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Review

• Timing	constraints	for	Finite	State	Machines
– Setup	time,	Hold	Time,	Clock	to	Q	time

• Use	muxes to	select	among	inputs
– S	control	bits	selects	from	2S	inputs
– Each	input	can	be	n-bits	wide,	indep of	S
– Can	implement	muxes hierarchically

• ALU	can	be	implemented	using	a	mux
– Coupled	with	basic	block	elements
– Adder/	Substractor &	AND	&	OR	&	shift
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The	CPU
• Processor	(CPU):	the	active	part	of	the	
computer	that	does	all	the	work	(data	
manipulation	and	decision-making)

• Datapath:	portion	of	the	processor	that	
contains	hardware	necessary	to	perform	
operations	required	by	the	processor	(the	
brawn)

• Control:	portion	of	the	processor	(also	in	
hardware)	that	tells	the	datapath what	needs	
to	be	done	(the	brain)
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Datapath	and	Control
• Datapath designed	to	support	data	transfers	
required	by	instructions

• Controller	causes	correct	transfers	to	happen	
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Five	Stages	of	Instruction	Execution
• Stage	1:	Instruction	Fetch

• Stage	2:	Instruction	Decode

• Stage	3:	ALU	(Arithmetic-Logic	Unit)

• Stage	4:	Memory	Access

• Stage	5:	Register	Write
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Stages	of	Execution	on	Datapath
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Stages	of	Execution	(1/5)

• There	is	a	wide	variety	of	MIPS	instructions:	so	
what	general	steps	do	they	have	in	common?

• Stage	1:	Instruction	Fetch
– no	matter	what	the	instruction,	the	32-bit	
instruction	word	must	first	be	fetched	from	
memory	(the	cache-memory	hierarchy)

– also,	this	is	where	we	Increment	PC	
(that	is,	PC	=	PC	+	4,	to	point	to	the	next	
instruction:	byte	addressing	so	+	4)
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Stages	of	Execution	(2/5)
• Stage	2:	Instruction	Decode

– upon	fetching	the	instruction,	we	next	gather	data	
from	the	fields	(decode	all	necessary	instruction	
data)

– first,	read	the	opcode to	determine	instruction	
type	and	field	lengths

– second,	read	in	data	from	all	necessary	registers
• for	add,	read	two	registers
• for	addi,	read	one	register
• for	jal,	no	reads	necessary
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Stages	of	Execution	(3/5)
• Stage	3:	ALU	(Arithmetic-Logic	Unit)

– the	real	work	of	most	instructions	is	done	here:	
arithmetic	(+,	-,	*,	/),	shifting,	logic	(&,	|),	
comparisons	(slt)

– what	about	loads	and	stores?
• lw $t0,	40($t1)
• the	address	we	are	accessing	in	memory	=	the	
value	in	$t1 PLUS	the	value	40

• so	we	do	this	addition	in	this	stage
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Stages	of	Execution	(4/5)

• Stage	4:	Memory	Access
– actually	only	the	load	and	store	instructions	do	
anything	during	this	stage;	the	others	remain	idle	
during	this	stage	or	skip	it	all	together

– since	these	instructions	have	a	unique	step,	we	
need	this	extra	stage	to	account	for	them

– as	a	result	of	the	cache	system,	this	stage	is	
expected	to	be	fast
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Stages	of	Execution	(5/5)

• Stage	5:	Register	Write
– most	instructions	write	the	result	of	some	
computation	into	a	register

– examples:	arithmetic,	logical,	shifts,	loads,	slt
– what	about	stores,	branches,	jumps?

• don’t	write	anything	into	a	register	at	the	end
• these	remain	idle	during	this	fifth	stage	or	skip	it	all	
together
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Stages	of	Execution	on	Datapath
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Datapath	Walkthroughs	(1/3)

• add	$r3,$r1,$r2	#	r3	=	r1+r2
– Stage	1:	fetch	this	instruction,	increment	PC
– Stage	2:	decode	to	determine	it	is	an	add,	
then	read	registers	$r1 and	$r2

– Stage	3:	add	the	two	values	retrieved	in	Stage	2
– Stage	4:	idle	(nothing	to	write	to	memory)
– Stage	5:	write	result	of	Stage	3	into	register	$r3
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Datapath	Walkthroughs	(2/3)
• slti $r3,$r1,17	
#	if	(r1	<17	)	r3	=	1	else	r3	=	0	
– Stage	1:	fetch	this	instruction,	increment	PC
– Stage	2:	decode	to	determine	it	is	an	slti,	
then	read	register	$r1

– Stage	3:	compare	value	retrieved	in	Stage	2	
with	the	integer	17

– Stage	4:	idle
– Stage	5:	write	the	result	of	Stage	3	(1	if	reg source	
was	less	than	signed	immediate,	0	otherwise)	into	
register	$r3
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slti	r3,	r1,	17
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Datapath	Walkthroughs	(3/3)

• sw $r3,17($r1)	#	Mem[r1+17]=r3
– Stage	1:	fetch	this	instruction,	increment	PC
– Stage	2:	decode	to	determine	it	is	a	sw,	
then	read	registers	$r1 and	$r3

– Stage	3:	add	17 to	value	in	register	$r1 (retrieved	in	
Stage	2)	to	compute	address

– Stage	4:	write	value	in	register	$r3 (retrieved	in	
Stage	2)	into	memory	address	computed	in	Stage	3

– Stage	5:	idle	(nothing	to	write	into	a	register)
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Why	Five	Stages?	(1/2)

• Could	we	have	a	different	number	of	stages?
– Yes,	other	ISAs	have	different	natural	number	of	
stages

• Why	does	MIPS	have	five	if	instructions	tend	
to	idle	for	at	least	one	stage?
– Five	stages	are	the	union	of	all	the	operations	
needed	by	all	the	instructions.

– One	instruction	uses	all	five	stages:	the	load
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Why	Five	Stages?	(2/2)
• lw $r3,17($r1)	#	r3=Mem[r1+17]

– Stage	1:	fetch	this	instruction,	increment	PC
– Stage	2:	decode	to	determine	it	is	a	lw,
then	read	register	$r1

– Stage	3:	add	17 to	value	in	register	$r1 (retrieved	
in	Stage	2)

– Stage	4:	read	value	from	memory	address	
computed	in	Stage	3

– Stage	5:	write	value	read	in	Stage	4	into	
register	$r3
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ALU
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Question

• Which	type	of	MIPS	instruction	is	active	in	the	
fewest	stages?

A:	LW
B:	BEQ
C:	J
D:	JAL
E:	ADDU
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Datapath	and	Control
• Datapath designed	to	support	data	transfers	
required	by	instructions

• Controller	causes	correct	transfers	to	happen	

Controller
opcode, funct
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Processor	Design:	5	steps
Step	1:	Analyze	instruction	set	to	determine datapath
requirements

– Meaning	of	each	instruction	is	given	by	register	transfers
– Datapath must	include	storage	element	for	ISA	registers
– Datapath must	support	each	register	transfer
Step	2:	Select	set	of	datapath components	&	establish	
clock	methodology

Step	3:	Assemble	datapath components	that	meet	the	
requirements

Step	4:	Analyze	implementation	of	each	instruction	to	
determine	setting	of	control	points	that	realizes	the	
register	transfer

Step	5:	Assemble	the	control	logic
25



• All	MIPS	instructions	are	32	bits	long.		3	formats:

– R-type

– I-type

– J-type

• The	different	fields	are:
– op:	operation	(“opcode”)	of	the	instruction
– rs,	rt,	rd:	the	source	and	destination	register	specifiers
– shamt:	shift	amount
– funct:	selects	the	variant	of	the	operation	in	the	“op”	field
– address	/	immediate:	address	offset	or	immediate	value
– target	address:	target	address	of	jump	instruction	

op target address
02631

6 bits 26 bits

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt address/immediate
016212631

6 bits 16 bits5 bits5 bits

The	MIPS	Instruction	Formats

26



• ADDU	and	SUBU
– addu rd,rs,rt
– subu rd,rs,rt

• OR	Immediate:
– ori rt,rs,imm16

• LOAD	and	
STORE	Word
– lw rt,rs,imm16
– sw rt,rs,imm16

• BRANCH:
– beq rs,rt,imm16

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

The	MIPS-lite	Subset

27



• Colloquially	called	“Register	Transfer	Language”
• RTL	gives	the	meaning of	the	instructions
• All	start	by	fetching	the	instruction	itself
{op , rs , rt , rd , shamt , funct} ← MEM[ PC ]

{op , rs , rt ,   Imm16} ← MEM[ PC ]

Inst Register Transfers

ADDU   R[rd] ← R[rs] + R[rt]; PC ← PC + 4

SUBU   R[rd] ← R[rs] – R[rt]; PC ← PC + 4

ORI    R[rt] ← R[rs] | zero_ext(Imm16); PC ← PC + 4

LOAD   R[rt] ← MEM[ R[rs] + sign_ext(Imm16)]; PC ← PC + 4

STORE  MEM[ R[rs] + sign_ext(Imm16) ] ← R[rt]; PC ← PC + 4

BEQ    if ( R[rs] == R[rt] )
PC ← PC + 4 + {sign_ext(Imm16), 2’b00}

else PC ← PC + 4

Register	Transfer	Level	(RTL)
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Step	1:	Requirements	of	the	
Instruction	Set

• Memory	(MEM)
– Instructions	&	data	(will	use	one	for	each)

• Registers	(R:	32,	32-bit	wide	registers)
– Read	RS
– Read	RT
– Write	RT	or	RD

• Program	Counter	(PC)
• Extender	(sign/zero	extend)
• Add/Sub/OR/etc unit	for	operation	on	register(s)	or	

extended	immediate	(ALU)
• Add	4	(+	maybe	extended	immediate)	to	PC
• Compare	registers?

29



Step	2:	Components	of	the	
Datapath

• Combinational	Elements
• Storage	Elements	+	Clocking	Methodology
• Building	Blocks
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ALU	Needs	for	MIPS-lite	+	Rest	of	MIPS
• Addition,	subtraction,	logical	OR,	==:

ADDU R[rd] = R[rs] + R[rt]; ...
SUBU R[rd] = R[rs] – R[rt]; ... 
ORI R[rt] = R[rs] | zero_ext(Imm16)... 

BEQ if ( R[rs] == R[rt] )...

• Test	to	see	if	output	==	0	for	any	ALU	
operation	gives	==	test.	How?

• P&H	also	adds	AND,	Set	Less	Than	(1	if	A	<	B,	0	
otherwise)	

• ALU	follows	Chapter	5
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Storage	Element:	Idealized	Memory
• “Magic”	Memory

– One	input	bus:	Data	In
– One	output	bus:	Data	Out

• Memory	word	is	found	by:
– For	Read:	Address	selects	the	word	to	put	on	Data	Out
– For	Write:	Set	Write	Enable	=	1:	address	selects	the	
memory	word	to	be	written	via	the	Data	In	bus

• Clock	input	(CLK)	
– CLK	input	is	a	factor	ONLY	during	write	operation
– During	read	operation,	behaves	as	a	combinational	logic	
block:	Address	valid	=> Data	Out	valid	after	“access	time”

Clk

Data	In

Write	Enable

32 32
DataOut

Address
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Storage	Element:	Register	(Building	Block)

• Similar	to	D	Flip	Flop	except
– N-bit	input	and	output
– Write	Enable	input

• Write	Enable:
– Negated	(or	deasserted)	(0):	Data	Out	will	not	
change

– Asserted	(1):	Data	Out	will	become	Data	In	on	
positive	edge	of	clock

clk

Data	In

Write	Enable

N N

Data	Out
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Storage	Element:	Register	File
• Register	File	consists	of	32	registers:

– Two	32-bit	output	busses:
busA	and	busB

– One	32-bit	input	bus:	busW
• Register	is	selected	by:

– RA	(number)	selects	the	register	to	put	on	busA	(data)
– RB	(number)	selects	the	register	to	put	on	busB	(data)
– RW	(number)	selects	the	register	to	be		written

via	busW	(data)	when	Write	Enable	is	1
• Clock	input	(clk)	

– Clk	input	is	a	factor	ONLY	during	write	operation
– During	read	operation,	behaves	as	a	combinational	logic	block:

• RA	or	RB	valid	Þ busA	or	busB	valid	after	“access	time.”

Clk

busW

Write	Enable

32
32

busA

32
busB

5 5 5
RW RA RB

32	x	32-bit
Registers
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Step	3a:	Instruction	Fetch	Unit
• Register	Transfer	
Requirements	=>
Datapath Assembly

• Instruction	Fetch
• Read	Operands	and	Execute	
Operation

• Common	RTL	operations
– Fetch	the	Instruction:	
mem[PC]

– Update	the	program	counter:
• Sequential	Code:
PC	← PC	+	4	

• Branch	and	Jump:
PC	←“something	else” 32

Instruction	WordAddress

Instruction
Memory

PCclk

Next	Address
Logic
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• R[rd] = R[rs] op R[rt] (addu rd,rs,rt)
– Ra,	Rb,	and	Rw come	from	instruction’s	Rs,	Rt,	and	Rd	fields

– ALUctr and RegWr:	control	logic	after	decoding	the	instruction

• …	Already	defined	the	register	file	&	ALU													

Step	3b:	Add	&	Subtract
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Clocking	Methodology

• Storage	elements	clocked	by	same	edge
• Flip-flops	(FFs)	and	combinational	logic	have	some	delays	

– Gates:	delay	from	input	change	to	output	change	
– Signals	at	FF	D	input	must	be	stable	before	active	clock	edge	to	allow	

signal	to	travel	within	the	FF	(set-up	time),	and	we	have	the	usual	
clock-to-Q	delay

• “Critical	path” (longest	path	through	logic)	determines	length	
of	clock	period
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Register-Register	Timing:	
One	Complete	Cycle	(Add/Sub)
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Putting	it	All	Together:A Single	Cycle	Datapath
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In	Conclusion

• “Divide	and	Conquer”	to	build	complex	logic	
blocks	from	smaller	simpler	pieces	(adder)

• Five	stages	of	MIPS	instruction	execution
• Mapping	instructions	to	datapath components
• Single	long	clock	cycle	per	instruction
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