Computer Architecture

Discussion 6

CB

The FSM Diagram

From FSM to Truth Table

List the input, current state, next state and output

Current State		Input	Next State		Output
S_{1}	S_{0}	I	S_{1}^{\prime}	S_{0}^{\prime}	Y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	0	1
1	0	0	0	0	0
1	0	1	1	0	0
1	1	0	X	X	X
1	1	1	X	X	X

Represent the states

Represent a state by the output of several flip-flops Store the state value
Can be changed at the rising edge of the clock

A D-Flip Flop

Output = Input at rising edge
Set $S=R=0$ to use it as expected If $S=R=1$, output will always be 0

Simplifying the logical representations

- Simplify the circuit with a Karnaugh Map
- Useful for 3 to 4 input variables (e.g., your next experiment)
- Hamming Distance of neighbor columns/rows $=1$ (e.g., 01 and 11)
- Group 1's and X's together ($1 \times 2,2 \times 1,2 \times 2,1 \times 4,4 \times 1$, etc.) and simplify
- $\mathrm{S}_{0}, \mathrm{~S}_{1}$ are inputs of the 2 D -Flip flops, $\mathrm{S}_{0}{ }^{\prime} \mathrm{S}_{1}$ ' are the outputs

		$\boldsymbol{S}_{\mathbf{0}}^{\prime}$	Cancel S_{0}	
$\boldsymbol{S}_{\mathbf{0}} \boldsymbol{S}_{\mathbf{1}} \boldsymbol{I}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
0	0	0	1	0
1	0	1	X	X
Cancel S_{1}				

		$\boldsymbol{S}_{\mathbf{1}}^{\prime}$		
$\boldsymbol{S}_{\mathbf{0}} \boldsymbol{S}_{\mathbf{1}} \boldsymbol{I}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
0	0	1	0	0
1	0	0	X	X

$$
S_{0}^{\prime}=S_{0} I+S_{1} I=\left(S_{0}+S_{1}\right) I, S_{1}^{\prime}=\overline{S_{0}} \overline{S_{1}} I, Y=\overline{S_{0}} S_{1}
$$

Connect the circuit

$$
S_{0}^{\prime}=S_{0} I+S_{1} I=\left(S_{0}+S_{1}\right) I, S_{1}^{\prime}=\overline{S_{0}} \overline{S_{1}} I, Y=\overline{S_{0}} S_{1}
$$

Designing an Adder/Subtractor

- An adder/subtractor is a circuit that is:
- An adder when $\mathrm{S}_{0}=0$
- An subtractor when $S_{0}=1$
- Required in ALU (top figure)
- Can be a cascade of 1-bit adders
-1-bit adders(bottom figure):
- Input: a, b, c0 (carry of last adder)
- Output: s, c1 (sum and carry)
- Design by truth table. $\mathrm{S}=\mathrm{a}$ xor b xor c

Cascade of 1-bit adders into an adder

- Rather intuitive
- C_{n} to represent overflow

Cascade of 1-bit adders into a subtractor

Cascade of 1-bit adders into a subtractor

- A, B are n -bit numbers with signs
- \tilde{A} is the 2 's complement, \bar{A} is 1 's complement
- Setting SUB $=1$ to get \bar{B}
- b_{i} xor $S U B=b_{i}$ when $S U B=0$
- b_{i} xor $S U B=\bar{b}_{i}$ when $S U B=1$
- Subtract to addition: $A-B=A+\widetilde{B}$
- $-B=\tilde{B}$ considering only the lowest ($\mathrm{n}-1$) bits:

$$
(-B)_{n-1}=\left(2^{n-1}+(-B)\right)_{n-1}=\left(2^{n-1}-1-B\right)+1
$$

Where $(\cdot)_{n-1}$ represents taking the lowest ($\mathrm{n}-1$) bits

Overflow of n-bit adder

- Let A, B be the equivalent inputs to an n -bit adder
- If $A>0, B>0$
- $a_{n-1}=b_{n-1}=0 \Rightarrow c_{n}=0$
- If overflow, $c_{n-1}=1$
- If $A B<0$
- Overflow won't happen since $|A+B| \leq|A|$

Overflow of n-bit adder

- If $A<0, B<0$, we actually add their complements \bar{A}, \bar{B}
- $a_{n-1}=b_{n-1}=1 \Rightarrow c_{n}=1$
- If overflow, $c_{n-1}=0$ (a bit tricky here)
- If $(A+B)_{n-1}=2^{n-1}$, then $A+B=-2^{n}$, represented by 0 b100 $\ldots 0$, not overflow
- Overflows when $(A+B)_{n-1}>2^{n-1}$
$\Rightarrow 2^{n-1}-\tilde{A}_{n-1}+2^{n-1}-\tilde{B}_{n-1}>2^{n-1} \Rightarrow \tilde{A}_{n-1}+\tilde{B}_{n-1}<2^{n-1} \Rightarrow c_{n-1}=0$
- To sum up, the addition overflows if and only if c_{n} xor $c_{n-1}=$ true
- Sum function
- $S_{0}=1$ when Odd input 1's
- $\mathrm{S}_{0}=\mathrm{XOR}\left(\mathrm{A}, \mathrm{B}, \mathrm{C}_{\mathrm{i}}\right)$
- $S_{0}=A \times B \times C_{i}$
- Carry function
- $\mathrm{C}_{0}=1$ when 2 or more input 1 's
- $\mathrm{C}_{0}=\mathrm{AB}+\mathrm{BC}_{\mathrm{i}}+\mathrm{AC}_{\mathrm{i}}$

A	B	C_{i}	S_{\circ}	C_{o}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$
\begin{aligned}
\mathbf{S} & =\mathbf{A} \oplus \mathbf{B} \oplus \mathbf{C}_{\mathbf{i}} \\
& =\mathbf{A} \overline{\mathbf{B}} \overline{\mathbf{C}}_{\mathbf{i}}+{\overline{\mathbf{A}} \mathbf{B} \overline{\mathbf{C}}_{\mathbf{i}}+\overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C}_{\mathbf{i}}+\mathbf{A B C}}^{1} \\
\mathbf{C}_{\mathbf{0}} & =\mathbf{A B}+\mathbf{B C} \mathbf{i}_{\mathbf{i}}+\mathbf{A C} \mathbf{i}
\end{aligned}
$$

Full Adder－Another Look

－It＇s all about carry，so redefine terms for more efficient design
－Carry status
－Delete（D）：

$$
D=\bar{A} \cdot \bar{B}
$$

－Propagate（P）：$P=A \oplus B$
－Generate（G）：$\quad G=A \cdot B$
－Full Adder
－Internally generates P，G，（D）

C_{0} status	A	B	C_{i}	C_{0}
Delete	0	0	0	0
Delete	0	0	1	0
Propagate	0	1	0	0
Propagate	0	1	1	1
Propagate	1	0	0	0
Propagate	1	0	1	1
Generate	1	1	0	1
Generate	1	1	1	1

$$
\begin{aligned}
& C_{o}(G, P)=G+P \cdot C_{i} \\
& S(G, P)=P \oplus C_{i}
\end{aligned}
$$

The Ripple－Carry Adder

\square Worst case delay is proportional to the number of bits

$$
t_{d}=(N-1) t_{\text {carry }}+t_{\text {sum }}=O(N)
$$

GOAL：Make the fastest possible carry path circuit

Carry－Bypass Adder

－Simple adders ripple the carry，faster ones bypass it
－Calculate the carry several bits at a time
－Good for small adders（ $\mathrm{n}<16$ ）
 Carry－Skip

Ripple Adder VS Bypass Adder

Critical Path in Linear Carry Select Adder

Square Root Carry Select

－Increase group size toward MSBs to fix the slack

| Bit 0－1 | Bit 2－4 | Bit 5－8 | Bit 9－13 | Bit 14－19 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$$
t_{d}=t_{\text {setup }}+M \cdot t_{\text {carry }}+\sqrt{2 N} \cdot t_{M U X}+t_{\text {sum }}
$$

Adder Delay－Comparison

