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#include <stdlib.h>

int fib(int n) {
return
fib(n-1) +
fib(n-2);

}

.foo
lw $t0, 4($r0)
addi $t1, $t0, 3
beq $t1, $t2, foo
nop
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So	how	is	this	any	different?
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Memory

Adding	I/O
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CPU+$s,	etc.
Memory

Raspberry	Pi	(<	300RMB	on	jd.com)

5

Storage	I/O
(Micro	SD	Card)
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It’s	a	real	computer!
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But	wait…
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• That’s	not	the	same!	When	we	run	MARS,	it	only	
executes	one	program	and	then	stops.

• When	I	switch	on	my	computer,	I	get	this:

Yes,	but	that’s	just	software!	The	Operating	System	(OS)



Well,	“just	software”

• The	biggest	piece	of	software	on	your	machine?
• How	many	lines	of	code?	These	are	guesstimates:
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Codebases	(in	millions	of	lines	of	code).	CC	BY-NC	3.0	— David	McCandless	©	2013
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/	



What	does	the	OS	do?
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• One	of	the	first	things	that	runs	when	your	computer	
starts	(right	after	firmware/	bootloader)

• Loads,	runs	and	manages	programs:
– Multiple	programs	at	the	same	time	(time-sharing)
– Isolate	programs	from	each	other	(isolation)
– Multiplex	resources	between	applications	(e.g.,	devices)

• Services:	File	System,	Network	stack,	etc.
• Finds	and	controls	all	the	devices	in	the	machine	in	a	
general	way	(using	“device	drivers”)



Agenda
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• Devices	and	I/O
• OS	Boot	Sequence	and	Operation
• Multiprogramming/time-sharing
• Introduction	to	Virtual	Memory



Agenda
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• Devices	and	I/O
• OS	Boot	Sequence	and	Operation
• Multiprogramming/time-sharing
• Introduction	to	Virtual	Memory



How	to	interact	with	devices?
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• Assume	a	program	running	on	a	CPU.	How	does	it	
interact	with	the	outside	world?

• Need	I/O	interface	for	Keyboards,
Network,	Mouse,	Screen,	etc.
– Connect	to	many types	of	devices	
– Control	these	devices,	respond
to	them,	and	transfer	data

– Present	them	to	user
programs	so
they	are	useful

cmd	reg.
data	reg.

Operating	System

Proc Mem

PCI	Bus

SCSI	Bus



Instruction	Set	Architecture	for	I/O

• What	must	the	processor	do	for	I/O?
– Input:				reads	a	sequence	of	bytes	
– Output:	writes	a	sequence	of	bytes

• Some	processors	have	special	input	and	output	
instructions

• Alternative	model	(used	by	MIPS):
– Use	loads	for	input,	stores	for	output	(in	small	pieces)
– Called	Memory	Mapped	Input/Output
– A	portion	of	the	address	space	dedicated	to	
communication	paths	to	Input	or	Output	devices	(no	
memory	there)
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Memory	Mapped	I/O

• Certain	addresses	are	not	regular	memory
• Instead,	they	correspond	to	registers	in	I/O	devices

cntrl reg.
data	reg.

0

0xFFFFFFFF

0xFFFF0000

address

14



Processor-I/O	Speed	Mismatch

• 1GHz	microprocessor	can	execute	1B	load	or	store	
instructions	per	second,	or	4,000,000	KB/s	data	rate
• I/O	data	rates	range	from	0.01	KB/s	to	1,250,000	KB/s

• Input:	device	may	not	be	ready	to	send	data	as	fast	as	
the	processor	loads	it
• Also,	might	be	waiting	for	human	to	act

• Output:	device	not	be	ready	to	accept	data	as	fast	as	
processor	stores	it

• What	to	do?
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Processor	Checks	Status	before	Acting

• Path	to	a	device	generally	has	2	registers:
• Control	Register,	says	it’s	OK	to	read/write		(I/O	ready)	[think	

of	a	flagman	on	a	road]
• Data	Register,	contains	data

• Processor	reads	from	Control	Register	in	loop,	waiting	
for	device	to	set	Ready bit	in	Control	reg
(0	=>	1)	to	say	it’s	OK

• Processor	then	loads	from	(input)	or	writes	to	(output)	
data	register
• Load	from	or	Store	into	Data	Register	resets	Ready	bit

(1	=>		0)	of	Control	Register
• This	is	called	“Polling”
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• Input:	Read	from	keyboard	into	$v0
lui $t0, 0xffff #ffff0000

Waitloop: lw $t1, 0($t0) #control
andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
lw $v0, 4($t0) #data

• Output:	Write	to	display	from	$a0
lui $t0, 0xffff #ffff0000

Waitloop: lw $t1, 8($t0) #control
andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
sw $a0, 12($t0) #data

“Ready”	bit	is	from	processor’s	point	of	view!

I/O	Example	(polling)
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Cost	of	Polling?

• Assume	for	a	processor	with	a	1GHz	clock	it	takes	
400	clock	cycles	for	a	polling	operation	(call	polling	
routine,	accessing	the	device,	and	returning).	
Determine	%	of	processor	time	for	polling
– Mouse:	polled	30	times/sec	so	as	not	to	miss	user	
movement

– Hard	disk:	assume	transfers	data	in	16-Byte	chunks	and	can	
transfer	at	16	MB/second.	Again,	no	transfer	can	be	
missed.	(we’ll	come	up	with	a	better	way	to	do	this)
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%	Processor	time	to	poll
• Mouse	Polling	[clocks/sec]	

=	30	[polls/s]	*	400	[clocks/poll]	=	12K	[clocks/s]

• %	Processor	for	polling:	
12*103 [clocks/s]	/	1*109 [clocks/s]	=	0.0012%
=>		Polling	mouse	little	impact	on	processor
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Question
Hard	disk:	transfers	data	in	16-Byte	chunks	and	can	
transfer	at	16	MB/second.	No	transfer	can	be	missed.	
What	percentage	of	processor	time	is	spent	in	polling	
(assume	1GHz	clock;	400	cycles	per	poll)?

• A:	2%
• B:	4%
• C:	20%
• D:	40%
• E:	80%
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%	Processor	time	to	poll	hard	disk
• Frequency	of	Polling	Disk

=	16	[MB/s]	/	16	[B/poll]	=	1M	[polls/s]

• Disk	Polling,	Clocks/sec
=	1M	[polls/s]	*	400	[clocks/poll]
=	400M	[clocks/s]

• %	Processor	for	polling:	
400*106 [clocks/s]	/	1*109 [clocks/s]	=	40%
=>		Unacceptable	
(Polling	is	only	part	of	the	problem	– main	problem	is	that	
accessing	in	small	chunks	is	inefficient)
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What	is	the	alternative	to	polling?

• Wasteful	to	have	processor	spend	most	of	its	time	
“spin-waiting”	for	I/O	to	be	ready

• Would	like	an	unplanned	procedure	call	that	would	
be	invoked	only	when	I/O	device	is	ready

• Solution:	use	exception	mechanism	to	help	
I/O.		Interrupt	program	when	I/O	ready,	return	when	
done	with	data	transfer

• Allow	to	register	(post)	interrupt	handlers:	functions	
that	are	called	when	an	interrupt	is	triggered
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Interrupt-driven	I/O

Label: sll $t1,$s3,2
addu $t1,$t1,$s5

lw $t1,0($t1) 
add  $s1,$s1,$t1

addu $s3,$s3,$s4
bne $s3,$s2,Label

Stack	Frame

Stack	Frame

Stack	Frame

handler: lui $t0, 0xffff
lw $t1, 0($t0)
andi $t1,$t1,0x1
lw $v0, 4($t0)
sw $t1, 8($t0)
ret 

Interrupt(SPI0)

CPU	Interrupt	Table

SPI0 handler

… …

Handler	Execution
1. Incoming	interrupt	suspends	instruction	stream
2. Looks	up	the	vector	(function	address)	of	a	handler	in

an	interrupt	vector	table	stored	within	the	CPU
3. Perform	a	jal to	the	handler	(needs	to	store	any	state)	
4. Handler	run	on	current	stack	and	returns	on	finish

(thread	doesn’t	notice	that	a	handler	was	run)
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Agenda
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• Devices	and	I/O
• OS	Boot	Sequence	and	Operation
• Multiprogramming/time-sharing
• Introduction	to	Virtual	Memory



What	happens	at	boot?
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• When	the	computer	switches	on,	it	does	the	same	as	
MARS:	the	CPU	executes	instructions	from	some	
start	address	(stored	in	Flash	ROM)

• Bootstrapping:	
https://en.wikipedia.org/wiki/Bootstrapping

CPU

PC	=	0x2000	(some	default	value) Address	Space

0x2000:
addi $t0, $zero, 0x1000
lw $t0, 4($r0)
…

(Code to copy firmware into 
regular memory and jump 
into it)

Memory	mapped



What	happens	at	boot?
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• When	the	computer	switches	on,	it	does	the	same	as	
MARS:	the	CPU	executes	instructions	from	some	
start	address	(stored	in	Flash	ROM)

1.	BIOS:	Find	a	storage
device	and	load	first	
sector	(block	of	data)

2.	Bootloader (stored	on,	e.g.,	
disk):	Load	the	OS	kernel from	
disk	into	a	location	in	memory	
and	jump	into	it.

3.	OS	Boot:	Initialize	
services,	drivers,	etc.

4.	Init:	Launch	an	application	
that	waits	for	input	in	loop	
(e.g.,	Terminal/Desktop/...



UEFI
Unified	Extensible	Firmware	Interface
• Successor	of	BIOS
• Much	more	powerful	and	complex
• E.g.	graphics	menu;	networking;
browsers

• All	modern	Intel	&	AMD	
based	computer	use	UEFI
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Launching	Applications
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• Applications	are	called	“processes”	in	most	OSs.
• Created	by	another	process	calling	into	an	OS	routine	
(using	a	“syscall”,	more	details	later).
– Depends	on	OS,	but	Linux	uses	fork to	create	a	new	
process,	and	execve to	load	application.

• Loads	executable	file	from	disk	(using	the	file	system	
service)	and	puts	instructions	&	data	into	memory	
(.text,	.data	sections),	prepare	stack	and	heap.

• Set	argc and	argv,	jump	into	the	main	function.



Supervisor	Mode
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• If	something	goes	wrong	in	an	application,	it	could	
crash	the	entire	machine.	And	what	about	malware,	
etc.?

• The	OS	may	need	to	enforce	resource	constraints	to	
applications	(e.g.,	access	to	devices).

• To	help	protect	the	OS	from	the	application,	CPUs	have	
a	supervisor	mode	bit.
– A	process	can	only	access	a	subset	of	instructions	and	
(physical)	memory	when	not	in	supervisor	mode	(user	
mode).

– Process	can	change	out	of	supervisor	mode	using	a	special	
instruction,	but	not	into	it	directly	– only	using	an	interrupt.



Syscalls
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• What	if	we	want	to	call	into	an	OS	routine?	(e.g.,	to	
read	a	file,	launch	a	new	process,	send	data,	etc.)
– Need	to	perform	a	syscall:	set	up	function	arguments	in	
registers,	and	then	raise	software	interrupt

– OS	will	perform	the	operation	and	return	to	user	mode
• Also,	OS	uses	interrupts	for	scheduling	process	
execution:
– OS	sets	scheduler	timer	interrupt	then	drops	to	user	mode	
and	start	executing	a	user	task,	when	interrupts	triggers,	
switch	into	supervisor	mode,	select	next	task	to	execute	(&	
set	timer)	and	drop	back	to	user	mode.

• This	way,	the	OS	can	mediate	access	to	all	resources,	
including	devices	and	the	CPU	itself.



Agenda
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• Devices	and	I/O
• OS	Boot	Sequence	and	Operation
• Multiprogramming/time-sharing
• Introduction	to	Virtual	Memory



Multiprogramming
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• The	OS	runs	multiple	applications	at	the	same	time.
• But	not	really	(unless	you	have	a	core	per	process)
• Switches	between	processes	very	quickly.	This	is	
called	a	“context	switch”.

• When	jumping	into	process,	set	timer	interrupt.
– When	it	expires,	store	PC,	registers,	etc.	(process	state).
– Pick	a	different	process	to	run	and	load	its	state.
– Set	timer,	change	to	user	mode,	jump	to	the	new	PC.

• Deciding	what	process	to	run	is	called	scheduling.



Protection,	Translation,	Paging
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• Supervisor	mode	does	not	fully	isolate	applications	
from	each	other	or	from	the	OS.
– Application	could	overwrite	another	application’s	memory.
– Also,	may	want	to	address	more	memory	than	we	actually	
have	(e.g.,	for	sparse	data	structures).

• Solution:	Virtual	Memory.	Gives	each	process	the	
illusion	of	a	full	memory	address	space	that	it	has	
completely	for	itself.



Agenda
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• Devices	and	I/O
• OS	Boot	Sequence	and	Operation
• Multiprogramming/time-sharing
• Introduction	to	Virtual	Memory
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“Bare”	5-Stage	Pipeline

• In	a	bare	machine,	the	only	kind	of	address	is	a	
physical	address

PC
Inst.	
Cache D Decode E M

Data	
Cache W+

Main	Memory	(DRAM)

Memory	Controller

Physical	
Address

Physical	
Address

Physical	
Address

Physical	
Address

Physical	Address



Dynamic	Address	Translation
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Motivation
Multiprogramming, multitasking:  Desire to 
execute more than one process at a time (more 
than one process can reside in main memory at 
the same time).

Location-independent programs
Programming and storage management ease
=> base register – add offset to each address

Protection
Independent programs should not affect
each other inadvertently
=> bound register – check range of access

(Note: Multiprogramming drives requirement for 
resident supervisor (OS) software to manage context 
switches between multiple programs)

prog1

prog2

Ph
ys

ic
al

 M
em

or
y

OS



Simple	Base	and	Bound	Translation
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Load X

Program
Address Space

Bound
Register

Bounds
Violation?
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current
segment

Base
Register

+

Physical
AddressLogical

Address

Base and bounds registers are visible/accessible only 
when processor is running in supervisor mode

Base Physical Address

Segment Length

≤



Base	and	Bound	Machine

[	Can	fold	addition	of	base	register	into	(register+immediate)	address	
calculation	using	a	carry-save	adder	(sums	three	numbers	with	only	a	few	
gate	delays	more	than	adding	two	numbers)	] 38

PC
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Memory	Controller
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Bounds	Violation?
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Program	Base	
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+
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Bounds	Violation?



Memory	Fragmentation
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As users come and go, the storage is “fragmented”. 
Therefore, at some stage programs have to be moved
around to compact the storage.

OS
Space

16K
24K

24K

32K

24K

user 1
user 2

user 3

OS
Space

16K
24K
16K

32K

24K

user 1
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8K

Users 4 & 5 
arrive

Users 2 & 5
leave OS

Space

16K
24K
16K

32K

24K

user 1

user 4
8K

user 3

free
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• Processor-generated	address can	be	split	into:

Paged	Memory	Systems

Page tables make it possible to store the 
pages of a program non-contiguously.

0
1
2
3

0
1
2
3

Address Space
of User-1

Page Table 
of User-1

1
0

2

3

page number      offset

Physical 
Memory

• A	page	table	contains	the	physical	address	of	the	base	of	each	page
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Private	Address	Space	per	User

• Each user has a page table 
• Page table contains an entry for each user page

VA1User 1

Page Table 

VA1User 2

Page Table 

VA1User 3

Page Table

Ph
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al

 M
em

or
y

free

OS
pages
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Where	Should	Page	Tables	Reside?
• Space	required	by	the	page	tables	(PT)	is	proportional	
to	the	address	space,	number	of	users, ...

Þ Too	large	to	keep	in	cpu registers

• Idea:	Keep	PTs in	the	main	memory
– Needs	one	reference	to	retrieve	the	page	base	address	and	
another	to	access	the	data	word

=> doubles	the	number	of	memory	references!
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Page	Tables	in	Physical	Memory

VA1

User 1 Virtual 
Address Space

User 2 Virtual 
Address Space

PT 
User 
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In	Conclusion
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• Once	we	have	a	basic	machine,	it’s	mostly	up	to	the	
OS	to	use	it	and	define	application	interfaces.

• Hardware	helps	by	providing	the	right	abstractions	
and	features	(e.g.,	Virtual	Memory,	I/O).


