
Computer	Architecture	

Discussion 13

Parallelism



Parallelism

• Thread	Level	Parallelism	 (TLP):	
• Executing	different	processes	(threads)	of	the	same	program	on	
different	processors.	Threads	can	communicate	with	each	other.	

• Data	Level	Parallelism	 (DLP):	
• Operating	on	independent	data	simultaneously.	
• …



Flynn’s	Taxonomy	



SSE



Amdahl’s	
Law	



Exercise

• Speedup	
• 1. Consider	an	enhancement	which	runs	20	times	faster	but	which	is	
only	usable	25%	of	the	time	
• 2. What	if	its	usable	only	15%	of	the	time?	

• In	a	given	program,	95%	of	the	execution	time	can	be	parallelized.	
How	many	processors	are	needed	to	achieve	a	speed-up	of	over	10?	





Strong	and	Weak	Scaling	

• Strong	scaling:	when	speedup	can	be	achieved	on	a	parallel	processor	
without	increasing	the	size	of	the	problem	

• Weak	scaling:	when	speedup	is	achieved	on	a	parallel	processor	by	
increasing	the	size	of	the	problem	proportionally	to	the	increase	in	
the	number	of	processors	



Strong	scaling:	when	speedup	can	be	achieved	on	a	parallel	processor	without	
increasing	 the	size	of	the	problem	

Weak	scaling:	when	speedup	 is	achieved	on	a	parallel	processor	by	increasing	 the	
size	of	the	problem	proportionally	to	the	increase	in	the	number	of	processors	



Openmp

• Thread	Level	Parallelism	



Parallel	regions
• The	parallel directive	forks	a	team	of	threads,	each	of	which	
executes	the	following	region,	enclosed	in	{...}.

• Threads	do	a	join	at	end	of	parallel	region,	and	execution	resumes	
with	the	single	master	thread.

• Number	of	threads	can	be	set	by
• num_threads clause	after	the	parallel	directive.
• omp_set_num_threads() library	routine	previously	called.
• Environment	variable	OMP_NUM_THREADS.
• Recommendation	 is	one	thread	per	processor	/	core.

• Threads	can	do	the	work	in	the	region	in	parallel.
• Can	do	different	things	based	on	thread	ID.	
• Can	share	work	using	for,	sections,	 task,	etc.	directives.	

• Parallel	regions	can	be	nested.



Parallel	regions
• Example

• All	threads	in	parallel	region	run	this	code.
• iam and	np are	private	variables	(i.e.	instance	of	variable	for	
each	thread).

• omp_get_num_threads() returns	the	number	of	threads	
n	in	the	team	used	for	the	parallel	region.

• omp_get_thread_num() returns	thread	number	
(identity)	in	range	0	to	n-1	with	master	thread	0.

• Messages	printed	in	arbitrary	order.

#pragma omp parallel private(iam, np)
{

np = omp_get_num_threads();
iam = omp_get_thread_num();
printf("Hello from thread %d out of %d\n", 

iam, np);
}



Schedule	clause
• Used	for	assigning	iterations	of	parallel	for to	threads.
• schedule(static[,chunk]) 

• Each	thread	gets	a	chunk	of	iterations	of	size	“chunk”	– by	default	
chunks	approximately	equal.

• Chunks	assigned	 in	round	robin	order.
• schedule(dynamic[,chunk]) 

• Each	time	a	thread	finishes	 its	iterations,	grabs	“chunks”	more	
iterations,	until	all	have	been	executed	– default	is	1.

• Dynamic	scheduling	has	some	overhead,	but	can	result	in	better	load	
balancing	if	iterations	not	all	equal	sized.

• schedule(guided[,chunk]) 
• Each	thread	dynamically	grabs	iterations	where	the	size	starts	large	
and	shrinks	down	to	“chunk”.

• Dynamic	load	balancing	with	less	overhead.
• schedule(runtime) 

• Schedule	type	and	chunk	size	taken	from	the	OMP_SCHEDULE	
environment	variable.



Different	ways	to	parallelize
// manual parallelization

#pragma omp parallel {
int id, i, Nthreads, start, end;
id = omp_get_thread_num();
Nthreads = omp_get_num_threads();
start = id * N / Nthreads;
end = (id + 1) * N / Nthreads;
for (i = start; i < end; i++) {

a[i] = a[i] + b[i];
}

}

// sequential

for (i=0; i<N; i++) {
a[i] = a[i] + b[i];

}

// create parallel region and do
//worksharing together

#pragma omp parallel for schedule(static)
for (i = 0; i < N; i++) {

a[i] = a[i] + b[i];
}

// create parallel region 
// then do worksharing

#pragma omp parallel {
#pragma omp for
for (i = 0; i < N; i++) {

a[i] = a[i] + b[i];
}

}
// threads do redundant work

#pragma omp parallel {
for (i = 0; i < N; i++) {

a[i] = a[i] + b[i];
}

}







answer



answer



answer



Cache coherence



answer





answer




