pointer	is	just	abstracted	memory	address
• Type	declaration	tells	compiler	how	many	bytes	to	fetch	on	
each	access	through	pointer
– E.g.,	32-bit	integer	stored	in	4	consecutive	8-bit	bytes

38

424344454647484950515253545556575859

int *x

32-bit	integer	
stored	in	four	bytes

short *y

16-bit	short	stored	
in	two	bytes

char *z

8-bit	character	
stored	in	one	byte

Byte	address

sizeof()	operator

• sizeof(type)	returns	number	of	bytes	in	object
– But	number	of	bits	in	a	byte	is	not	standardized
• In	olden	times,	when	dragons	roamed	the	earth,	bytes	
could	be	5,	6,	7,	9	bits	long

• By	definition,	sizeof(char)==1
• Can	take	sizeof(arr),	or	sizeof(structtype)
• We’ll	see	more	of	sizeof when	we	look	at	
dynamic	memory	management

39

40

Pointer	Arithmetic
pointer +	number pointer – number
e.g.,	pointer + 1 adds	1	something to	a	pointer

char *p;
char a;
char b;

p = &a;
p += 1;

int *p;
int a;
int b;

p = &a;
p += 1;

In	each,	p now	points	to	b
(Assuming	compiler	doesn’t	
reorder	variables	in	memory.	

Never	code	like	this!!!!)

Adds	1*sizeof(char)
to	the	memory	address

Adds	1*sizeof(int)
to	the	memory	address

Pointer	arithmetic	should	be	used	cautiously

41

Arrays	and	Pointers

• Array	» pointer	to	the	initial	(0th)	array
element

a[i] º *(a+i)

• An	array	is	passed	to	a	function	as	a	pointer
– The	array	size	is	lost!

• Usually	bad	style	to	interchange	arrays	and
pointers
– Avoid	pointer	arithmetic!

Really int *array

int
foo(int array[],

unsigned int size)
{

… array[size - 1] …
}

int
main(void)
{

int a[10], b[5];
… foo(a, 10)… foo(b, 5) …

}

Must explicitly
pass the size

Passing arrays:

42

Arrays	and	Pointers
int
foo(int array[],

unsigned int size)
{

…
printf(“%d\n”, sizeof(array));

}

int
main(void)
{

int a[10], b[5];
… foo(a, 10)… foo(b, 5) …
printf(“%d\n”, sizeof(a));

}

What	does	this	print?

What	does	this	print?

4

40

...	because	array is	really
a	pointer	(and	a	pointer	is	
architecture	dependent,	but		
likely	to	be	8	on	modern
machines!)

