
CS	110
Computer	Architecture	
MIPS	Instruction	Formats	

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Levels	of	
Representation/Interpretation

lw $t0,	0($2)
lw $t1,	4($2)
sw $t1,	0($2)
sw $t0,	4($2)

High	Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	MIPS)

Machine		Language	
Program	(MIPS)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions

2

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

Nested	Procedures	(1/2)

int sumSquare(int x, int y) {
return mult(x,x)+ y;

}
• Something	called	sumSquare,	now	
sumSquare is	calling	mult

• So	there’s	a	value	in	$ra that	sumSquare
wants	to	jump	back	to,	but	this	will	be	
overwritten	by	the	call	to	mult

3

Need	to	save	sumSquare return	address	
before	call	to	mult

Nested	Procedures	(2/2)

• In	general,	may	need	to	save	some	other	info	in	
addition	to	$ra.

• When	a	C	program	is	run,	there	are	3	important	
memory	areas	allocated:
– Static:	Variables	declared	once	per	program,	cease	to	
exist	only	after	execution	completes	- e.g.,	C	globals

– Heap:	Variables	declared	dynamically	via	malloc
– Stack:	Space	to	be	used	by	procedure	during	
execution;	this	is	where	we	can	save	register	values

4

Optimized	Function	Convention
To	reduce	expensive	loads	and	stores	from	spilling	
and	restoring	registers,	MIPS	divides	registers	into	
two	categories:

1. Preserved	across	function	call
– Caller	can	rely	on	values	being	unchanged
– $sp,	$gp,	$fp,	“saved	registers”	$s0- $s7

2. Not	preserved	across	function	call
– Caller	cannot	rely	on	values	being	unchanged
– Return	value	registers	$v0,$v1,	Argument	registers	

$a0-$a3,	“temporary	registers”	$t0-$t9,$ra
5

Stack	Before,	During,	After	Call

6

Using	the	Stack	(1/2)

• So	we	have	a	register	$sp which	always	
points	to	the	last	used	space	in	the	stack.

• To	use	stack,	we	decrement	this	pointer	by	
the	amount	of	space	we	need	and	then	fill	it	
with	info.

• So,	how	do	we	compile	this?
int sumSquare(int x, int y) {

return mult(x,x)+ y;
}

7

Using	the	Stack	(2/2)

• Hand-compile
sumSquare:

addi $sp,$sp,-8 # space on stack
sw $ra, 4($sp) # save ret addr
sw $a1, 0($sp) # save y
add $a1,$a0,$zero # mult(x,x)
jal mult # call mult
lw $a1, 0($sp) # restore y
add $v0,$v0,$a1 # mult()+y
lw $ra, 4($sp) # get ret addr
addi $sp,$sp,8 # restore stack
jr $ra

mult: ...

int sumSquare(int x, int y) {
return mult(x,x)+ y; }

“push”

“pop”

8

Basic	Structure	of	a	Function

entry_label:
addi $sp,$sp, -framesize
sw $ra, framesize-4($sp) # save $ra
save other regs if need be

...

restore other regs if need be
lw $ra, framesize-4($sp) # restore $ra
addi $sp,$sp, framesize
jr $ra

Epilogue

Prologue

Body (call other functions…)

ra

memory

9

Where	is	the	Stack	in	Memory?
• MIPS	convention
• Stack	starts	in	high	memory	and	grows	down
– Hexadecimal	(base	16)	:	7fff	fffchex

• MIPS	programs	(text	segment)	in	low	end
– 0040	0000hex

• static	data	segment	(constants	and	other	static	
variables)	above	text	for	static	variables
– MIPS	convention	global	pointer	($gp)	points	to	static

• Heap	above	static	for	data	structures	that	grow	
and	shrink	;	grows	up	to	high	addresses

10

MIPS	Memory	Allocation

11

Register	Allocation	and	Numbering

12

no!!

Recursive	Function	Factorial
int fact (int n)

{

if (n < 1) return (1);

else return (n * fact(n-1));

}

13

Recursive	Function	Factorial
Fact:

adjust stack for 2 items
addi $sp,$sp,-8
save return address
sw $ra, 4($sp)
save argument n
sw $a0, 0($sp)
test for n < 1
slti $t0,$a0,1
if n >= 1, go to L1
beq $t0,$zero,L1
Then part (n==1) return 1
addi $v0,$zero,1
pop 2 items off stack
addi $sp,$sp,8
return to caller
jr $ra

L1:
Else part (n >= 1)
arg. gets (n – 1)
addi $a0,$a0,-1
call fact with (n – 1)
jal Fact
return from jal: restore n
lw $a0, 0($sp)
restore return address
lw $ra, 4($sp)
adjust sp to pop 2 items
addi $sp, $sp,8
return n * fact (n – 1)
mul $v0,$a0,$v0
return to the caller
jr $ra

14
mul is	a	pseudo	instruction

Levels	of	
Representation/Interpretation

lw $t0,	0($2)
lw $t1,	4($2)
sw $t1,	0($2)
sw $t0,	4($2)

High	Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	MIPS)

Machine		Language	
Program	(MIPS)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions

15

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

Big	Idea:	
Stored-Program	

Computer

– Instructions	are	represented	as	bit	patterns	- can	think	
of	these	as	numbers

– Therefore,	entire	programs	can	be	stored	in	memory	
to	be	read	or	written	just	like	data

– Can	reprogram	quickly	(seconds),	don’t	have	to	rewire	
computer	(days)

– Known	as	the	“von	Neumann”	computers	after	widely	
distributed	tech	report	on	EDVAC	project
• Wrote-up	discussions	of	Eckert	and	Mauchly
• Anticipated	earlier	by	Turing	and	Zuse

First	Draft	of	a	Report	on	the	EDVAC
by

John	von	Neumann
Contract	No.	W–670–ORD–4926

Between	the
United	States	Army	Ordnance	Department	and	the

University	of	Pennsylvania
Moore	School	of	Electrical	Engineering

University	of	Pennsylvania

June 30,	1945

16

Consequence	#1:	Everything	Addressed

• Since	all	instructions	and	data	are	stored	in	memory,	
everything	has	a	memory	address:	instructions,	data	
words
– both	branches	and	jumps	use	these

• C	pointers	are	just	memory	addresses:	they	can	point	to	
anything	in	memory
– Unconstrained	use	of	addresses	can	lead	to	nasty	bugs;	up	to	

you	in	C;	limited	in	Java	by	language	design
• One	register	keeps	address	of	instruction	being	executed:	

“Program	Counter”	(PC)
– Basically	a	pointer	to	memory:	Intel	calls	it	Instruction	Pointer	(a	

better	name)

17

Consequence	#2:	Binary	Compatibility

• Programs	are	distributed	in	binary	form
– Programs	bound	to	specific	instruction	set
– Different	version	for	ARM	(phone)	and	PCs

• New	machines	want	to	run	old	programs	(“binaries”)	
as	well	as	programs	compiled	to	new	instructions

• Leads	to	“backward-compatible”	instruction	set	
evolving	over	time

• Selection	of	Intel	8086	in	1981	for	1st IBM	PC	is	major	
reason	latest	PCs	still	use	80x86	instruction	set;	could	
still	run	program	from	1981	PC	today

18

Instructions	as	Numbers	(1/2)

• Currently	all	data	we	work	with	is	in	words	(32-bit	
chunks):
– Each	register	is	a	word.
– lw and	sw both	access	memory	one	word	at	a	time.

• So	how	do	we	represent	instructions?
– Remember:	Computer	only	understands	1s	and	0s,	so	
“add $t0,$0,$0”	is	meaningless.

– MIPS/RISC	seeks	simplicity:	since	data	is	in	words,	
make	instructions	be	fixed-size	32-bit	words,	too

19

Instructions	as	Numbers	(2/2)

• One	word	is	32	bits,	so	divide	instruction	word	
into	“fields”.

• Each	field	tells	processor	something	about	
instruction.

• We	could	define	different	fields	for	each	
instruction,	but	MIPS	seeks	simplicity,	so	define	3	
basic	types	of	instruction	formats:
– R-format
– I-format
– J-format

20

Instruction	Formats

• I-format:	used	for	instructions	with	
immediates,	lw and	sw (since	offset	counts	as	
an	immediate),	and	branches	(beq and	bne)	
– (but	not	the	shift	instructions;	later)

• J-format:	used	for	j and	jal
• R-format:	used	for	all	other	instructions
• It	will	soon	become	clear	why	the	instructions	
have	been	partitioned	in	this	way

21

R-Format	Instructions	(1/5)

• Define	“fields”	of	the	following	number	of	bits	
each:	6	+	5	+	5	+	5	+	5	+	6	=	32

• For	simplicity,	each	field	has	a	name:

• Important:	On	these	slides	and	in	book,	each	field	is	
viewed	as	a	5- or	6-bit	unsigned	integer,	not	as	part	of	a	
32-bit	integer
– Consequence:	5-bit	fields	can	represent	any	number	0-31,	while	

6-bit	fields	can	represent	any	number	0-63

6 5 5 5 65

opcode rs rt rd functshamt

22

R-Format	Instructions	(2/5)

• What	do	these	field	integer	values	tell	us?
– opcode:	partially	specifies	what	instruction	it	is	
• Note:	This	number	is	equal	to	0 for	all	R-Format	
instructions

– funct:	combined	with	opcode,	this	number	
exactly	specifies	the	instruction

23

• Question:	Why	aren’t	opcode and	funct a	
single	12-bit	field?
–We’ll	answer	this	later

R-Format	Instructions	(3/5)

• More	fields:
– rs (Source	Register):	usually used	to	specify	
register	containing	first	operand

– rt (Target	Register):	usually used	to	specify	
register	containing	second	operand	(note	that	
name	is	misleading)

– rd (Destination	Register):	usually used	to	specify	
register	which	will	receive	result	of	computation

24

R-Format	Instructions	(4/5)

• Notes	about	register	fields:
– Each	register	field	is	exactly	5	bits,	which	means	
that	it	can	specify	any	unsigned	integer	in	the	
range	0-31.		Each	of	these	fields	specifies	one	of	
the	32	registers	by	number.

– The	word	“usually”	was	used	because	there	are	
exceptions	that	we’ll	see	later

25

R-Format	Instructions	(5/5)
• Final	field:
– shamt:	This	field	contains	the	amount	a	shift	
instruction	will	shift	by.		Shifting	a	32-bit	word	
by	more	than	31	is	useless,	so	this	field	is	only	5	
bits	(so	it	can	represent	the	numbers	0-31)

– This	field	is	set	to	0 in	all	but	the	shift	
instructions

• For	a	detailed	description	of	field	usage	for	
each	instruction,	see	green	insert	in	COD
(You	will	get	one	at	all	exams)

26

R-Format	Example	(1/2)
• MIPS	Instruction:

add $8,$9,$10

opcode =	0	(look	up	in	table	in	book)
funct =	32	(look	up	in	table	in	book)
rd =	8	(destination)
rs =	9	(first	operand)
rt =	10	(second	operand)
shamt =	0	(not	a	shift)

27

R-Format	Example	(2/2)
• MIPS	Instruction:

add $8,$9,$10
Decimal	number	per	field	representation:

Binary	number	per	field	representation:

hex	representation:	 012A 4020hex

Called	a	Machine	Language	Instruction

0 9 10 8 320

000000 01001 01010 01000 10000000000
hex

28

opcode rs rt rd functshamt

= 19,546,144ten

Administrivia
• HW2	
– Sunday	afternoon:	

• Only	50%	of	students	submitted	HW
• Only	25%	of	students	have	full	points

– =>	Today	morning:
• 38	(30%)	students	with	less	than	50%	points
• 20	(16%)	students	without	submission

– You	started	too	late	– start	early!!!
– Use	piazza	frequently.

• Project	1.1	will	be	released	today
– Runs	in	parallel	to	homework	3!
– START	EARLY!

29

I-Format	Instructions	(1/4)

• What	about	instructions	with	immediates?
– 5-bit	field	only	represents	numbers	up	to	the	value	31:	
immediates	may	be	much	larger	than	this

– Ideally,	MIPS	would	have	only	one	instruction	format	
(for	simplicity):	unfortunately,	we	need	to	
compromise

• Define	new	instruction	format	that	is	partially	
consistent	with	R-format:
– First	notice	that,	if	instruction	has	immediate,	then	it	
uses	at	most	2	registers.

30

I-Format	Instructions	(2/4)
• Define	“fields”	of	the	following	number	of	bits	each:	
6	+	5	+	5	+	16	=	32	bits

– Again,	each	field	has	a	name:

– Key	Concept:	Only	one	field	is	inconsistent	with	R-format.		
Most	importantly,	opcode is	still	in	same	location.

6 5 5 16

opcode rs rt immediate

31

I-Format	Instructions	(3/4)
• What	do	these	fields	mean?
– opcode:	same	as	before	except	that,	since	there’s	no	
funct field,	opcode uniquely	specifies	an	instruction	in	
I-format

– This	also	answers	question	of	why	R-format	has	two	6-bit	
fields	to	identify	instruction	instead	of	a	single	12-bit	
field:	in	order	to	be	consistent	as	possible	with	other	
formats	while	leaving	as	much	space	as	possible	for	
immediate	field.

– rs:	specifies	a	register	operand	(if	there	is	one)
– rt:	specifies	register	which	will	receive	result	of	
computation	(this	is	why	it’s	called	the	target register	
“rt”)	or	other	operand	for	some	instructions.

32

I-Format	Instructions	(4/4)
• The	Immediate	Field:
– addi,	slti,	sltiu,	the	immediate	is	sign-
extended to	32	bits.		Thus,	it’s	treated	as	a	
signed	integer.

– 16	bits	è can	be	used	to	represent	immediate	
up	to	216 different	values

– This	is	large	enough	to	handle	the	offset	in	a	
typical	lw or	sw,	plus	a	vast	majority	of	values	
that	will	be	used	in	the	slti instruction.

– Later,	we’ll	see	what	to	do	when	a	value	is	too	
big	for	16	bits

33

I-Format	Example	(1/2)
• MIPS	Instruction:

addi $21,$22,-50

opcode =	8	(look	up	in	table	in	book)
rs =	22	(register	containing	operand)
rt =	21	(target	register)
immediate =	-50	(by	default,	this	is	decimal	in	
assembly	code)

34

I-Format	Example	(2/2)
• MIPS	Instruction:

addi $21,$22,-50

8 22 21 -50

001000 10110 10101 1111111111001110

Decimal/field representation:

Binary/field representation:

hexadecimal representation: 22D5 FFCEhex

35

Question
Which	instruction	has	same	representation	as	integer	35ten?

a) add	$0,	$0,	$0
b) subu $s0,$s0,$s0
c) lw $0,	0($0)
d) addi $0,	$0,	35
e) subu $0,	$0,	$0

Registers	numbers	and	names:	
0:	$0,	..	8:	$t0,	9:$t1,	..15:	$t7,	16:	$s0,	17:	$s1,	..	23:	$s7	

Opcodes	and	function	fields:
add:	opcode =	0,	funct =	32
subu:	opcode =	0,	funct =	35
addi:	opcode =	8
lw:	opcode =	35

opcode rs rt offset

rd functshamtopcode rs rt

opcode rs rt immediate

rd functshamtopcode rs rt

rd functshamtopcode rs rt

36

Dealing	With	Large	Immediates

• How	do	we	deal	with	32-bit	immediates?
– Sometimes	want	to	use	immediates >	± 215 with	
addi,	lw,	sw and	slti

– Bitwise	logic	operations	with	32-bit	immediates

• Solution:		Don’t	mess	with	instruction	
formats,	just	add	a	new	instruction

• Load	Upper	Immediate (lui)
– lui reg,imm
–Moves	16-bit	imm into	upper	half	(bits	16-31)	of	
reg and	zeros	the	lower	half	(bits	0-15)

37

lui Example

• Want:			addiu $t0,$t0,0xABABCDCD
– This	is	a	pseudo-instruction!

• Translates	into:
lui $at,0xABAB # upper 16
ori $at,$at,0xCDCD # lower 16
addu $t0,$t0,$at # move

• Now	we	can	handle	everything	with	a	16-bit	
immediate!

38

Only	the	assembler	gets	to	use	$at	($1)

Branching	Instructions

• beq and	bne
– Need	to	specify	a	target	address	if	branch	taken
– Also	specify	two	registers	to	compare

• Use	I-Format:

– opcode specifies	beq (4)	vs.	bne (5)
– rs and	rt specify	registers
– How	to	best	use	immediate to	specify	
addresses?

39

opcode rs rt immediate
31 0

Branching	Instruction	Usage

• Branches	typically	used	for	loops	(if-else,	
while,	for)
– Loops	are	generally	small	(<	50	instructions)
– Function	calls	and	unconditional	jumps	handled	
with	jump	instructions	(J-Format)

• Recall: Instructions	stored	in	a	localized	area	
of	memory	(Code/Text)
– Largest	branch	distance	limited	by	size	of	code
– Address	of	current	instruction	stored	in	the	
program	counter	(PC)

40

PC-Relative	Addressing

• PC-Relative	Addressing: Use	the	immediate
field	as	a	two’s	complement	offset	to	PC
– Branches	generally	change	the	PC	by	a	small	
amount

– Can	specify	± 215 addresses	from	the	PC

41

Branch	Calculation

• If	we	don’t take	the	branch:
– PC = PC + 4 = next	instruction

• If	we	do take	the	branch:
– PC = (PC+4) + (immediate*4)

• Observations:
– immediate is	number	of	instructions	to	jump	
(remember,	specifies	words)	either	forward	(+)	or	
backwards	(–)

– Branch	from	PC+4 for	hardware	reasons;	will	be	
clear	why	later	in	the	course

42

Branch	Example	(1/2)

• MIPS	Code:
Loop: beq $9,$0,End

addu $8,$8,$10
addiu $9,$9,-1
j Loop

End:

• I-Format	fields:
opcode =	4 (look	up	on	Green	Sheet)
rs =	9 (first	operand)
rt =	0 (second	operand)
immediate =	???

43

Start	counting	from	
instruction	AFTER	the	
branch

1
2
3

3

Branch	Example	(2/2)

• MIPS	Code:
Loop: beq $9,$0,End

addu $8,$8,$10
addiu $9,$9,-1
j Loop

End:

Field	representation	(decimal):

Field	representation	(binary):

44

4 9 0 3
31 0

000100 01001 00000 0000000000000011
31 0

Questions	on	PC-addressing

• Does	the	value	in	branch	immediate	field	
change	if	we	move	the	code?
– If	moving	individual	lines	of	code,	then	yes
– If	moving	all	of	code,	then	no

• What	do	we	do	if	destination	is	>	215
instructions	away	from	branch?
– Other	instructions	save	us
– beq $s0,$0,far bne $s0,$0,next
next instr à j far

next: # next instr
45

