CS 110 Computer Architecture Synchronous Digital Systems

Instructor:
Sören Schwertfeger
http://shtech.org/courses/ca/
School of Information Science and Technology SIST
ShanghaiTech University
Slides based on UC Berkley's CS61C

Levels of Representation/Interpretation

You are Here!

- Parallel Requests

Assigned to computer e.g., Search "Katz"

- Parallel Threads

Assigned to core e.g., Lookup, Ads

Harness

 Parallelism \& Achieve High PerformanceHardware

Warehouse
Scale Computer

- Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions
- Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words
- Hardware descriptions

All gates @ one time

- Programming Languages

Hardware Design

- Next several weeks: how a modern processor is built, starting with basic elements as building blocks
- Why study hardware design?
- Understand capabilities and limitations of HW in general and processors in particular
- What processors can do fast and what they can't do fast (avoid slow things if you want your code to run fast!)
- Background for more in-depth HW courses
- Hard to know what you'll need for next 30 years
- There is only so much you can do with standard processors: you may need to design own custom HW for extra performance
- Even some commercial processors today have customizable hardware!

Synchronous Digital Systems

Hardware of a processor, such as the MIPS, is an example of a Synchronous Digital System
Synchronous:

- All operations coordinated by a central clock
- "Heartbeat" of the system!

Digital:

- Represent all values by discrete values
- Two binary digits: 1 and 0
- Electrical signals are treated as 1's and 0's
- 1 and 0 are complements of each other
- High /low voltage for true / false, 1 / 0

Switches: Basic Element of Physical Implementations

- Implementing a simple circuit (arrow shows action if wire changes to " 1 " or is asserted):

$$
Z \equiv A
$$

Switches (cont'd)

- Compose switches into more complex ones (Boolean functions):

AND $\quad \downarrow_{\bullet}^{A} \downarrow^{B} \quad \downarrow^{B} A$ and B

Historical Note

- Early computer designers built ad hoc circuits from switches
- Began to notice common patterns in their work: ANDs, ORs, ...
- Master's thesis (by Claude Shannon, 1940) made link between work and 19th Century Mathematician George Boole
- Called it "Boolean" in his honor
- Could apply math to give theory to hardware design, minimization, ...

Transistors

- High voltage (V_{dd}) represents 1 , or true
- In modern microprocessors, Vdd ~ 1.0 Volt
- Low voltage (0 Volt or Ground) represents 0 , or false
- Pick a midpoint voltage to decide if a 0 or a 1
- Voltage greater than midpoint = 1
- Voltage less than midpoint $=0$
- This removes noise as signals propagate - a big advantage of digital systems over analog systems
- If one switch can control another switch, we can build a computer!
- Our switches: CMOS transistors

CMOS Transistor Networks

- Modern digital systems designed in CMOS
- MOS: Metal-Oxide on Semiconductor
- C for complementary: use pairs of normally-on and normally-off switches
- CMOS transistors act as voltage-controlled switches
- Similar, though easier to work with, than electromechanical relay switches from earlier era
- Use energy primarily when switching

CMOS Transistors

- Three terminals: source, gate, and drain
- Switch action:
if voltage on gate terminal is (some amount) higher/lower than source terminal then conducting path established between drain and source terminals (switch is closed)

n-channel transitor
off when voltage at Gate is low on when:
voltage(Gate) > voltage (Threshold)

p-channel transistor
on when voltage at Gate is low off when:
voltage(Gate) > voltage (Threshold)
field-effect transistor (FET) => CMOS circuits use a combination of p-type and n-type metal-oxide-semiconductor field-effect transistors =>

Intel 14nm Technology

Side view of wiring layers

Sense of Scale

Source: Mark Bohr, IDF14

CMOS Circuit Rules

- Don't pass weak values => Use Complementary Pairs
- N-type transistors pass weak 1's ($\left.\mathrm{V}_{\mathrm{dd}}-\mathrm{V}_{\mathrm{th}}\right)$
- N-type transistors pass strong 0's (ground)
- Use N-type transistors only to pass 0's (N for negative)
- Converse for P-type transistors: Pass weak 0s, strong 1s
- Pass weak 0's $\left(\mathrm{V}_{\mathrm{th}}\right)$, strong 1's $\left(\mathrm{V}_{\mathrm{dd}}\right)$
- Use P-type transistors only to pass 1's (P for positive)
- Use pairs of N-type and P-type to get strong values
- Never leave a wire undriven
- Make sure there's always a path to V_{dd} or GND
- Never create a path from V_{dd} to GND (ground)
- This would short-circuit the power supply!

CMOS Networks

p-channel transistor
on when voltage at Gate is low off when:
voltage(Gate) > voltage (Threshold)

what is the
relationship
between x and y ?

Called an inverter or not gate

Two-Input Networks

Called a NAND gate (NOT AND)

Clickers/Peer Instruction

Combinational Logic Symbols

- Common combinational logic systems have standard symbols called logic gates

Remember...

AND-

Admin

- Project 1.1 will be published soon
- Send your Lab TA your additional email - you will not be able to submit your project to gradebot without!
- Midterm I: April $6^{\text {th }}$!
- Allowed material: 1 hand-written English doublesided A4 cheat sheet.
- MIPS green card provided by us!
- Content: Number representation, C, MIPS
- Review session on March 30th.

Boolean Algebra

- Use plus " + " for OR
- "logical sum" $1+0=0+1=1$ (True); $1+1=2$ (True); $0+0=0$ (False)
- Use product for AND ($a \bullet b$ or implied via $a b$)
- "logical product" $\quad 0^{*} 0=0^{*} 1=1^{*} 0=0$ (False); $1^{*} 1=1$ (True)
- "Hat" to mean complement (NOT)
- Thus
$a b+a+\bar{c}$
$=a \bullet b+a+\bar{c}$
$=(\mathrm{a}$ AND b) OR a OR (NOT c)

Truth Tables

for Combinational Logic

Exhaustive list of the output value generated for each combination of inputs How many logic functions can be defined with N inputs?

a	b	c	d	y
0	0	0	0	$\mathrm{~F}(0,0,0,0)$
0	0	0	1	$\mathrm{~F}(0,0,0,1)$
0	0	1	0	$\mathrm{~F}(0,0,1,0)$
0	0	1	1	$\mathrm{~F}(0,0,1,1)$
0	1	0	0	$\mathrm{~F}(0,1,0,0)$
0	1	0	1	$\mathrm{~F}(0,1,0,1)$
0	1	1	0	$\mathrm{~F}(0,1,1,0)$
0	1	1	1	$\mathrm{~F}(0,1,1,1)$
1	0	0	0	$\mathrm{~F}(1,0,0,0)$
1	0	0	1	$\mathrm{~F}(1,0,0,1)$
1	0	1	0	$\mathrm{~F}(1,0,1,0)$
1	0	1	1	$\mathrm{~F}(1,0,1,1)$
1	1	0	0	$\mathrm{~F}(1,1,0,0)$
1	1	0	1	$\mathrm{~F}(1,1,0,1)$
1	1	1	0	$\mathrm{~F}(1,1,1,0)$
1	1	1	1	$\mathrm{~F}(1,1,1,1)$

Truth Table Example \#1: $y=F(a, b): 1$ iff $a \neq b$

a	b	y
0	0	0
0	1	1
1	0	1
1	1	0

Truth Table Example \#2:

 2-bit Adder| A | B | C |
| :---: | :---: | :--- |
| $a_{1} a_{0}$ | $b_{1} b_{0}$ | $c_{2} c_{1} c_{0}$ |

How
Many
Rows?

Truth Table Example \#3: 32-bit Unsigned Adder

A	B	C	
$000 \ldots 0$	$000 \ldots 0$	$000 \ldots 00$	
$000 \ldots 0$	$000 \ldots 1$	$000 \ldots 01$	
.	.	\cdot	How
.	.	\cdot	Many
.	.	\cdot	Rows?
$111 \ldots 1$	$111 \ldots 1$	$111 \ldots 10$	

Truth Table Example \#4: 3-input Majority Circuit

$$
Y=
$$

This is called Sum of Products form; Just another way to represent the TT as a logical expression

More simplified forms
(fewer gates and wires)

a	b	c	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Boolean Algebra: Circuit \& Algebraic Simplification

Representations of Combinational Logic (groups of logic gates)

Laws of Boolean Algebra

$$
\begin{array}{cr}
X \bar{X}=0 & X+\bar{X}=1 \\
X 0=0 & X+1=1 \\
X 1=X & X+0=X \\
X X=X & X+X=X \\
X Y=Y X & X+Y=Y+X \\
(X Y) Z=Z(Y Z) & (X+Y)+Z=Z+(\\
X(Y+Z)=X Y+X Z & X+Y Z=(X+Y)(\\
X Y+X=X & (X+Y) X=X \\
\bar{X} Y+X=X+Y & (\bar{X}+Y) X=X \\
\overline{X Y}=\bar{X}+\bar{Y} & \overline{X+Y}=\bar{X} \bar{Y}
\end{array}
$$

Complementarity
Laws of O's and 1's Identities
Idempotent Laws Commutativity
Associativity
Distribution
Uniting Theorem
Uniting Theorem v. 2
DeMorgan's Law

Boolean Algebraic Simplification Example

$y=a b+a+c$

Boolean Algebraic Simplification

Example

$$
y=a b+a+c
$$

$\mathrm{abcy}=a(b+1)+c$ distribution, identity $0000=a(1)+c \quad$ law of 1 's
0011
$=a+c$
identity
0100
0111
1001
1011
1101
1111

Question

- Simplify $Z=A+B C+\bar{A}(\overline{B C})$
- A: $Z=0$
- $B: Z=\overline{A(1+B C)}$
- $C: Z=(A+B C)$
- $D: Z=B C$
- $\mathrm{E}: ~ \mathrm{Z}=1$

News:

Open Compute Project Summit:

Google \& ST Microelectronics: 48V to Chip

- Point-of-Load-(PoL) Converter
- 48 V to 0.5 V .. 1 V .. up to $12 \mathrm{~V}>300 \mathrm{~W} @ 1 \mathrm{~V}$!
- Efficiency: 230V AC 89.3\%; 48V DC 92.1\%

Latest 100 A+ VTM

 (and 200 A turbo mode) consumes only $13 \times 23 \mathrm{~mm}$ area

Single VTM replaces multiple conventional DRMOS
and inductor stages.

Typical Conversion Efficiency

System Efficiency

Signals and Waveforms

Signals and Waveforms: Grouping

Signals and Waveforms: Circuit Delay

$$
\begin{aligned}
& A=\left[a_{3}, a_{2}, a_{1}, a_{0}\right] \\
& B=\left[b_{3}, b_{2}, b_{1}, b_{0}\right]
\end{aligned}
$$

Sample Debugging Waveform

File Edit 保 - default
Zoom Bookmark Format Window

$/ \mathrm{tb} /$ DBG＿00［10］
2）$/ \mathrm{tb} / \mathrm{DBG} _00[9]$
2）$/ \mathrm{tb} / \mathrm{DBG} _00[8]$
2．$/ \mathrm{tb} / \mathrm{DBG}$＿00［7］
9）／tb／DBG＿00［6］
2）$/ \mathrm{tb} / \mathrm{DBG}$＿00［5］
o）$/ \mathrm{tb} /$ DBG＿00［4］
2）$/ \mathrm{tb} / \mathrm{DBG}$＿00［3］
2）／tb／DBG＿00［2］
2）$/ \mathrm{tb} /$ DBG＿00［1］
2．$/ \mathrm{tb} /$ DBG＿00［0］
（－）$/ \mathrm{tb} / \mathrm{A}$
田 $/ \mathrm{tb} / \mathrm{IB}$
（⿴囗十）／tb／ROMAD
（－9）$/ \mathrm{tb} / \mathrm{D}$
（⿴囗十）／tb／TState
2．$/ \mathrm{tb} / 0 \mathrm{E} _\mathrm{n}$
2）／tb／RAMCS＿n
2）／tb／ROWCS＿n
9．$/ \mathrm{tb} / \mathrm{WE} \mathrm{E}$＿n
2）$/ \mathrm{tb} / \mathrm{X}_{2} 0 \mathrm{E}_{1} \mathrm{n}$
2）$/ \mathrm{tb} / \mathrm{X}$＿RAMCS＿n
D）$/ \mathrm{tb} / \mathrm{X}$＿ROMCS＿n
． tb ／ReadVRAM
2．／tb／CSyncX

$|$| $S t 0$ | |
| :--- | :--- |
| $S t 0$ | |
| $S t 0$ | |
| $S t 1$ | |
| $S t 0$ | |
| 0000 | |
| $3 a$ | |
| 0000 | |
| $f f$ | |
| 0 | |
| $S t 0$ | |
| $S t 1$ | |
| $S t 0$ | |
| $S t 1$ | |
| $S t 0$ | |
| $S t 1$ | |
| $S t 0$ | |
| $S t 0$ | |
| $S t 0$ | |
| 0 | $p s$ |
| 0 ps | |
| 1 | |

96986540 ps to 111169300 ps

Type of Circuits

- Synchronous Digital Systems consist of two basic types of circuits:
- Combinational Logic (CL) circuits
- Output is a function of the inputs only, not the history of its execution
- E.g., circuits to add A, B (ALUs)
- Sequential Logic (SL)
- Circuits that "remember" or store information
- aka "State Elements"
- E.g., memories and registers (Registers)

Uses for State Elements

- Place to store values for later re-use:
- Register files (like \$1-\$31 in MIPS)
- Memory (caches and main memory)
- Help control flow of information between combinational logic blocks
- State elements hold up the movement of information at input to combinational logic blocks to allow for orderly passage

Accumulator Example

Why do we need to control the flow of information?

Want:

$$
\begin{aligned}
& S=0 ; \\
& \text { for } \quad(i=0 ; i<n ; i++) \\
& \quad S=S+X_{i}
\end{aligned}
$$

Assume:

- Each X value is applied in succession, one per cycle
- After n cycles the sum is present on S

First Try: Does this work?

No!
Reason \#1: How to control the next iteration of the 'for' loop?
Reason \#2: How do we say: 'S=0’?

Second Try: How About This?

Register is used to hold up the transfer of data to adder

Square wave clock sets when things change

Rough
High (1)
timing ... Low (0) S
High (1)
Low (0)
] x_{0} x $\left.\left.x_{0}+x_{1}\right] x_{0}+x_{1}^{1}+x_{2}\right]\left(x_{0}+x_{1}^{1}+x_{2}+\cdots\right)$

Xi must be ready before clock edge due to adder delay

