Computer Architecture

Discussion 6

CB

From FSM to Truth Table

List the input, current state, next state and output

Cı	irrent State	Input	Next	State	Output
<i>S</i> ₁	S ₀	Ι	S'_1	<i>S</i> ₀ '	Y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	0	1
1	0	0	0	0	0
1	0	1	1	0	0
1	1	0	Х	Х	Х
1	1	1	Х	Х	Х

- 1-

Represent the states

Represent a state by the output of several flip-flops

Store the state value

Can be changed at the rising edge of the clock

A D-Flip Flop

Output = Input at rising edge Set S=R=0 to use it as expected If S=R=1, output will always be 0

Simplifying the logical representations

- Simplify the circuit with a Karnaugh Map
- Useful for 3 to 4 input variables (e.g., your next experiment)
- Hamming Distance of neighbor columns/rows = 1 (e.g., 01 and 11)
- Group 1's and X's together (1x2, 2x1, 2x2, 1x4, 4x1, etc.) and simplify
- S_0, S_1 are inputs of the 2 D-Flip flops, $S_0'S_1'$ are the outputs

 $S'_0 = S_0 I + S_1 I = (S_0 + S_1) I, S'_1 = \overline{S_0} \, \overline{S_1} I, Y = \overline{S_0} S_1$

Connect the circuit

Designing an Adder/Subtractor

- An adder/subtractor is a circuit that is:
 - An adder when $S_0=0$
 - An subtractor when $S_0=1$
 - Required in ALU (top figure)
- Can be a cascade of 1-bit adders
- 1-bit adders(bottom figure):
 - Input: a, b, c0 (carry of last adder)
 - Output: s, c1 (sum and carry)
 - Design by truth table. S = a xor b xor c

Cascade of 1-bit adders into an adder

- Rather intuitive
- C_n to represent overflow

Cascade of 1-bit adders into a subtractor

Cascade of 1-bit adders into a subtractor

- A, B are n-bit numbers with signs
- $ilde{A}$ is the 2's complement, $ar{A}$ is 1's complement
- Setting SUB = 1 to get \overline{B}
 - $b_i \operatorname{xor} SUB = b_i$ when SUB = 0
 - $b_i \operatorname{xor} SUB = \overline{b_i}$ when SUB = 1
- Subtract to addition: $A B = A + \tilde{B}$
 - $-B = \tilde{B}$ considering only the lowest (n-1) bits: $(-B)_{n-1} = (2^{n-1} + (-B))_{n-1} = (2^{n-1} - 1 - B) + 1$

Where $(\cdot)_{n-1}$ represents taking the lowest (n-1) bits

Overflow of n-bit adder

- Let A, B be the equivalent inputs to an n-bit adder
- If A > 0, B > 0
 - $a_{n-1} = b_{n-1} = 0 \Rightarrow c_n = 0$
 - If overflow, $c_{n-1} = 1$
- If *AB* < 0
 - Overflow won't happen since $|A + B| \le |A|$

Overflow of n-bit adder

- If A < 0, B < 0, we actually add their complements $\overline{A}, \overline{B}$
 - $a_{n-1} = b_{n-1} = 1 \Rightarrow c_n = 1$
 - If overflow, $c_{n-1} = 0$ (a bit tricky here)
 - If $(A + B)_{n-1} = 2^{n-1}$, then $A + B = -2^n$, represented by $0b100 \dots 0$, not overflow
 - Overflows when $(A + B)_{n-1} > 2^{n-1}$ $\Rightarrow 2^{n-1} - \tilde{A}_{n-1} + 2^{n-1} - \tilde{B}_{n-1} > 2^{n-1} \Rightarrow \tilde{A}_{n-1} + \tilde{B}_{n-1} < 2^{n-1} \Rightarrow c_{n-1} = 0$
- To sum up, the addition overflows if and only if c_n xor c_{n-1} =true

Sum function

- $S_0 = 1$ when Odd input 1's
- $S_0 = XOR (A,B,C_i)$
- $S_0 = A \times B \times C_i$

Carry function

- $C_0 = 1$ when 2 or more input 1's
- $C_0 = AB + BC_i + AC_i$

Α	В	Ci	S。	C,
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$\mathbf{S} = \mathbf{A} \oplus \mathbf{B} \oplus \mathbf{C}$$

 $= \mathbf{A}\overline{\mathbf{B}}\overline{\mathbf{C}}_{\mathbf{i}} + \overline{\mathbf{A}}\mathbf{B}\overline{\mathbf{C}}_{\mathbf{i}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C}_{\mathbf{i}} + \mathbf{A}\mathbf{B}\mathbf{C}_{\mathbf{j}}$

$$C_0 = AB + BC_i + AC_i$$

Full Adder – Another Look

- It's all about carry, so redefine terms for more efficient design
- Carry status
 - Delete (D): $D = \bar{A} \cdot \bar{B}$
 - Propagate (P): $P = A \oplus B$
 - Generate (G): $G = A \cdot B$
- Full Adder
 - Internally generates P, G, (D)

C_0 status	Α	В	C _i	Co
Delete	0	0	0	0
Delete	0	0	1	0
Propagate	0	1	0	0
Propagate	0	1		1
Propagate	1	0	0	0
Propagate	1	0		1
Generate	1	1	0	1
Generate	1	1	1	1

$$C_o(G, P) = G + P \cdot C_i$$
$$S(G, P) = P \oplus C_i$$

The Ripple-Carry Adder

Worst case delay is proportional to the number of bits

$$t_d = (N-1)t_{carry} + t_{sum} = O(N)$$

GOAL: Make the fastest possible carry path circuit

Carry-Bypass Adder

Simple adders ripple the carry, faster ones bypass it

- Calculate the carry several bits at a time
- Good for small adders (n < 16)

Ripple Adder VS Bypass Adder

Critical Path in Linear Carry Select Adder

 $t_{d} = t_{setup} + M \cdot t_{carry} + N / M \cdot t_{MUX} + t_{sum}$

Square Root Carry Select

Increase group size toward MSBs to fix the slack

 $t_d = t_{setup} + M \cdot t_{carry} + \sqrt{2N} \cdot t_{MUX} + t_{sum}$

Adder Delay - Comparison

#