
CS	110
Computer	Architecture	

Lecture	6:	
More	MIPS,	MIPS	Functions	

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Levels	of	
Representation/Interpretation

lw $t0,	0($2)
lw $t1,	4($2)
sw $t1,	0($2)
sw $t0,	4($2)

High	Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	MIPS)

Machine		Language	
Program	(MIPS)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions

2

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

From	last	lecture	…
• Computer	“words”	and	“vocabulary”	are	called	
instructions and	instruction	set	respectively

• MIPS	is	example	RISC	instruction	set	used	here
• Rigid	format:	1	operation,	2	source	operands,	1	
destination
– add,sub,mul,div,and,or,sll,srl,sra
– lw,sw,lb,sb to	move	data	to/from	registers	from/to	
memory

– beq, bne, j, slt, slti for	decision/flow	control
• Simple	mappings	from	arithmetic	expressions,	array	
access,	in	C	to	MIPS	instructions

3

Processor

Control

Datapath

Review:	Components	of	a	Computer

4

Program	Counter

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	
Data

Read
Data

Processor-Memory	Interface I/O-Memory	Interfaces

Program

Data

How	Program	is	Stored

5

Memory

Bytes

Program

Data

One	MIPS	Instruction	=	32	bits

Assembler	to	Machine	Code
(more	later	in	course)

6

foo.S bar.S

Assembler Assembler

foo.o bar.o

Linker lib.o

a.out

Assembler	source	files	(text)

Machine	code	object	files

Pre-built	object	
file	libraries

Machine	code	executable	file

Assembler	converts	human-
readable	assembly	code	to	
instruction	bit	patterns

Processor

Control

Datapath

Executing	a	Program

7

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory

BytesInstruction
Address

Read	
Instruction	
Bits

Program

Data

• The	PC	(program	counter)	is	internal	register	inside	processor	holding	byte
address	of	next	instruction	to	be	executed.

• Instruction	is	fetched	from	memory,	then	control	unit	executes	instruction	
using	datapath and	memory	system,	and	updates	program	counter	(default	is	
add	+4	bytes	to	PC,	to	move	to	next	sequential	instruction)

Computer	Decision	Making
• Based	on	computation,	do	something	different
• In	programming	languages:	if-statement

• MIPS:	if-statement	instruction	is
beq register1,register2,L1

means:	go	to	statement	labeled	L1	
if	(value	in	register1)	==	(value	in	register2)

L1: instruction #this is a label
….otherwise,	go	to	next	statement

• beq stands	for	branch	if	equal
• Other	instruction:	bne for	branch	if	not	equal

8

Types	of	Branches

• Branch – change	of	control	flow

• Conditional	Branch – change	control	flow	
depending	on	outcome	of	comparison
– branch	if	equal	(beq)	or	branch	if	not equal	(bne)

• Unconditional	Branch – always	branch
– a	MIPS	instruction	for	this:	jump	(j)

9

Example	if Statement

• Assuming	translations	below,	compile	if block
f →	$s0 g →	$s1 h →	$s2
i →	$s3 j →	$s4

if (i == j) bne $s3,$s4,Exit

f = g + h; add $s0,$s1,$s2

Exit:

• May	need	to	negate	branch	condition
10

Example	if-else Statement

• Assuming	translations	below,	compile
f →	$s0 g →	$s1 h →	$s2
i →	$s3 j →	$s4

if (i == j) bne $s3,$s4,Else

f = g + h; add $s0,$s1,$s2

else j Exit

f = g – h; Else: sub $s0,$s1,$s2

Exit:
11

Inequalities in MIPS
• Until	now,	we’ve	only	tested	equalities	
(==	and	!=	in	C).		General	programs	need	to	test	<	and	>	
as	well.
• Introduce	MIPS	Inequality	Instruction:

“Set	on	Less	Than”
Syntax:									slt reg1,reg2,reg3
Meaning: if	(reg2	<	reg3)	

reg1	=	1;	
else	reg1	=	0;	

“set”	means	“change	to	1”,	
“reset”	means	“change	to	0”.

12

Inequalities in MIPS Cont.
• How	do	we	use	this?	Compile	by	hand:

if	(g	<	h)	goto Less; #	g:$s0,	h:$s1

• Answer:	compiled	MIPS	code…
slt $t0,$s0,$s1 #	$t0	=	1	if g<h
bne $t0,$zero,Less #	if	$t0!=0	goto Less

• Register	$zero always	contains	the	value	0,	so	bne and	beq
often	use	it	for	comparison	after	an	slt instruction

• sltu treats	registers	as	unsigned

13

Immediates in Inequalities
• slti an immediate version of slt to
test against constants

Loop: . . .

slti $t0,$s0,1 # $t0 = 1 if
$s0<1

beq $t0,$zero,Loop # goto Loop
if $t0==0
(if ($s0>=1))

14

Loops in C/Assembly
• Simple	loop	in	C;						A[] is	an	array	of	ints

do	{ g =	g +	A[i];
i =	i +	j;

}	while	(i !=	h);
• Use	this	mapping: g,		 h,			i,			j,	&A[0]

$s1,	$s2,	$s3,	$s4,	$s5

Loop: sll $t1,$s3,2 # $t1= 4*i
addu $t1,$t1,$s5 # $t1=addr A+4i
lw $t1,0($t1) # $t1=A[i]
add $s1,$s1,$t1 # g=g+A[i]
addu $s3,$s3,$s4 # i=i+j
bne $s3,$s2,Loop # goto Loop

if i!=h
15

Control-flow	Graphs:	A	visualization

bne $s3,$s4,Else

add $s0,$s1,$s2

j Exit

Else:sub $s0,$s1,$s2

Exit:

16

bne $s3,	$s4,	Else

add	$s0,	$s1,	$s2
j	Exit

Else:	sub	$s0,	$s1,	$s2

Exit:	…

Question!

What	is	the	code	above?
A:	 while	loop
B:	 do	…	while	loop
C:	 for	loop
D:	 A	or	C
E:	 Not	a	loop

addi $s0,$zero,0
Start: slt $t0,$s0,$s1

beq $t0,$zero,Exit
sll $t1,$s0,2
addu $t1,$t1,$s5
lw $t1,0($t1)
add $s4,$s4,$t1
addi $s0,$s0,1
j Start

Exit:

17

Administrivia

• HW3	is	published	– Quicksort	in	MIPS	– due	April	2nd.
• HW2	is	due	next	Monday!

– Go	to	OH	if	you	have	problems	– don’t	ask	your	fellow	
students

– Use	piazza	frequently.

• Class	schedule	has	been	updated:
– Look	at	website!	http://shtech.org/course/ca/18s/
– Mid-Term	I:	April	19
– Mid-Term	II:	May	17

18

Six	Fundamental	Steps	in	
Calling	a	Function

1. Put	parameters	in	a	place	where	function	can	
access	them

2. Transfer	control	to	function
3. Acquire	(local)	storage	resources	needed	for	

function
4. Perform	desired	task	of	the	function
5. Put	result	value	in	a	place	where	calling	code	

can	access	it	and	restore	any	registers	you	used
6. Return	control	to	point	of	origin,	since	a	

function	can	be	called	from	several	points	in	a	
program

19

MIPS	Function	Call	Conventions

• Registers	faster	than	memory,	so	use	them
• $a0–$a3:	four	argument	registers	to	pass	
parameters	($4	- $7)

• $v0,$v1:	two	value	registers	to	return	
values	($2,$3)

• $ra:	one	return	address	register	to	return	to	
the	point	of	origin	($31)

20

Instruction	Support	for	Functions	(1/4)

... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {
return x+y;

}
address (shown in decimal)
1000
1004
1008
1012
1016
…
2000
2004

C

M
I
P
S

In	MIPS,	all	instructions	are	4	
bytes,	and	stored	in	memory	
just	like	data.	So	here	we	show	
the	addresses	of	where	the	
programs	are	stored.

21

Instruction	Support	for	Functions	(2/4)

... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {
return x+y;

}
address (shown in decimal)
1000 add $a0,$s0,$zero # x = a
1004 add $a1,$s1,$zero # y = b
1008 addi $ra,$zero,1016 # $ra=1016
1012 j sum # jump to sum
1016 … # next instruction
…
2000 sum: add $v0,$a0,$a1
2004 jr $ra # new instr. “jump register”

C

M
I
P
S

22

Instruction	Support	for	Functions	(3/4)

... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {
return x+y;

}

2000 sum: add $v0,$a0,$a1
2004 jr $ra # new instr. “jump register”

• Question:	Why	use jr here?	Why	not use	j?

• Answer:	summight	be	called	by	many	places,	so	we	can’t	
return	to	a	fixed	place.	The	calling	proc	to	summust	be	able	
to	say	“return	here”	somehow.

C

M
I
P
S

23

Instruction	Support	for	Functions	(4/4)
• Single	instruction	to	jump	and	save	return	address:	
jump	and	link	(jal)

• Before:
1008 addi $ra,$zero,1016 # $ra=1016
1012 j sum # goto sum

• After:
1008 jal sum # $ra=1012,goto sum

• Why	have	a	jal?
– Make	the	common	case	fast:	function	calls very	common.	
– Don’t	have	to	know	where code	is in	memory	with	jal!

24

MIPS	Function	Call	Instructions
• Invoke	function:	jump	and	link	instruction	(jal)

(really	should	be	laj “link	and	jump”)
– “link”	means	form	an	address	or	link	that	points	to	
calling	site	to	allow	function	to	return	to	proper	address

– Jumps	to	address	and	simultaneously	saves	the	address	
of	the	following instruction	in	register	$ra ($31)

jal FunctionLabel

• Return	from	function:	jump	register	instruction	(jr)	
– Unconditional	jump	to	address	specified	in	register
jr $ra

25

Notes	on	Functions
• Calling	program	(caller)	puts	parameters	into	
registers	$a0-$a3 and	uses	jal X to	invoke	
(callee)	at	address	labeled	X

• Must	have	register	in	computer	with	address	of	
currently	executing	instruction
– Instead	of	Instruction	Address	Register (better	name),	
historically	called	Program	Counter (PC)

– It’s	a	program’s	counter;	it	doesn’t	count	programs!

• What	value	does	jal X place	into	$ra?	????
• jr $ra puts	address	inside	$ra back	into	PC

26

Where	Are	Old	Register	Values	Saved
to	Restore	Them	After	Function	Call?
• Need	a	place	to	save	old	values	before	call	
function,	restore	them	when	return,	and	delete	

• Ideal	is	stack:	last-in-first-out	queue	
(e.g.,	stack	of	plates)
– Push:	placing	data	onto	stack
– Pop:	removing	data	from	stack

• Stack	in	memory,	so	need	register	to	point	to	it
• $sp is	the	stack	pointer	in	MIPS	($29)
• Convention	is	grow	from	high	to	low	addresses
– Push decrements	$sp,	Pop increments	$sp

27

Example
int Leaf
(int g, int h, int i, int j)

{
int f;
f = (g + h) – (i + j);
return f;

}
• Parameter	variables	g,	h,	i,	and	j in	argument	
registers	$a0,	$a1,	$a2,	and	$a3,	and	f in	$s0

• Assume	need	one	temporary	register	$t0

28

Stack	Before,	During,	After	Function

29

• Need	to	save	old	values	of	$s0 and	$t0

Contents	of	$s0
Contents	of	$t0

MIPS	Code	for	Leaf()

30

Leaf: addi $sp,$sp,-8 # adjust	stack	for	2	items
sw $t0, 4($sp) # save	$t0	for	use	afterwards
sw $s0, 0($sp) # save	$s0	for	use	afterwards

add $s0,$a0,$a1 # f	=	g	+	h
add $t0,$a2,$a3 # t0	=	i +	j
sub $v0,$s0,$t0 # return	value	(g	+	h)	– (i +	j)

lw $s0, 0($sp) # restore	register	$s0	for	caller	
lw $t0, 4($sp) # restore	register	$t0	for	caller
addi $sp,$sp,8 # adjust	stack	to	delete	2	items
jr $ra # jump	back	to	calling	routine

What	If	a	Function	Calls	a	Function?	
Recursive	Function	Calls?

• Would	clobber	values	in	$a0 to	$a3 and	$ra
• What	is	the	solution?

31

Nested	Procedures	(1/2)

int sumSquare(int x, int y) {
return mult(x,x)+ y;

}
• Something	called	sumSquare,	now	
sumSquare is	calling	mult

• So	there’s	a	value	in	$ra that	sumSquare
wants	to	jump	back	to,	but	this	will	be	
overwritten	by	the	call	to	mult

32

Need	to	save	sumSquare return	address	
before	call	to	mult

Nested	Procedures	(2/2)

• In	general,	may	need	to	save	some	other	info	in	
addition	to	$ra.

• When	a	C	program	is	run,	there	are	3	important	
memory	areas	allocated:
– Static:	Variables	declared	once	per	program,	cease	to	
exist	only	after	execution	completes	- e.g.,	C	globals

– Heap:	Variables	declared	dynamically	via	malloc
– Stack:	Space	to	be	used	by	procedure	during	
execution;	this	is	where	we	can	save	register	values

33

Optimized	Function	Convention
To	reduce	expensive	loads	and	stores	from	spilling	
and	restoring	registers,	MIPS	divides	registers	into	
two	categories:

1. Preserved	across	function	call
– Caller	can	rely	on	values	being	unchanged
– $sp,	$gp,	$fp,	“saved	registers”	$s0- $s7

2. Not	preserved	across	function	call
– Caller	cannot	rely	on	values	being	unchanged
– Return	value	registers	$v0,$v1,	Argument	registers	

$a0-$a3,	“temporary	registers”	$t0-$t9,$ra
34

