
CS	110
Computer	Architecture	

Operating	Systems,	Interrupts,	Virtual	
Memory

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Memory

CA	so	far…

2

CPU

Caches

MIPS	Assembly

C	Programs

•  Four##words/block,#cache#size#=#1K#words#
#!

MulWwordKBlock#DirectKMapped#Cache#

8#
Index#

Data#Index# Tag#Valid#

0#

1#

2#

.#

.#

.#

253#

254#

255#

31#30###.#.#.#################13#12##11####.#.#.####4##3##2##1##0#
Byte#

offset#

20#

20#Tag#

Hit# Data#

32#

Block#offset#

What!kind!of!locality!are!we!taking!advantage!of?!
31#

#include <stdlib.h>

int fib(int n) {
return
fib(n-1) +
fib(n-2);

}

.foo
lw $t0, 4($r0)
addi $t1, $t0, 3
beq $t1, $t2, foo
nop

Project	1

Project	2

So	how	is	this	any	different?

3

Keyboard

Screen

Storage

Memory

Adding	I/O

4

CPU

Caches

MIPS	Assembly

C	Programs

•  Four##words/block,#cache#size#=#1K#words#
#!

MulWwordKBlock#DirectKMapped#Cache#

8#
Index#

Data#Index# Tag#Valid#

0#

1#

2#

.#

.#

.#

253#

254#

255#

31#30###.#.#.#################13#12##11####.#.#.####4##3##2##1##0#
Byte#

offset#

20#

20#Tag#

Hit# Data#

32#

Block#offset#

What!kind!of!locality!are!we!taking!advantage!of?!
31#

#include <stdlib.h>

int fib(int n) {
return
fib(n-1) +
fib(n-2);

}

.foo
lw $t0, 4($r0)
addi $t1, $t0, 3
beq $t1, $t2, foo
nop

Project	1

Project	2

I/O	(Input/Output)

Screen Keyboard Storage

CPU+$s,	etc.
Memory

Raspberry	Pi	(<	300RMB	on	jd.com)

5

Storage	I/O
(Micro	SD	Card)

Serial	I/O
(USB)

Network	I/O
(Ethernet)Screen	I/O

(HDMI)

It’s	a	real	computer!

6

But	wait…

7

• That’s	not	the	same!	When	we	run	MARS,	it	only	
executes	one	program	and	then	stops.

• When	I	switch	on	my	computer,	I	get	this:

Yes,	but	that’s	just	software!	The	Operating	System	(OS)

Well,	“just	software”

• The	biggest	piece	of	software	on	your	machine?
• How	many	lines	of	code?	These	are	guesstimates:

8

Codebases	(in	millions	of	lines	of	code).	CC	BY-NC	3.0	— David	McCandless	©	2013
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/	

What	does	the	OS	do?

9

• One	of	the	first	things	that	runs	when	your	computer	
starts	(right	after	firmware/	bootloader)

• Loads,	runs	and	manages	programs:
– Multiple	programs	at	the	same	time	(time-sharing)
– Isolate	programs	from	each	other	(isolation)
– Multiplex	resources	between	applications	(e.g.,	devices)

• Services:	File	System,	Network	stack,	etc.
• Finds	and	controls	all	the	devices	in	the	machine	in	a	
general	way	(using	“device	drivers”)

Agenda

10

• Devices	and	I/O
• OS	Boot	Sequence	and	Operation
• Multiprogramming/time-sharing
• Introduction	to	Virtual	Memory

Agenda

11

• Devices	and	I/O
• OS	Boot	Sequence	and	Operation
• Multiprogramming/time-sharing
• Introduction	to	Virtual	Memory

How	to	interact	with	devices?

12

• Assume	a	program	running	on	a	CPU.	How	does	it	
interact	with	the	outside	world?

• Need	I/O	interface	for	Keyboards,
Network,	Mouse,	Screen,	etc.
– Connect	to	many types	of	devices	
– Control	these	devices,	respond
to	them,	and	transfer	data

– Present	them	to	user
programs	so
they	are	useful

cmd	reg.
data	reg.

Operating	System

Proc Mem

PCI	Bus

SCSI	Bus

Instruction	Set	Architecture	for	I/O

• What	must	the	processor	do	for	I/O?
– Input:				reads	a	sequence	of	bytes	
– Output:	writes	a	sequence	of	bytes

• Some	processors	have	special	input	and	output	
instructions

• Alternative	model	(used	by	MIPS):
– Use	loads	for	input,	stores	for	output	(in	small	pieces)
– Called	Memory	Mapped	Input/Output
– A	portion	of	the	address	space	dedicated	to	
communication	paths	to	Input	or	Output	devices	(no	
memory	there)

13

Memory	Mapped	I/O

• Certain	addresses	are	not	regular	memory
• Instead,	they	correspond	to	registers	in	I/O	devices

cntrl reg.
data	reg.

0

0xFFFFFFFF

0xFFFF0000

address

14

Processor-I/O	Speed	Mismatch

• 1GHz	microprocessor	can	execute	1B	load	or	store	
instructions	per	second,	or	4,000,000	KB/s	data	rate
• I/O	data	rates	range	from	0.01	KB/s	to	1,250,000	KB/s

• Input:	device	may	not	be	ready	to	send	data	as	fast	as	
the	processor	loads	it
• Also,	might	be	waiting	for	human	to	act

• Output:	device	not	be	ready	to	accept	data	as	fast	as	
processor	stores	it

• What	to	do?

15

Processor	Checks	Status	before	Acting

• Path	to	a	device	generally	has	2	registers:
• Control	Register,	says	it’s	OK	to	read/write		(I/O	ready)	[think	

of	a	flagman	on	a	road]
• Data	Register,	contains	data

• Processor	reads	from	Control	Register	in	loop,	waiting	
for	device	to	set	Ready bit	in	Control	reg
(0	=>	1)	to	say	it’s	OK

• Processor	then	loads	from	(input)	or	writes	to	(output)	
data	register
• Load	from	or	Store	into	Data	Register	resets	Ready	bit

(1	=>		0)	of	Control	Register
• This	is	called	“Polling”

16

• Input:	Read	from	keyboard	into	$v0
lui $t0, 0xffff #ffff0000

Waitloop: lw $t1, 0($t0) #control
andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
lw $v0, 4($t0) #data

• Output:	Write	to	display	from	$a0
lui $t0, 0xffff #ffff0000

Waitloop: lw $t1, 8($t0) #control
andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
sw $a0, 12($t0) #data

“Ready”	bit	is	from	processor’s	point	of	view!

I/O	Example	(polling)

17

Cost	of	Polling?

• Assume	for	a	processor	with	a	1GHz	clock	it	takes	
400	clock	cycles	for	a	polling	operation	(call	polling	
routine,	accessing	the	device,	and	returning).	
Determine	%	of	processor	time	for	polling
– Mouse:	polled	30	times/sec	so	as	not	to	miss	user	
movement

– Hard	disk:	assume	transfers	data	in	16-Byte	chunks	and	can	
transfer	at	16	MB/second.	Again,	no	transfer	can	be	
missed.	(we’ll	come	up	with	a	better	way	to	do	this)

18

%	Processor	time	to	poll
• Mouse	Polling	[clocks/sec]	

=	30	[polls/s]	*	400	[clocks/poll]	=	12K	[clocks/s]

• %	Processor	for	polling:	
12*103 [clocks/s]	/	1*109 [clocks/s]	=	0.0012%
=>		Polling	mouse	little	impact	on	processor

19

Question
Hard	disk:	transfers	data	in	16-Byte	chunks	and	can	
transfer	at	16	MB/second.	No	transfer	can	be	missed.	
What	percentage	of	processor	time	is	spent	in	polling	
(assume	1GHz	clock;	400	cycles	per	poll)?

• A:	2%
• B:	4%
• C:	20%
• D:	40%
• E:	80%

20

%	Processor	time	to	poll	hard	disk
• Frequency	of	Polling	Disk

=	16	[MB/s]	/	16	[B/poll]	=	1M	[polls/s]

• Disk	Polling,	Clocks/sec
=	1M	[polls/s]	*	400	[clocks/poll]
=	400M	[clocks/s]

• %	Processor	for	polling:	
400*106 [clocks/s]	/	1*109 [clocks/s]	=	40%
=>		Unacceptable	
(Polling	is	only	part	of	the	problem	– main	problem	is	that	
accessing	in	small	chunks	is	inefficient)

21

What	is	the	alternative	to	polling?

• Wasteful	to	have	processor	spend	most	of	its	time	
“spin-waiting”	for	I/O	to	be	ready

• Would	like	an	unplanned	procedure	call	that	would	
be	invoked	only	when	I/O	device	is	ready

• Solution:	use	exception	mechanism	to	help	
I/O.		Interrupt	program	when	I/O	ready,	return	when	
done	with	data	transfer

• Allow	to	register	(post)	interrupt	handlers:	functions	
that	are	called	when	an	interrupt	is	triggered

22

Interrupt-driven	I/O

Label: sll $t1,$s3,2
addu $t1,$t1,$s5

lw $t1,0($t1)
add $s1,$s1,$t1

addu $s3,$s3,$s4
bne $s3,$s2,Label

Stack	Frame

Stack	Frame

Stack	Frame

handler: lui $t0, 0xffff
lw $t1, 0($t0)
andi $t1,$t1,0x1
lw $v0, 4($t0)
sw $t1, 8($t0)
ret

Interrupt(SPI0)

CPU	Interrupt	Table

SPI0 handler

… …

Handler	Execution
1. Incoming	interrupt	suspends	instruction	stream
2. Looks	up	the	vector	(function	address)	of	a	handler	in

an	interrupt	vector	table	stored	within	the	CPU
3. Perform	a	jal to	the	handler	(needs	to	store	any	state)	
4. Handler	run	on	current	stack	and	returns	on	finish

(thread	doesn’t	notice	that	a	handler	was	run)

23

Agenda

24

• Devices	and	I/O
• OS	Boot	Sequence	and	Operation
• Multiprogramming/time-sharing
• Introduction	to	Virtual	Memory

What	happens	at	boot?

25

• When	the	computer	switches	on,	it	does	the	same	as	
MARS:	the	CPU	executes	instructions	from	some	
start	address	(stored	in	Flash	ROM)

• Bootstrapping:	
https://en.wikipedia.org/wiki/Bootstrapping

CPU

PC	=	0x2000	(some	default	value) Address	Space

0x2000:
addi $t0, $zero, 0x1000
lw $t0, 4($r0)
…

(Code to copy firmware into
regular memory and jump
into it)

Memory	mapped

What	happens	at	boot?

26

• When	the	computer	switches	on,	it	does	the	same	as	
MARS:	the	CPU	executes	instructions	from	some	
start	address	(stored	in	Flash	ROM)

1.	BIOS:	Find	a	storage
device	and	load	first	
sector	(block	of	data)

2.	Bootloader (stored	on,	e.g.,	
disk):	Load	the	OS	kernel from	
disk	into	a	location	in	memory	
and	jump	into	it.

3.	OS	Boot:	Initialize	
services,	drivers,	etc.

4.	Init:	Launch	an	application	
that	waits	for	input	in	loop	
(e.g.,	Terminal/Desktop/...

UEFI
Unified	Extensible	Firmware	Interface
• Successor	of	BIOS
• Much	more	powerful	and	complex
• E.g.	graphics	menu;	networking;
browsers

• All	modern	Intel	&	AMD	
based	computer	use	UEFI

27

Launching	Applications

28

• Applications	are	called	“processes”	in	most	OSs.
• Created	by	another	process	calling	into	an	OS	routine	
(using	a	“syscall”,	more	details	later).
– Depends	on	OS,	but	Linux	uses	fork to	create	a	new	
process,	and	execve to	load	application.

• Loads	executable	file	from	disk	(using	the	file	system	
service)	and	puts	instructions	&	data	into	memory	
(.text,	.data	sections),	prepare	stack	and	heap.

• Set	argc and	argv,	jump	into	the	main	function.

Supervisor	Mode

29

• If	something	goes	wrong	in	an	application,	it	could	
crash	the	entire	machine.	And	what	about	malware,	
etc.?

• The	OS	may	need	to	enforce	resource	constraints	to	
applications	(e.g.,	access	to	devices).

• To	help	protect	the	OS	from	the	application,	CPUs	have	
a	supervisor	mode	bit.
– A	process	can	only	access	a	subset	of	instructions	and	
(physical)	memory	when	not	in	supervisor	mode	(user	
mode).

– Process	can	change	out	of	supervisor	mode	using	a	special	
instruction,	but	not	into	it	directly	– only	using	an	interrupt.

Syscalls

30

• What	if	we	want	to	call	into	an	OS	routine?	(e.g.,	to	
read	a	file,	launch	a	new	process,	send	data,	etc.)
– Need	to	perform	a	syscall:	set	up	function	arguments	in	
registers,	and	then	raise	software	interrupt

– OS	will	perform	the	operation	and	return	to	user	mode
• Also,	OS	uses	interrupts	for	scheduling	process	
execution:
– OS	sets	scheduler	timer	interrupt	then	drops	to	user	mode	
and	start	executing	a	user	task,	when	interrupts	triggers,	
switch	into	supervisor	mode,	select	next	task	to	execute	(&	
set	timer)	and	drop	back	to	user	mode.

• This	way,	the	OS	can	mediate	access	to	all	resources,	
including	devices	and	the	CPU	itself.

Agenda

31

• Devices	and	I/O
• OS	Boot	Sequence	and	Operation
• Multiprogramming/time-sharing
• Introduction	to	Virtual	Memory

Multiprogramming

32

• The	OS	runs	multiple	applications	at	the	same	time.
• But	not	really	(unless	you	have	a	core	per	process)
• Switches	between	processes	very	quickly.	This	is	
called	a	“context	switch”.

• When	jumping	into	process,	set	timer	interrupt.
– When	it	expires,	store	PC,	registers,	etc.	(process	state).
– Pick	a	different	process	to	run	and	load	its	state.
– Set	timer,	change	to	user	mode,	jump	to	the	new	PC.

• Deciding	what	process	to	run	is	called	scheduling.

Protection,	Translation,	Paging

33

• Supervisor	mode	does	not	fully	isolate	applications	
from	each	other	or	from	the	OS.
– Application	could	overwrite	another	application’s	memory.
– Also,	may	want	to	address	more	memory	than	we	actually	
have	(e.g.,	for	sparse	data	structures).

• Solution:	Virtual	Memory.	Gives	each	process	the	
illusion	of	a	full	memory	address	space	that	it	has	
completely	for	itself.

Agenda

34

• Devices	and	I/O
• OS	Boot	Sequence	and	Operation
• Multiprogramming/time-sharing
• Introduction	to	Virtual	Memory

35

“Bare”	5-Stage	Pipeline

• In	a	bare	machine,	the	only	kind	of	address	is	a	
physical	address

PC
Inst.	
Cache D Decode E M

Data	
Cache W+

Main	Memory	(DRAM)

Memory	Controller

Physical	
Address

Physical	
Address

Physical	
Address

Physical	
Address

Physical	Address

Dynamic	Address	Translation

36

Motivation
Multiprogramming, multitasking: Desire to
execute more than one process at a time (more
than one process can reside in main memory at
the same time).

Location-independent programs
Programming and storage management ease
=> base register – add offset to each address

Protection
Independent programs should not affect
each other inadvertently
=> bound register – check range of access

(Note: Multiprogramming drives requirement for
resident supervisor (OS) software to manage context
switches between multiple programs)

prog1

prog2

Ph
ys

ic
al

 M
em

or
y

OS

Simple	Base	and	Bound	Translation

37

Load X

Program
Address Space

Bound
Register

Bounds
Violation?

Ph
ys

ic
al

 M
em

or
y

current
segment

Base
Register

+

Physical
AddressLogical

Address

Base and bounds registers are visible/accessible only
when processor is running in supervisor mode

Base Physical Address

Segment Length

≤

Base	and	Bound	Machine

[Can	fold	addition	of	base	register	into	(register+immediate)	address	
calculation	using	a	carry-save	adder	(sums	three	numbers	with	only	a	few	
gate	delays	more	than	adding	two	numbers)] 38

PC
Inst.	
Cache D Decode E M

Data	
Cache W+

Main	Memory	(DRAM)

Memory	Controller

Physical	
Address

Physical	
Address

Physical	
Address

Physical	Address

Data	Bound	
Register

Data	Base	
Register

≤

+

Logical	
Address

Bounds	Violation?

Physical	
Address

Prog.	Bound	
Register

Program	Base	
Register

≤

+

Logical	
Address

Bounds	Violation?

Memory	Fragmentation

39

As users come and go, the storage is “fragmented”.
Therefore, at some stage programs have to be moved
around to compact the storage.

OS
Space

16K
24K

24K

32K

24K

user 1
user 2

user 3

OS
Space

16K
24K
16K

32K

24K

user 1
user 2

user 3

user 5

user 4
8K

Users 4 & 5
arrive

Users 2 & 5
leave OS

Space

16K
24K
16K

32K

24K

user 1

user 4
8K

user 3

free

40

• Processor-generated	address can	be	split	into:

Paged	Memory	Systems

Page tables make it possible to store the
pages of a program non-contiguously.

0
1
2
3

0
1
2
3

Address Space
of User-1

Page Table
of User-1

1
0

2

3

page number offset

Physical
Memory

• A	page	table	contains	the	physical	address	of	the	base	of	each	page

41

Private	Address	Space	per	User

• Each user has a page table
• Page table contains an entry for each user page

VA1User 1

Page Table

VA1User 2

Page Table

VA1User 3

Page Table

Ph
ys

ic
al

 M
em

or
y

free

OS
pages

42

Where	Should	Page	Tables	Reside?
• Space	required	by	the	page	tables	(PT)	is	proportional	
to	the	address	space,	number	of	users, ...

Þ Too	large	to	keep	in	cpu registers

• Idea:	Keep	PTs in	the	main	memory
– Needs	one	reference	to	retrieve	the	page	base	address	and	
another	to	access	the	data	word

=> doubles	the	number	of	memory	references!

43

Page	Tables	in	Physical	Memory

VA1

User 1 Virtual
Address Space

User 2 Virtual
Address Space

PT
User
1

PT
User
2

VA1

Ph
ys

ic
al

 M
em

or
y

In	Conclusion

44

• Once	we	have	a	basic	machine,	it’s	mostly	up	to	the	
OS	to	use	it	and	define	application	interfaces.

• Hardware	helps	by	providing	the	right	abstractions	
and	features	(e.g.,	Virtual	Memory,	I/O).

