
CS	110
Computer	Architecture	
Review	for	Midterm	I

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Midterm	I

• Date:	Tuesday,	Apr.	11	
• Time:	10:15	- 12:15	(normal	lecture	slot)
• Venue:	Teaching	Center	201	+	203
• One	empty	seat	between	students
• Closed	book:
– You	can	bring	one A4	page	with	notes	(both	sides;	
English	preferred;	Chinese	is	OK):	Write	your	
Chinese	and	Pinyin name	on	the	top!	

– You	will	be	provided	with	the	MIPS	”green	sheet”
– No	other	material	allowed!

2

Midterm	I
• Switch	cell	phones	off!	(not	silent	mode	– off!)
– Put	them	in	your	bags.	

• Bags	under	the	table.	Nothing	except	paper,	pen,	
1	drink,	1	snack	on	the	table!

• No	other	electronic	devices	are	allowed!
– No	ear	plugs,	music,	smartwatch…

• Anybody	touching	any	electronic	device	will	FAIL
the	course!

• Anybody	found	cheating	(copy	your	neighbors	
answers,	additional	material,	...)	will	FAIL the	
course!

3

Midterm	I

• Ask	questions	today!
• Discussion	is	Q&A	session
– Suggest	topics	for	review	in	piazza!
– Next	week	example	questions.

• This	review	session	does	not/	can	not	cover	all	
possible	topics!

• No	Lab	next	week… No	HW	next	week…
4

Content

• Main	topics
– Number	representation
– C
–MIPS

• Plus	general	”Computer	Architecture”	
knowledge

• Everything	till	lecture	8	CALL	– including	
lecture	8

5

First	finish	last	weeks	lecture…

6

Hyperthreading

• Duplicate	all	elements	that	hold	the	state	(registers)
• Use	the	same	CL	blocks
• Use	muxes to	select	which	state	to	use	every	clock	cycle
• =>	run	2	totally	independent	threads	(same	memory	->	shared	memory!)
• Speedup?	

– No	obvious	speedup	– make	use	of	CL	blocks	in	case	of	unavailable	resources	(e.g.	wait	
for	memory) 7

in
st
ru
ct
io
n

m
em

or
y

+4

rt
rs
rd

re
gi
st
er
s

ALU

Da
ta

m
em

or
y

imm

1.	Instruction
Fetch

2.	Decode/
Register	Read

3.	Execute 4.	Memory 5.	Write
Back

re
gi
st
er
s

PC
PC

Intel	Nehalem	i7
• Hyperthreading:

– About	5%	die	area
– Up	to	30%	speed	gain

(BUT	also	<	0%	possible)
• Pipeline:	20-24	stages!
• Out-of-order	execution

1. Instruction	fetch.
2. Instruction	dispatch	to	an	instruction	queue
3. Instruction:	Wait	in	queue	until	input	

operands	are	available	=>	instruction	can	
leave	queue	before	earlier,	older	instructions.

4. The	instruction	is	issued	to	the	appropriate	
functional	unit	and	executed	by	that	unit.

5. The	results	are	queued.
6. Write	to	register	only	after	all	older	

instructions	have	their	results	written.

8

Old	School	Machine	Structures

9

I/O	systemProcessor

Compiler
Operating
System
(Mac	OSX)

Application	(ex:	browser)

Digital	Design
Circuit	Design

Instruction	Set
Architecture

Datapath	&	Control	

transistors

MemoryHardware

Software Assembler

New-School	Machine	Structures
(It’s	a	bit	more	complicated!)

• Parallel	Requests
Assigned	to	computer
e.g.,	Search	“cats”

• Parallel	Threads
Assigned	to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	instructions

• Parallel	Data
>1	data	item	@	one	time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	functioning	in	

parallel	at	same	time
10

Smart
Phone

Warehouse
-Scale	

Computer

Software								Hardware

Harness
Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															(Cache)

Input/Output

Computer

Main	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Project	1

Project	3

Project	2

6	Great	Ideas	in	Computer	Architecture

1. Abstraction
(Layers	of	Representation/Interpretation)

2. Moore’s	Law	(Designing	through	trends)
3. Principle	of	Locality	(Memory	Hierarchy)
4. Parallelism
5. Performance	Measurement	&	Improvement
6. Dependability	via	Redundancy

11

#2:	Moore’s	Law

12

Gordon	Moore
Intel	Cofounder

Predicts:	
2X	Transistors	/	chip	

every	2	years

Great	Idea	#3:	Principle	of	Locality/
Memory	Hierarchy

3/30/17 13

Great	Idea	#4:	Parallelism

14

Great	Idea	#5:	Performance	
Measurement	and	Improvement

• Tuning	application	to	underlying	hardware	to	
exploit:
– Locality
– Parallelism
– Special	hardware	features,	like	specialized	instructions	
(e.g.,	matrix	manipulation)

• Latency
– How	long	to	set	the	problem	up
– How	much	faster	does	it	execute	once	it	gets	going
– It	is	all	about	time	to	finish

15

Great	Idea	#6:	
Dependability	via	Redundancy

• Redundancy	so	that	a	failing	piece	doesn’t	
make	the	whole	system	fail

16

1+1=2 1+1=2 1+1=1

1+1=2
2	of	3	agree

FAIL!

Increasing	transistor	density	reduces	the	cost	of	redundancy

Key	Concepts
• Inside	computers,	everything	is	a	number
• But	numbers	usually	stored	with	a	fixed	size
– 8-bit	bytes,	16-bit	half	words,	32-bit	words,	64-bit	
double	words,	…

• Integer	and	floating-point	operations	can	lead	
to	results	too	big/small	to	store	within	their	
representations:	overflow/underflow

17

Number	Representation

18

Number	Representation

• Value	of	i-th digit	is	d × Baseiwhere	i starts	at	0	
and	increases	from	right	to	left:

• 12310	=	110 x 10102 +	210 x 10101 +	310 x 10100

=	1x10010 +	2x1010 +	3x110
=	10010 +	2010 +	310
=	12310

• Binary	(Base	2),	Hexadecimal	(Base	16),	Decimal	
(Base	10)	different	ways	to	represent	an	integer
– We	use	1two,	5ten,	10hex to	be	clearer	

(vs.	12,				48,			510,		1016)

19

Number	Representation

• Hexadecimal	digits:	
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

• FFFhex =	15tenx	16ten2 +	15tenx	16ten1 +	15tenx	16ten0
=	3840ten +	240ten +	15ten
=	4095ten

• 1111	1111	1111two =	FFFhex =	4095ten
• May	put	blanks	every	group	of	binary,	octal,	or	
hexadecimal	digits	to	make	it	easier	to	parse,	like	
commas	in	decimal

20

Signed	Integers	and	
Two’s-Complement	Representation

• Signed	integers	in	C;	want	½	numbers	<0,	want	½	
numbers	>0,	and	want	one	0	

• Two’s	complement	treats	0	as	positive,	so	32-bit	
word	represents	232	integers	from
-231	(–2,147,483,648)	to	231-1	(2,147,483,647)
– Note:	one	negative	number	with	no	positive	version
– Book	lists	some	other	options,	all	of	which	are	worse
– Every	computer	uses	two’s	complement	today

• Most-significant	bit	(leftmost)	is	the	sign	bit,	
since	0	means	positive	(including	0),	1	means	
negative
– Bit	31	is	most	significant,	bit	0	is	least	significant

21

Two’s-Complement	Integers
0000	0000	0000	0000	0000	0000	0000	0000two =	0ten
0000	0000	0000	0000	0000	0000	0000	0001two =	1ten
0000	0000	0000	0000	0000	0000	0000	0010two =	2ten

...	 ...
0111	1111	1111	1111	1111	1111	1111	1101two =	2,147,483,645ten
0111	1111	1111	1111	1111	1111	1111	1110two =	2,147,483,646ten
0111	1111	1111	1111	1111	1111	1111	1111two =	2,147,483,647ten
1000	0000	0000	0000	0000	0000	0000	0000two =	–2,147,483,648ten
1000	0000	0000	0000	0000	0000	0000	0001two =	–2,147,483,647ten
1000	0000	0000	0000	0000	0000	0000	0010two =	–2,147,483,646ten

...	 ...
1111	1111	1111	1111	1111	1111	1111	1101two =	–3ten
1111	1111	1111	1111	1111	1111	1111	1110two =	–2ten
1111	1111	1111	1111	1111	1111	1111	1111two =	–1ten

22

Sign	Bit

Ways	to	Make	Two’s	Complement
• For	N-bit	word,	complement	to	2tenN

– For	4	bit	number	3ten=0011two,	two’s	complement	

(i.e.	-3ten)	would	be	

16ten-3ten=13ten or	10000two – 0011two =	1101two

23

• Here	is	an	easier	way:
– Invert	all	bits	and	add	1

– Computers	actually	do	it	like	this,	too

0011two

1100two
+							1two

3ten

1101two

Bitwise	complement

-3ten

Two’s-Complement	Examples

• Assume	for	simplicity	4	bit	width,	-8	to	+7	
represented

24

0011
0010

3
+2
5 0101

0011
1110

3
+	(-2)

1 1	0001

0111
0001

7
+1
-8 1000
Overflow!

1101
1110

-3
+	(-2)

-5 1	1011

1000
1111

-8
+	(-1)
+7 1	0111

Carry	into	MSB	=	
Carry	Out	MSB

Carry	into	MSB	=	
Carry	Out	MSB

Overflow!

Overflow	when	
magnitude	of	result	
too	big	small	to	fit	
into	result	
representation

Carry	in	=	carry	from	less	significant	bits
Carry	out	=	carry	to	more	significant	bits

0	to	+31

-16	to	+15

-32	to	+31☐

☐

☐

☐

25

Suppose	we	had	a	5-bit	word.	What	
integers	can	be	represented	in	two’s	
complement?

0	to	+31

-16	to	+15

-32	to	+31☐

☐

☐

☐

26

Suppose	we	had	a	5-bit	word.	What	
integers	can	be	represented	in	two’s	
complement?

Processor

Control

Datapath

Components	of	a	Computer

27

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	
Data

Read
Data

Processor-Memory	Interface I/O-Memory	Interfaces

Program

Data

C	Programming

28

Quiz:	Pointers
void foo(int *x, int *y)
{ int t;

if (*x > *y) { t = *y; *y = *x; *x = t; }
}
int a=3, b=2, c=1;
foo(&a, &b);
foo(&b, &c);
foo(&a, &b);
printf("a=%d b=%d c=%d\n", a, b, c);

29

A:	a=3 b=2 c=1
B:	a=1 b=2 c=3
C:	a=1 b=3 c=2
D:	a=3 b=3 c=3
E:	a=1 b=1 c=1

Result	is:

30

Arrays	and	Pointers
int
foo(int array[],

unsigned int size)
{

…
printf(“%d\n”, sizeof(array));

}

int
main(void)
{

int a[10], b[5];
int c[] = {1, 3, 2, 5, 6};
… foo(a, 10)… foo(c, 5) …
printf(“%d\n”, sizeof(c));

}

What	does	this	print?

What	does	this	print?

8

20

...	because	array is	really
a	pointer	(and	a	pointer	is	
architecture	dependent,	but		
likely	to	be	8	on	modern
machines!)

Quiz:
int x[] = { 2, 4, 6, 8, 10 };
int *p = x;
int **pp = &p;
(*pp)++;
(*(*pp))++;
printf("%d\n", *p);

31

Result	is:
A:	2
B:	3
C:	4
D:	5
E:	None	of	the	above

C	Memory	
Management

• Program’s	address	space
contains	4	regions:
– stack:	local	variables	inside	

functions,	grows	downward
– heap:	space	requested	for	

dynamic	data	via	malloc();	
resizes	dynamically,	grows	
upward

– static	data:	variables	declared	
outside	functions,	does	not	grow	
or	shrink.	Loaded	when	program	
starts,	can	be	modified.

– code:	loaded	when	program	
starts,	does	not	change

code

static	data

heap

stack~	FFFF	FFFFhex

~	0000	0000hex

3232

Memory	Address
(32	bits	assumed	here)

The	Stack
• Every	time	a	function	is	called,	a	new	frame	

is	allocated	on	the	stack
• Stack	frame	includes:

– Return	address	(who	called	me?)
– Arguments
– Space	for	local	variables

• Stack	frames	contiguous	
blocks	of	memory;	stack	pointer	
indicates	start	of	stack	frame

• When	function	ends,	stack	frame	is	tossed	
off	the	stack;	frees	memory	for	future	stack	
frames

• We’ll	cover	details	later	for	MIPS	processor fooD frame

fooB frame

fooC frame

fooA frame

Stack	Pointer
33

fooA() { fooB(); }
fooB() { fooC(); }
fooC() { fooD(); }

Question!
int x = 2;
int result;

int foo(int n)
{ int y;

if (n <= 0) { printf("End case!\n"); return 0; }
else
{ y = n + foo(n-x);

return y;
}

}
result = foo(10);

Right	after	the	printf executes	but	before	the	return 0,	how	many	copies	of	x and	y are	there
allocated	in	memory?

A:	#x	=	1,	#y	=	1
B:	#x	=	1,	#y	=	5
C:	#x	=	5,	#y	=	1
D:	#x	=	1,	#y	=	6
E:	#x	=	6,	#y	=	6

34

Faulty	Heap	Management

• What	is	wrong	with	this	code?
• Memory	leak!

int foo() {
int *value = malloc(sizeof(int));
*value = 42;
return *value;

}

35

Using	Memory	You	Don’t	Own
• What	is	wrong	with	this	code?

int* init_array(int *ptr, int new_size) {
ptr = realloc(ptr, new_size*sizeof(int));
memset(ptr, 0, new_size*sizeof(int));
return ptr;

}

int* fill_fibonacci(int *fib, int size) {
int i;
init_array(fib, size);
/* fib[0] = 0; */ fib[1] = 1;
for (i=2; i<size; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib;

}
36

Using	Memory	You	Don’t	Own
• Improper	matched	usage	of	mem handles

int* init_array(int *ptr, int new_size) {
ptr = realloc(ptr, new_size*sizeof(int));
memset(ptr, 0, new_size*sizeof(int));
return ptr;

}

int* fill_fibonacci(int *fib, int size) {
int i;
/* oops, forgot: fib = */ init_array(fib, size);
/* fib[0] = 0; */ fib[1] = 1;
for (i=2; i<size; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib;

}
37

What	if	array	is	moved	to	
new	location?

Remember:	reallocmay	move	entire	block

And	In	Conclusion,	…
• Pointers	are	an	abstraction	of	machine	memory	
addresses

• Pointer	variables	are	held	in	memory,	and	pointer	
values	are	just	numbers	that	can	be	manipulated	
by	software

• In	C,	close	relationship	between	array	names	and	
pointers

• Pointers	know	the	type	of	the	object	they	point	
to	(except	void	*)

• Pointers	are	powerful	but	potentially	dangerous

38

And	In	Conclusion,	…

• C	has	three	main	memory	segments	in	which	
to	allocate	data:
– Static	Data:	Variables	outside	functions
– Stack:	Variables	local	to	function
– Heap:		Objects	explicitly	malloc-ed/free-d.

• Heap	data	is	biggest	source	of	bugs	in	C	code

39

In	the	News… Intel	Hyper-Scale

40

Intel’s	Moores Law	interpretation:	
Cost	per	transistor	halves	every	2	years

41

Hyperscaling

42

Multiple	dies	on	one	carrier

43

MIPS

44

Addition	and	Subtraction	of	Integers	
Example	1

• How	to	do	the	following	C	statement?
a	=	b	+	c	+	d	- e;	
b	→	$s1;		c	→ $s2;	d	→ $s3;	e	→ $s4;	a	→ $s0

• Break	into	multiple	instructions
add $t0, $s1, $s2 # temp = b + c
add $t0, $t0, $s3 # temp = temp + d
sub $s0, $t0, $s4 # a = temp - e

• A	single	line	of	C	may	break	up	into	several	lines	of	MIPS.
• Notice	the	use	of	temporary	registers	– don’t	want	to	modify	
the	variable	registers	$s
• Everything	after	the	hash	mark	on	each	line	is	ignored	
(comments)

45

a	=	((b	+	c)	+	d)	- e;

Overflow handling in MIPS
• Some	languages	detect	overflow	(Ada),	
some	don’t	(most	C	implementations)
•MIPS	solution	is	2	kinds	of	arithmetic	instructions:
– These	cause	overflow	to	be	detected

• add	(add)
• add	immediate	(addi)	
• subtract	(sub)

– These	do	not	cause	overflow	detection	
• add	unsigned	(addu)
• add	immediate	unsigned	(addiu)	
• subtract	unsigned	(subu)

• Compiler	selects	appropriate	arithmetic
–MIPS	C	compilers	produce	addu,	addiu,	subu

46

Question:
We want to translate *x = *y +1 into MIPS
(x, y int pointers stored in: $s0 $s1)

A: addi $s0,$s1,1

B: lw $s0,1($s1)
sw $s1,0($s0)

C: lw $t0,0($s1)
addi $t0,$t0,1
sw $t0,0($s0)

D: sw $t0,0($s1)
addi $t0,$t0,1
lw $t0,0($s0)

E: lw $s0,1($t0)
sw $s1,0($t0)

47

Processor

Control

Datapath

Executing	a	Program

48

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory

BytesInstruction
Address

Read	
Instruction	
Bits

Program

Data

• The	PC	(program	counter)	is	internal	register	inside	processor	holding	byte
address	of	next	instruction	to	be	executed.

• Instruction	is	fetched	from	memory,	then	control	unit	executes	instruction	
using	datapath and	memory	system,	and	updates	program	counter	(default	is	
add	+4	bytes	to	PC,	to	move	to	next	sequential	instruction)

Question!

What	is	the	code	above?
A:	 while	loop
B:	 do	…	while	loop
C:	 for	loop
D:	 A	or	C
E:	 Not	a	loop

addi $s0,$zero,0
Start: slt $t0,$s0,$s1

beq $t0,$zero,Exit
sll $t1,$s0,2
addu $t1,$t1,$s5
lw $t1,0($t1)
add $s4,$s4,$t1
addi $s0,$s0,1
j Start

Exit:

49

MIPS	Function	Call	Conventions

• Registers	faster	than	memory,	so	use	them
• $a0–$a3:	four	argument	registers	to	pass	
parameters	($4	- $7)

• $v0,$v1:	two	value	registers	to	return	
values	($2,$3)

• $ra:	one	return	address	register	to	return	to	
the	point	of	origin	($31)

50

Instruction	Support	for	Functions	(1/4)

... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {
return x+y;

}
address (shown in decimal)
1000
1004
1008
1012
1016
…
2000
2004

C

M
I
P
S

In	MIPS,	all	instructions	are	4	
bytes,	and	stored	in	memory	
just	like	data.	So	here	we	show	
the	addresses	of	where	the	
programs	are	stored.

51

Instruction	Support	for	Functions	(2/4)

... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {
return x+y;

}
address (shown in decimal)
1000 add $a0,$s0,$zero # x = a
1004 add $a1,$s1,$zero # y = b
1008 addi $ra,$zero,1016 # $ra=1016
1012 j sum # jump to sum
1016 … # next instruction
…
2000 sum: add $v0,$a0,$a1
2004 jr $ra # new instr. “jump register”

C

M
I
P
S

52

Instruction	Support	for	Functions	(3/4)

... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {
return x+y;

}

2000 sum: add $v0,$a0,$a1
2004 jr $ra # new instr. “jump register”

• Question:	Why	use jr here?	Why	not use	j?

• Answer:	summight	be	called	by	many	places,	so	we	can’t	
return	to	a	fixed	place.	The	calling	proc	to	summust	be	able	
to	say	“return	here”	somehow.

C

M
I
P
S

53

Instruction	Support	for	Functions	(4/4)
• Single	instruction	to	jump	and	save	return	address:	
jump	and	link	(jal)

• Before:
1008 addi $ra,$zero,1016 # $ra=1016
1012 j sum # goto sum

• After:
1008 jal sum # $ra=1012,goto sum

• Why	have	a	jal?
– Make	the	common	case	fast:	function	calls very	common.	
– Don’t	have	to	know	where code	is in	memory	with	jal!

54

Question

• Which	statement	is	FALSE?

55

B:	 jal saves	PC+1	in	$ra

C:	 The	callee can	use	temporary	registers
($ti)	without	saving	and	restoring	them

D:	 The	caller	can	rely	on	save	registers	($si)
without	fear	of	callee changing	them

A:		MIPS	uses	jal to	invoke	a	function	and
jr to	return	from	a	function	

Stack	Before,	During,	After	Call

56

Basic	Structure	of	a	Function

entry_label:
addi $sp,$sp, -framesize
sw $ra, framesize-4($sp) # save $ra
save other regs if need be

...

restore other regs if need be
lw $ra, framesize-4($sp) # restore $ra
addi $sp,$sp, framesize
jr $ra

Epilogue

Prologue

Body (call other functions…)

ra

memory

57

Instruction	Formats

• I-format:	used	for	instructions	with	
immediates,	lw and	sw (since	offset	counts	as	
an	immediate),	and	branches	(beq and	bne)	
– (but	not	the	shift	instructions;	later)

• J-format:	used	for	j and	jal
• R-format:	used	for	all	other	instructions
• It	will	soon	become	clear	why	the	instructions	
have	been	partitioned	in	this	way

58

R-Format	Instructions	(1/5)

• Define	“fields”	of	the	following	number	of	bits	
each:	6	+	5	+	5	+	5	+	5	+	6	=	32

• For	simplicity,	each	field	has	a	name:

• Important:	On	these	slides	and	in	book,	each	field	is	
viewed	as	a	5- or	6-bit	unsigned	integer,	not	as	part	of	a	
32-bit	integer
– Consequence:	5-bit	fields	can	represent	any	number	0-31,	while	

6-bit	fields	can	represent	any	number	0-63

6 5 5 5 65

opcode rs rt rd functshamt

59

I-Format	Instructions	(2/4)
• Define	“fields”	of	the	following	number	of	bits	each:	
6	+	5	+	5	+	16	=	32	bits

– Again,	each	field	has	a	name:

– Key	Concept:	Only	one	field	is	inconsistent	with	R-format.		
Most	importantly,	opcode is	still	in	same	location.

6 5 5 16

opcode rs rt immediate

60

I-Format	Example	(2/2)
• MIPS	Instruction:

addi $21,$22,-50

8 22 21 -50

001000 10110 10101 1111111111001110

Decimal/field representation:

Binary/field representation:

hexadecimal representation: 22D5 FFCEhex

61

Branch	Example	(1/2)

• MIPS	Code:
Loop: beq $9,$0,End

addu $8,$8,$10
addiu $9,$9,-1
j Loop

End:

• I-Format	fields:
opcode =	4 (look	up	on	Green	Sheet)
rs =	9 (first	operand)
rt =	0 (second	operand)
immediate =	???

62

Start	counting	from	
instruction	AFTER	the	
branch

1
2
3

3

Branch	Example	(2/2)

• MIPS	Code:
Loop: beq $9,$0,End

addu $8,$8,$10
addiu $9,$9,-1
j Loop

End:

Field	representation	(decimal):

Field	representation	(binary):

63

4 9 0 3
31 0

000100 01001 00000 0000000000000011
31 0

J-Format	Instructions	(2/4)

• Define	two	“fields”	of	these	bit	widths:

• As	usual,	each	field	has	a	name:

• Key	Concepts:
– Keep	opcode field	identical	to	R-Format	and	
I-Format	for	consistency

– Collapse	all	other	fields	to	make	room	for	large	
target	address 64

6 26
31 0

opcode target address
31 0

Summary
• I-Format: instructions	with	immediates,	
lw/sw (offset	is	immediate),	and	beq/bne
– But	not	the	shift	instructions
– Branches	use	PC-relative	addressing

• J-Format: j and	jal (but	not	jr)
– Jumps	use	absolute	addressing

• R-Format: all	other	instructions

65

opcode rs rt immediateI:

opcode target addressJ:

opcode functrs rt rd shamtR:

Assembler	Pseudo-Instructions
• Certain	C	statements	are	implemented	
unintuitively	in	MIPS
– e.g.	assignment	(a=b)	via	add	$zero

• MIPS	has	a	set	of	“pseudo-instructions”	to	make	
programming	easier
– More	intuitive	to	read,	but	get	translated	into	actual	
instructions	later

• Example:
move dst,src

translated	into
addi dst,src,0

66

Multiply	and	Divide
• Example	pseudo-instruction:

mul $rd,$rs,$rt
– Consists	of	mult which	stores	the	output	in	special	hi	and	
lo	registers,	and	a	move	from	these	registers	to	$rd

mult $rs,$rt
mflo $rd

• mult and	div have	nothing	important	in	the	rd field	
since	the	destination	registers	are	hi and	lo

• mfhi and	mflo have	nothing	important	in	the	rs and	
rt fields	since	the	source	is	determined	by	the	
instruction	(see	COD)

67

Question

Which	of	the	following	place	the	address	of	
LOOP	in	$v0?
1) la $t1, LOOP

lw $v0, 0($t1)

2) jal LOOP
LOOP: addu $v0, $ra, $zero

3) la $v0, LOOP

68

1 2 3
A)T, T, T
B)T, T, F
C)F, T, T
D)F, T, F
E)F, F, T

Steps	in	compiling	a	C	program
§ Compiler converts a single HLL file

into a single assembly language file.
§ Assembler removes pseudo-

instructions, converts what it can to
machine language, and creates a
checklist for the linker (relocation
table). A .s file becomes a .o file.
ú Does 2 passes to resolve addresses,

handling internal forward references

§ Linker combines several .o files and
resolves absolute addresses.
ú Enables separate compilation, libraries

that need not be compiled, and
resolves remaining addresses

§ Loader loads executable into memory
and begins execution.

69

Pseudo-instruction	Replacement
• Assembler	treats	convenient	variations	of	machine	
language	instructions	as	if	real	instructions
Pseudo: Real:
subu $sp,$sp,32 addiu $sp,$sp,-32
sd $a0, 32($sp) sw $a0, 32($sp)

sw $a1, 36($sp)
mul $t7,$t6,$t5 mult $t6,$t5

mflo $t7
addu $t0,$t6,1 addiu $t0,$t6,1
ble $t0,100,loop slti $at,$t0,101

bne $at,$0,loop
la $a0, str lui $at,left(str)

ori $a0,$at,right(str)

70

Question
At	what	point	in	process	are	all	the	machine	
code	bits	generated	for	the	following	assembly	
instructions:
1)	addu $6, $7, $8
2)	jal fprintf

A:	1)	&	2)	After	compilation
B:	1)	After	compilation,		2)	After	assembly
C:	1)	After	assembly,							2)	After	linking
D:	1)	After	assembly,						2)	After	loading
E:	1)	After	compilation,		2)	After	linking

71

