
CS	110
Computer	Architecture	

Lecture	10:	
Datapath

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Review

• Timing	constraints	for	Finite	State	Machines
– Setup	time,	Hold	Time,	Clock	to	Q	time

• Use	muxes to	select	among	inputs
– S	control	bits	selects	from	2S	inputs
– Each	input	can	be	n-bits	wide,	indep of	S
– Can	implement	muxes hierarchically

• ALU	can	be	implemented	using	a	mux
– Coupled	with	basic	block	elements
– Adder/	Substractor &	AND	&	OR	&	shift

Processor

Control

Datapath

Components	of	a	Computer

3

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	
Data

Read
Data

Processor-Memory	Interface I/O-Memory	Interfaces

Program

Data

The	CPU
• Processor	(CPU):	the	active	part	of	the	
computer	that	does	all	the	work	(data	
manipulation	and	decision-making)

• Datapath:	portion	of	the	processor	that	
contains	hardware	necessary	to	perform	
operations	required	by	the	processor	(the	
brawn)

• Control:	portion	of	the	processor	(also	in	
hardware)	that	tells	the	datapath what	needs	
to	be	done	(the	brain)

4

Datapath	and	Control
• Datapath designed	to	support	data	transfers	
required	by	instructions

• Controller	causes	correct	transfers	to	happen	

Controller
opcode, funct

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s
ALU

D
at

a
m

em
or

y

imm

PC

5

Five	Stages	of	Instruction	Execution
• Stage	1:	Instruction	Fetch

• Stage	2:	Instruction	Decode

• Stage	3:	ALU	(Arithmetic-Logic	Unit)

• Stage	4:	Memory	Access

• Stage	5:	Register	Write

6

Stages	of	Execution	on	Datapath

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1.	Instruction
Fetch

2.	Decode/
Register
Read

3.	Execute 4.	Memory 5.	Register
Write

PC

7

Stages	of	Execution	(1/5)

• There	is	a	wide	variety	of	MIPS	instructions:	so	
what	general	steps	do	they	have	in	common?

• Stage	1:	Instruction	Fetch
– no	matter	what	the	instruction,	the	32-bit	
instruction	word	must	first	be	fetched	from	
memory	(the	cache-memory	hierarchy)

– also,	this	is	where	we	Increment	PC	
(that	is,	PC	=	PC	+	4,	to	point	to	the	next	
instruction:	byte	addressing	so	+	4)

8

Stages	of	Execution	(2/5)
• Stage	2:	Instruction	Decode

– upon	fetching	the	instruction,	we	next	gather	data	
from	the	fields	(decode	all	necessary	instruction	
data)

– first,	read	the	opcode to	determine	instruction	
type	and	field	lengths

– second,	read	in	data	from	all	necessary	registers
• for	add,	read	two	registers
• for	addi,	read	one	register
• for	jal,	no	reads	necessary

9

Stages	of	Execution	(3/5)
• Stage	3:	ALU	(Arithmetic-Logic	Unit)

– the	real	work	of	most	instructions	is	done	here:	
arithmetic	(+,	-,	*,	/),	shifting,	logic	(&,	|),	
comparisons	(slt)

– what	about	loads	and	stores?
• lw $t0,	40($t1)
• the	address	we	are	accessing	in	memory	=	the	
value	in	$t1 PLUS	the	value	40

• so	we	do	this	addition	in	this	stage
10

Stages	of	Execution	(4/5)

• Stage	4:	Memory	Access
– actually	only	the	load	and	store	instructions	do	
anything	during	this	stage;	the	others	remain	idle	
during	this	stage	or	skip	it	all	together

– since	these	instructions	have	a	unique	step,	we	
need	this	extra	stage	to	account	for	them

– as	a	result	of	the	cache	system,	this	stage	is	
expected	to	be	fast

11

Stages	of	Execution	(5/5)

• Stage	5:	Register	Write
– most	instructions	write	the	result	of	some	
computation	into	a	register

– examples:	arithmetic,	logical,	shifts,	loads,	slt
– what	about	stores,	branches,	jumps?

• don’t	write	anything	into	a	register	at	the	end
• these	remain	idle	during	this	fifth	stage	or	skip	it	all	
together

12

Stages	of	Execution	on	Datapath

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1.	Instruction
Fetch

2.	Decode/
Register
Read

3.	Execute 4.	Memory 5.	Register
Write

PC

13

Datapath	Walkthroughs	(1/3)

• add	$r3,$r1,$r2	#	r3	=	r1+r2
– Stage	1:	fetch	this	instruction,	increment	PC
– Stage	2:	decode	to	determine	it	is	an	add,	
then	read	registers	$r1 and	$r2

– Stage	3:	add	the	two	values	retrieved	in	Stage	2
– Stage	4:	idle	(nothing	to	write	to	memory)
– Stage	5:	write	result	of	Stage	3	into	register	$r3

14

in
st

ru
ct

io
n

m
em

or
y

+4
re

gi
st

er
s

ALU

D
at

a
m

em
or

y

imm

2
1
3

reg[1]	+ reg[2]

reg[2]

reg[1]

Example:	add	Instruction
PC

add	r3,	r1,	r2

15

Datapath	Walkthroughs	(2/3)
• slti $r3,$r1,17	
#	if	(r1	<17)	r3	=	1	else	r3	=	0	
– Stage	1:	fetch	this	instruction,	increment	PC
– Stage	2:	decode	to	determine	it	is	an	slti,	
then	read	register	$r1

– Stage	3:	compare	value	retrieved	in	Stage	2	
with	the	integer	17

– Stage	4:	idle
– Stage	5:	write	the	result	of	Stage	3	(1	if	reg source	
was	less	than	signed	immediate,	0	otherwise)	into	
register	$r3

16

in
st

ru
ct

io
n

m
em

or
y

+4
re

gi
st

er
s

ALU

D
at

a
m

em
or

y

imm

3
1
x

reg[1] < 17?

17

reg[1]

Example:	slti Instruction
PC

slti	r3,	r1,	17

17

Datapath	Walkthroughs	(3/3)

• sw $r3,17($r1)	#	Mem[r1+17]=r3
– Stage	1:	fetch	this	instruction,	increment	PC
– Stage	2:	decode	to	determine	it	is	a	sw,	
then	read	registers	$r1 and	$r3

– Stage	3:	add	17 to	value	in	register	$r1 (retrieved	in	
Stage	2)	to	compute	address

– Stage	4:	write	value	in	register	$r3 (retrieved	in	
Stage	2)	into	memory	address	computed	in	Stage	3

– Stage	5:	idle	(nothing	to	write	into	a	register)

18

in
st

ru
ct

io
n

m
em

or
y

+4

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

3
1
x

reg[1] +	17

17

reg[1]

MEM[r1+17]	= r3

reg[3]

Example:	sw Instruction
PC

sw r3,	17(r1)

19

Why	Five	Stages?	(1/2)

• Could	we	have	a	different	number	of	stages?
– Yes,	other	ISAs	have	different	natural	number	of	
stages

• Why	does	MIPS	have	five	if	instructions	tend	
to	idle	for	at	least	one	stage?
– Five	stages	are	the	union	of	all	the	operations	
needed	by	all	the	instructions.

– One	instruction	uses	all	five	stages:	the	load

20

Why	Five	Stages?	(2/2)
• lw $r3,17($r1)	#	r3=Mem[r1+17]

– Stage	1:	fetch	this	instruction,	increment	PC
– Stage	2:	decode	to	determine	it	is	a	lw,
then	read	register	$r1

– Stage	3:	add	17 to	value	in	register	$r1 (retrieved	
in	Stage	2)

– Stage	4:	read	value	from	memory	address	
computed	in	Stage	3

– Stage	5:	write	value	read	in	Stage	4	into	
register	$r3

21

ALU

in
st

ru
ct

io
n

m
em

or
y

+4

re
gi

st
er

s

D
at

a
m

em
or

y

imm

3
1
x

reg[1] +	17
reg[1]

MEM[r1+17]

Example:	lw Instruction
PC

lw r3,	17(r1)

22

17

Question

• Which	type	of	MIPS	instruction	is	active	in	the	
fewest	stages?

A:	LW
B:	BEQ
C:	J
D:	JAL
E:	ADDU

23

Datapath	and	Control
• Datapath designed	to	support	data	transfers	
required	by	instructions

• Controller	causes	correct	transfers	to	happen	

Controller
opcode, funct

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s
ALU

D
at

a
m

em
or

y

imm

PC

24

Processor	Design:	5	steps
Step	1:	Analyze	instruction	set	to	determine datapath
requirements

– Meaning	of	each	instruction	is	given	by	register	transfers
– Datapath must	include	storage	element	for	ISA	registers
– Datapath must	support	each	register	transfer
Step	2:	Select	set	of	datapath components	&	establish	
clock	methodology

Step	3:	Assemble	datapath components	that	meet	the	
requirements

Step	4:	Analyze	implementation	of	each	instruction	to	
determine	setting	of	control	points	that	realizes	the	
register	transfer

Step	5:	Assemble	the	control	logic
25

• All	MIPS	instructions	are	32	bits	long.		3	formats:

– R-type

– I-type

– J-type

• The	different	fields	are:
– op:	operation	(“opcode”)	of	the	instruction
– rs,	rt,	rd:	the	source	and	destination	register	specifiers
– shamt:	shift	amount
– funct:	selects	the	variant	of	the	operation	in	the	“op”	field
– address	/	immediate:	address	offset	or	immediate	value
– target	address:	target	address	of	jump	instruction	

op target address
02631

6 bits 26 bits

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt address/immediate
016212631

6 bits 16 bits5 bits5 bits

The	MIPS	Instruction	Formats

26

• ADDU	and	SUBU
– addu rd,rs,rt
– subu rd,rs,rt

• OR	Immediate:
– ori rt,rs,imm16

• LOAD	and	
STORE	Word
– lw rt,rs,imm16
– sw rt,rs,imm16

• BRANCH:
– beq rs,rt,imm16

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

The	MIPS-lite	Subset

27

• Colloquially	called	“Register	Transfer	Language”
• RTL	gives	the	meaning of	the	instructions
• All	start	by	fetching	the	instruction	itself
{op , rs , rt , rd , shamt , funct} ← MEM[PC]

{op , rs , rt , Imm16} ← MEM[PC]

Inst Register Transfers

ADDU R[rd] ← R[rs] + R[rt]; PC ← PC + 4

SUBU R[rd] ← R[rs] – R[rt]; PC ← PC + 4

ORI R[rt] ← R[rs] | zero_ext(Imm16); PC ← PC + 4

LOAD R[rt] ← MEM[R[rs] + sign_ext(Imm16)]; PC ← PC + 4

STORE MEM[R[rs] + sign_ext(Imm16)] ← R[rt]; PC ← PC + 4

BEQ if (R[rs] == R[rt])
PC ← PC + 4 + {sign_ext(Imm16), 2’b00}

else PC ← PC + 4

Register	Transfer	Level	(RTL)

28

Step	1:	Requirements	of	the	
Instruction	Set

• Memory	(MEM)
– Instructions	&	data	(will	use	one	for	each)

• Registers	(R:	32,	32-bit	wide	registers)
– Read	RS
– Read	RT
– Write	RT	or	RD

• Program	Counter	(PC)
• Extender	(sign/zero	extend)
• Add/Sub/OR/etc unit	for	operation	on	register(s)	or	

extended	immediate	(ALU)
• Add	4	(+	maybe	extended	immediate)	to	PC
• Compare	registers?

29

Step	2:	Components	of	the	
Datapath

• Combinational	Elements
• Storage	Elements	+	Clocking	Methodology
• Building	Blocks

32

32

A

B
32

Sum

CarryOut

CarryIn

Adder

32
A

B
32

Y
32

Select

M
UX

Multiplexer

32

32

A

B
32

Result

OP

ALU

ALU

Adder

30

ALU	Needs	for	MIPS-lite	+	Rest	of	MIPS
• Addition,	subtraction,	logical	OR,	==:

ADDU R[rd] = R[rs] + R[rt]; ...
SUBU R[rd] = R[rs] – R[rt]; ...
ORI R[rt] = R[rs] | zero_ext(Imm16)...

BEQ if (R[rs] == R[rt])...

• Test	to	see	if	output	==	0	for	any	ALU	
operation	gives	==	test.	How?

• P&H	also	adds	AND,	Set	Less	Than	(1	if	A	<	B,	0	
otherwise)	

• ALU	follows	Chapter	5
31

Storage	Element:	Idealized	Memory
• “Magic”	Memory

– One	input	bus:	Data	In
– One	output	bus:	Data	Out

• Memory	word	is	found	by:
– For	Read:	Address	selects	the	word	to	put	on	Data	Out
– For	Write:	Set	Write	Enable	=	1:	address	selects	the	
memory	word	to	be	written	via	the	Data	In	bus

• Clock	input	(CLK)	
– CLK	input	is	a	factor	ONLY	during	write	operation
– During	read	operation,	behaves	as	a	combinational	logic	
block:	Address	valid	=> Data	Out	valid	after	“access	time”

Clk

Data	In

Write	Enable

32 32
DataOut

Address

32

Storage	Element:	Register	(Building	Block)

• Similar	to	D	Flip	Flop	except
– N-bit	input	and	output
– Write	Enable	input

• Write	Enable:
– Negated	(or	deasserted)	(0):	Data	Out	will	not	
change

– Asserted	(1):	Data	Out	will	become	Data	In	on	
positive	edge	of	clock

clk

Data	In

Write	Enable

N N

Data	Out

33

Storage	Element:	Register	File
• Register	File	consists	of	32	registers:

– Two	32-bit	output	busses:
busA	and	busB

– One	32-bit	input	bus:	busW
• Register	is	selected	by:

– RA	(number)	selects	the	register	to	put	on	busA	(data)
– RB	(number)	selects	the	register	to	put	on	busB	(data)
– RW	(number)	selects	the	register	to	be		written

via	busW	(data)	when	Write	Enable	is	1
• Clock	input	(clk)	

– Clk	input	is	a	factor	ONLY	during	write	operation
– During	read	operation,	behaves	as	a	combinational	logic	block:

• RA	or	RB	valid	Þ busA	or	busB	valid	after	“access	time.”

Clk

busW

Write	Enable

32
32

busA

32
busB

5 5 5
RW RA RB

32	x	32-bit
Registers

34

Step	3a:	Instruction	Fetch	Unit
• Register	Transfer	
Requirements	=>
Datapath Assembly

• Instruction	Fetch
• Read	Operands	and	Execute	
Operation

• Common	RTL	operations
– Fetch	the	Instruction:	
mem[PC]

– Update	the	program	counter:
• Sequential	Code:
PC	← PC	+	4	

• Branch	and	Jump:
PC	←“something	else” 32

Instruction	WordAddress

Instruction
Memory

PCclk

Next	Address
Logic

35

• R[rd] = R[rs] op R[rt] (addu rd,rs,rt)
– Ra,	Rb,	and	Rw come	from	instruction’s	Rs,	Rt,	and	Rd	fields

– ALUctr and RegWr:	control	logic	after	decoding	the	instruction

• …	Already	defined	the	register	file	&	ALU													

Step	3b:	Add	&	Subtract

32
Result

ALUctr

clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32	x	32-bit
Registers

Rs RtRd

ALU
op rs rt rd shamt funct

061116212631

6	bits 6	bits5	bits5	bits5	bits5	bits

36

Clocking	Methodology

• Storage	elements	clocked	by	same	edge
• Flip-flops	(FFs)	and	combinational	logic	have	some	delays	

– Gates:	delay	from	input	change	to	output	change	
– Signals	at	FF	D	input	must	be	stable	before	active	clock	edge	to	allow	

signal	to	travel	within	the	FF	(set-up	time),	and	we	have	the	usual	
clock-to-Q	delay

• “Critical	path” (longest	path	through	logic)	determines	length	
of	clock	period

Clk

.

.

.

.

.

.

.

.

.

.

.

.

37

Register-Register	Timing:	
One	Complete	Cycle	(Add/Sub)

Clk

PC
Rs,	Rt,	Rd,
Op,	Func

ALUctr

Instruction	Memory	Access	Time

Old	Value New	Value

RegWr Old	Value New	Value

Delay	through	Control	Logic

busA,	B
Register	File	Access	Time

Old	Value New	Value

busW
ALU	Delay

Old	Value New	Value

Old	Value New	Value

New	ValueOld	Value

Register	Write
Occurs	Here32

ALUctr

clk

busW

RegWr

32busA

32

busB

5 5

Rw Ra Rb

RegFile

Rs Rt

ALU

5
Rd

38

Putting	it	All	Together:A Single	Cycle	Datapath

imm16

32

ALUctr

clk

busW

RegWr

32

32busA

32

busB

5 5

Rw Ra Rb

RegFile

Rs

Rt

Rt

Rd
RegDst

Extender

3216
imm16

ALUSrcExtOp

MemtoReg

clk

Data In
32

MemWr
Equal

Instruction<31:0><21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

clk

PC

00

4

nPC_sel

PC
 Ext

Adr

Inst
Memory

A
dder

A
dder

M
ux

01

0

1

=A
LU 0

1
WrEn Adr

Data
Memory

5

39

In	Conclusion

• “Divide	and	Conquer”	to	build	complex	logic	
blocks	from	smaller	simpler	pieces	(adder)

• Five	stages	of	MIPS	instruction	execution
• Mapping	instructions	to	datapath components
• Single	long	clock	cycle	per	instruction

40

