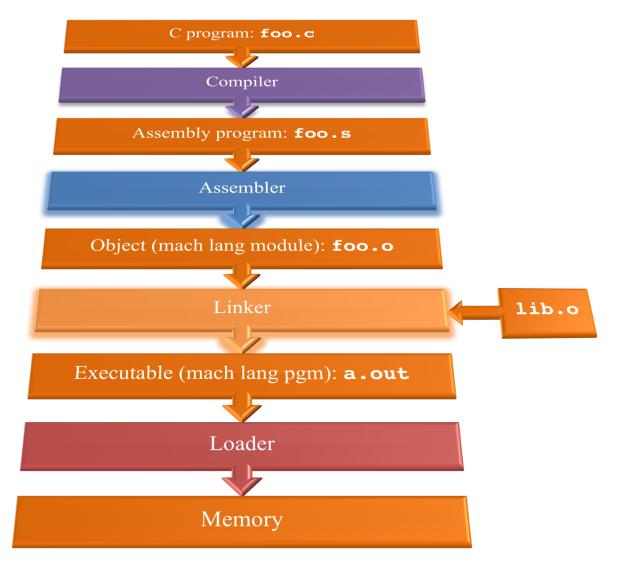
CS 110 Computer Architecture Synchronous Digital Systems

Instructor: Sören Schwertfeger


http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C

Compiling, Assembling, Linking, Loading (CALL) a Program

Compiler

- Input: High-Level Language Code (e.g., foo.c)
- Output: Assembly Language Code (e.g., foo.s for MIPS)
- Note: Output *may* contain pseudo-instructions
- <u>Pseudo-instructions</u>: instructions that assembler understands but not in machine For example:

-move $\$s1,\$s2 \Rightarrow add \$s1,\$s2,\$zero$

Assembler

- Input: Assembly Language Code (MAL) (e.g., **foo.s** for MIPS)
- Output: Object Code, information tables (TAL) (e.g., foo.o for MIPS)
- Reads and Uses Directives
- Replace Pseudo-instructions
- Produce Machine Language
- Creates Object File

Linker

- Input: Object code files, information tables (e.g., foo.o,libc.o for MIPS)
- Output: Executable code (e.g., a.out for MIPS)
- Combines several object (.o) files into a single executable ("<u>linking</u>")
- Step 1: combine text segments from.o files
- Step 2: combine data segments from .o files
- Step 3: Resolve references:
 - Go through Relocation Table; handle each entry => Resolve absolute addresses

Loader Basics

- Input: Executable Code (e.g., a.out for MIPS)
- Output: (program is run)
- Executable files are stored on disk
- When one is run, loader's job is to load it into memory and start it running
- In reality, loader is the operating system (OS)

loading is one of the OS tasks

Static vs Dynamically linked libraries

- What we've described is the traditional way: statically-linked approach
 - The library is now part of the executable, so if the library updates, we don't get the fix (have to recompile if we have source)
 - It includes the <u>entire</u> library even if not all of it will be used
 - Executable is self-contained
- An alternative is dynamically linked libraries (DLL), common on Windows (.dll) & UNIX (.so) (shared object) platforms

en.wikipedia.org/wiki/Dynamic_linking

Dynamically linked libraries

• Space/time issues

+ Storing a program requires less disk space

+ Sending a program requires less time

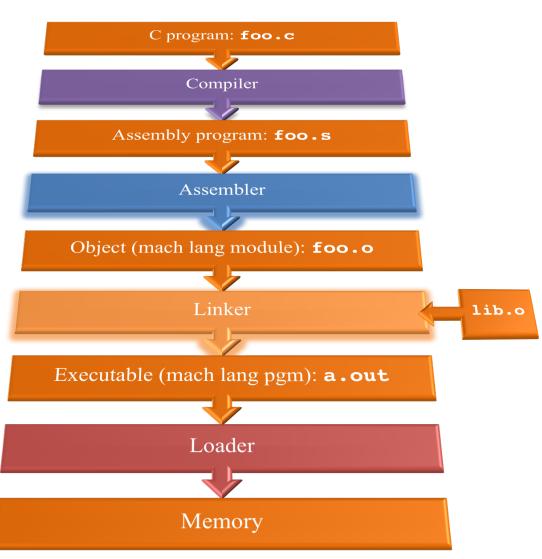
+ Executing two programs requires less memory (if they share a library)

- At runtime, there's time overhead to do link

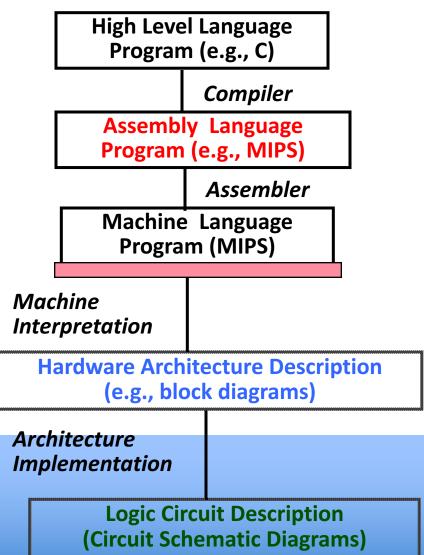
Upgrades

+ Replacing one file (libXYZ.so) upgrades every program that uses library "XYZ"

- Having the executable isn't enough anymore


Overall, dynamic linking adds quite a bit of complexity to the compiler, linker, and operating system. However, it provides many benefits that often outweigh these 8

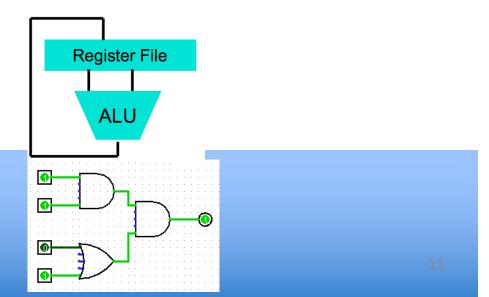
Dynamically linked libraries


- The prevailing approach to dynamic linking uses machine code as the "lowest common denominator"
 - The linker does not use information about how the program or library was compiled (i.e., what compiler or language)
 - This can be described as "linking at the machine code level"
 - This isn't the only way to do it ...

In Conclusion...

- Compiler converts a single HLL file into a single assembly language file.
- Assembler removes pseudoinstructions, converts what it can to machine language, and creates a checklist for the linker (relocation table). A . s file becomes a . o file.
 - Does 2 passes to resolve addresses, handling internal forward references
- Linker combines several .o files and resolves absolute addresses.
 - Enables separate compilation, libraries that need not be compiled, and resolves remaining addresses
- Loader loads executable into memory and begins execution.

Levels of Representation/Interpretation



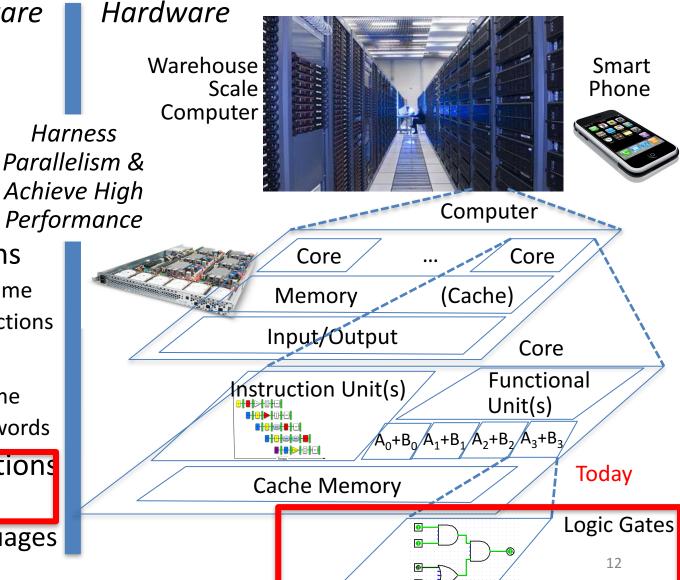
temp = v[k]; v[k] = v[k+1]; v[k+1] = temp;

lw	\$t0, 0(\$2)
lw	\$t1, 4(\$2)
SW	\$t1 <i>,</i> 0(\$2)
SW	\$t0 <i>,</i> 4(\$2)

Anything can be represented as a *number*, i.e., data or instructions

0000100111000110101011110101100010101111010110000000100111000110110001101010111101011000000010010101100000001001110001101111

You are Here!


- Software
 Parallel Requests

 Assigned to computer
 e.g., Search "Katz"
- Parallel Threads
 Assigned to core
 e.g., Lookup, Ads
- Parallel Instructions

 >1 instruction @ one time
 e.g., 5 pipelined instructions
- Parallel Data

>1 data item @ one time e.g., Add of 4 pairs of words

- Hardware descriptions All gates @ one time
- Programming Languages

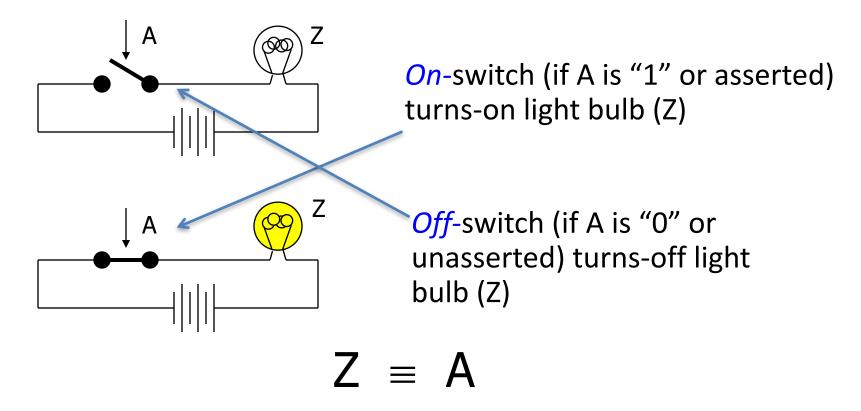
Hardware Design

- Next several weeks: how a modern processor is built, starting with basic elements as building blocks
- Why study hardware design?
 - Understand capabilities and limitations of HW in general and processors in particular
 - What processors can do fast and what they can't do fast (avoid slow things if you want your code to run fast!)
 - Background for more in-depth HW courses
 - Hard to know what you'll need for next 30 years
 - There is only so much you can do with standard processors: you may need to design own custom HW for extra performance
 - Even some commercial processors today have customizable hardware!
 - E.g. Google Tensor Processing Unit (TPU)

Synchronous Digital Systems

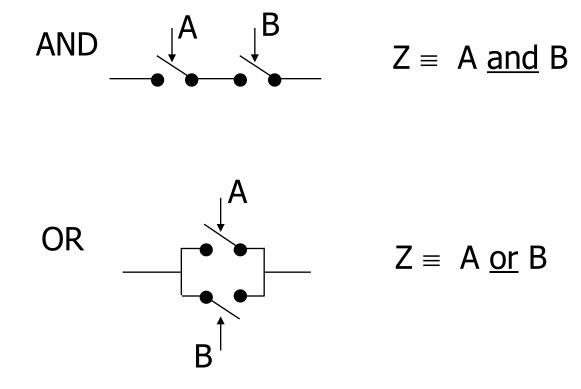
Hardware of a processor, such as the MIPS, is an example of a Synchronous Digital System

Synchronous:


- All operations coordinated by a central clock
 - "Heartbeat" of the system!

Digital:

- Represent all values by discrete values
- Two binary digits: 1 and 0
- Electrical signals are treated as 1's and 0's
 - 1 and 0 are complements of each other
- High /low voltage for true / false, 1 / 0


Switches: Basic Element of Physical Implementations

 Implementing a simple circuit (arrow shows action if wire changes to "1" or is *asserted*):

Switches (cont'd)

Compose switches into more complex ones (Boolean functions):

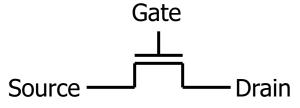
Historical Note

- Early computer designers built ad hoc circuits from switches
- Began to notice common patterns in their work: ANDs, ORs, ...
- Master's thesis (by Claude Shannon, 1940) made link between work and 19th Century Mathematician George Boole

 Called it "Boolean" in his honor
- Could apply math to give theory to hardware design, minimization, ...

Transistors

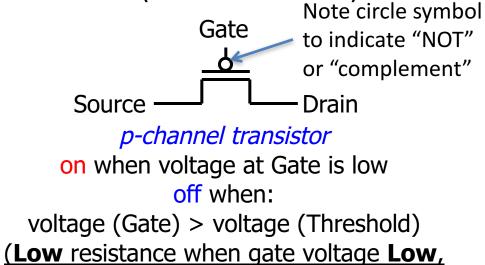
- High voltage (V_{dd}) represents 1, or true
 - In modern microprocessors, Vdd ~ 1.0 Volt
- Low voltage (0 Volt or Ground) represents 0, or false
- Pick a midpoint voltage to decide if a 0 or a 1
 - Voltage greater than midpoint = 1
 - Voltage less than midpoint = 0
 - This removes noise as signals propagate a big advantage of digital systems over analog systems
- If one switch can control another switch, we can build a computer!
- Our switches: CMOS transistors


CMOS Transistor Networks

- Modern digital systems designed in CMOS
 - MOS: Metal-Oxide on Semiconductor
 - C for complementary: use *pairs* of normally-*on* and normally-*off* switches
- CMOS transistors act as voltage-controlled switches
 - Similar, though easier to work with, than electromechanical relay switches from earlier era
 - Use energy primarily when switching

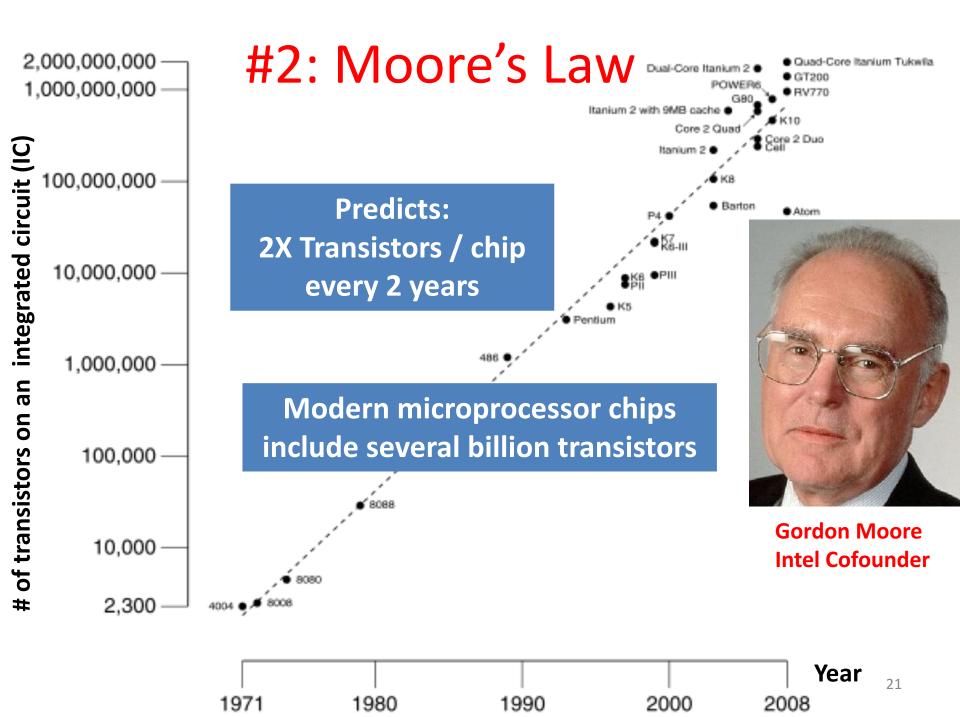
CMOS Transistors

- Source _____Gate ____Drain
- Three terminals: source, gate, and drain
 - Switch action:

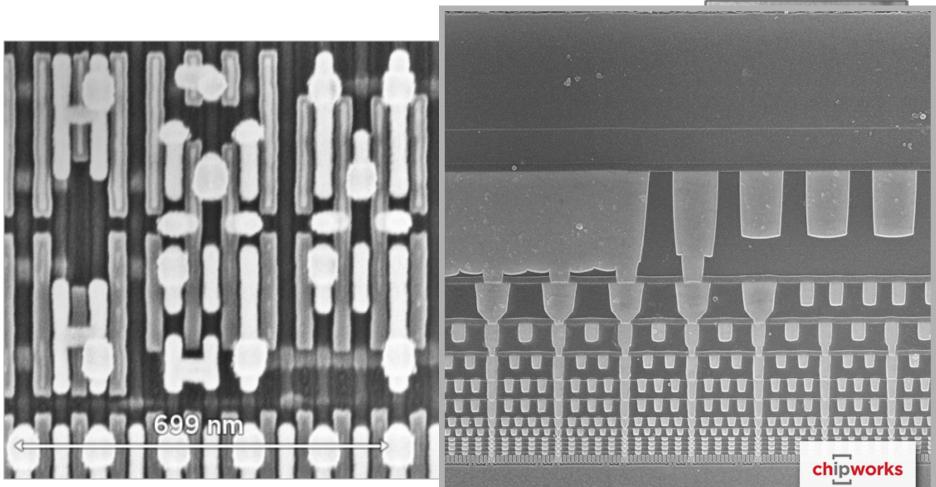

if voltage on gate terminal is (some amount) higher/lower than source terminal then conducting path established between drain and source terminals (switch is closed)

n-channel transitor

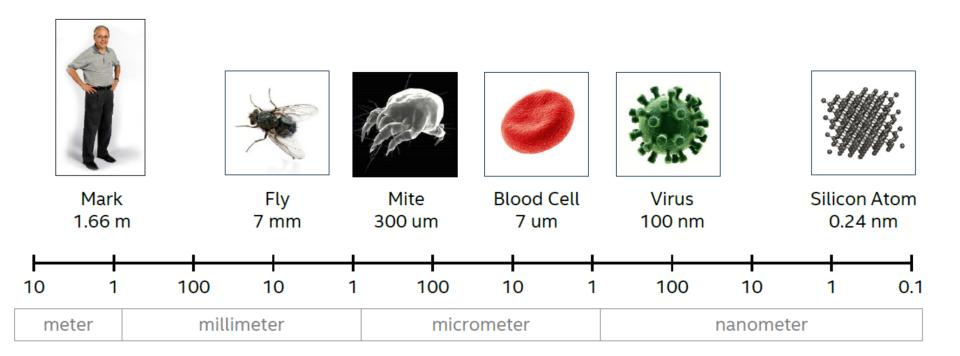
off when voltage at Gate is low on when:


voltage (Gate) > voltage (Threshold) (**High** resistance when gate voltage **Low**, **Low** resistance when gate voltage **High**)

High resistance when gate voltage **High**)


field-effect transistor (FET) => CMOS circuits use a combination of p-type and n-type metal-oxide-semiconductor field-effect transistors =>

MOSFET

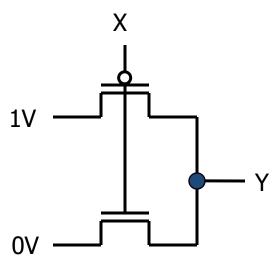

Intel 14nm Technology

1 nm = 1 / 1,000,000,000 m; wavelength visible light: 400 – 700 nm

Plan view of transistors

Sense of Scale

1 nm = 1 / 1,000,000,000 m; wavelength visible light: 400 – 700 nm

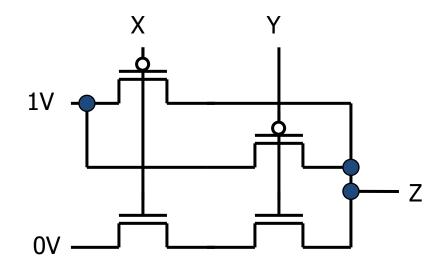

Source: Mark Bohr, IDF14

CMOS Circuit Rules

- Don't pass weak values => Use Complementary Pairs
 - N-type transistors pass weak 1's (V_{dd} V_{th})
 - N-type transistors pass strong 0's (ground)
 - Use N-type transistors only to pass 0's (N for negative)
 - Converse for P-type transistors: Pass weak 0s, strong 1s
 - Pass weak 0's (V_{th}), strong 1's (V_{dd})
 - Use P-type transistors only to pass 1's (P for positive)
 - Use pairs of N-type and P-type to get strong values
- Never leave a wire undriven
 - Make sure there's always a path to $V_{\rm dd}$ or GND
- Never create a path from V_{dd} to GND (ground)
 - This would short-circuit the power supply!

CMOS Networks

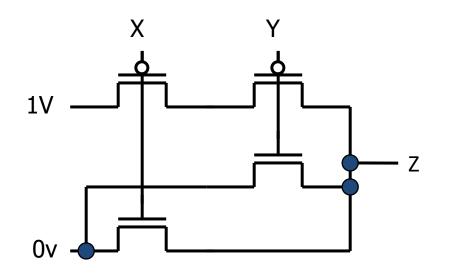
p-channel transistor on when voltage at Gate is low off when: voltage(Gate) > voltage (Threshold)



n-channel transitor off when voltage at Gate is low on when: voltage(Gate) > voltage (Threshold) what is the relationship between x and y?

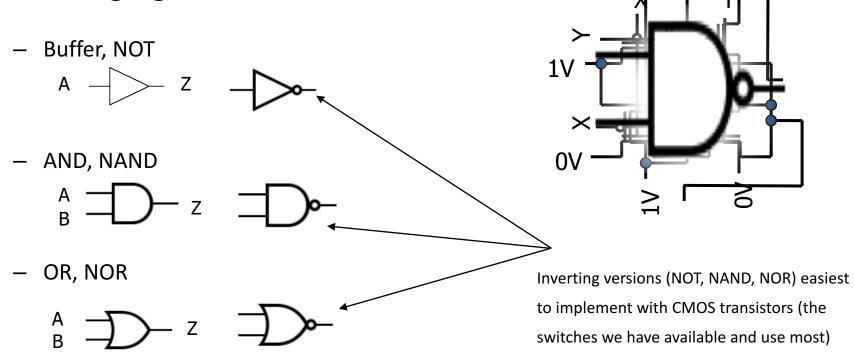
Х	Y
0 Volt (GND)	1 Volt (Vdd)
1 Volt (Vdd)	0 Volt (GND)

Called an *inverter* or *not gate*


Two-Input Networks

what is the relationship between x, y and z?						
	Х	Υ	Z			
	0 Volt	0 Volt	1 Volt			
	0 Volt	1 Volt	1 Volt			
	1 Volt	0 Volt	1 Volt			
	1 Volt	1 Volt	0 Volt			

Called a NAND gate (NOT AND)


Question

	Х	Y	Z				
			Α	В	С	D	
0 Volt 1 Volt 0 1 0 1 Volts	0 Volt	0 Volt	0	0	1	<u>1</u>	Volts
	0 Volt	1 Volt	0	1	0	1	Volts
1 Volt 0 Volt 0 1 0 1 Volts	1 Volt	0 Volt	0	1	0	1	Volts
1 Volt 1 Volt 1 1 1 0 0 Volts	1 Volt	1 Volt	1	1	0	0	Volts

Combinational Logic Symbols

 Common combinational logic systems have standard symbols called logic gates

Remember...

• AND-

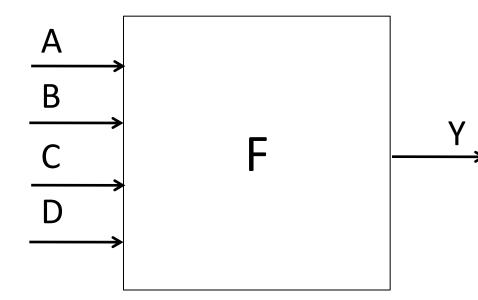
Admin

- Midterm I: April 19th!
 - Allowed material: 1 <u>hand-written by you</u> English double-sided A4 cheat sheet.
 - Not copied original hand written everything
 - Violations:
 - Found before midterm: confiscate cheat sheet
 - During/ after: 0 pts in midterm
 - MIPS green card provided by us!
 - No electronic devices no <u>Calculator</u>!
 - Content: Number representation, C, MIPS, CALL
 - Review session on April 17th.
- Project 1.1 autograder

Boolean Algebra

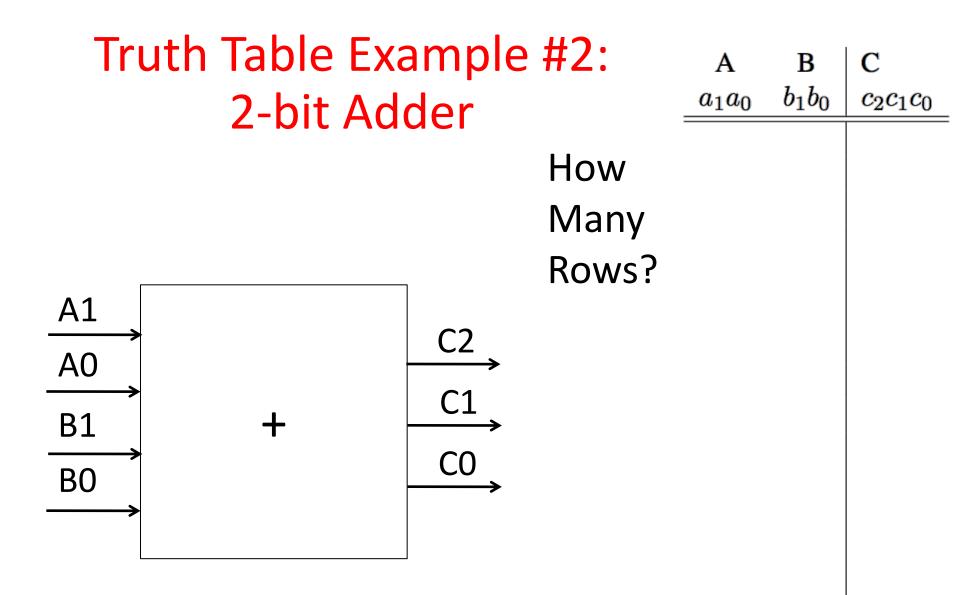
• Use plus "+" for OR

- "logical sum" 1+0 = 0+1 = 1 (True); 1+1=2 (True); 0+0 = 0 (False)


- Use product for AND (a•b or implied via ab)
 - "logical product"
 0*0 = 0*1 = 1*0 = 0 (False); 1*1 = 1 (True)
- "Hat" to mean complement (NOT)
- Thus

 $ab + a + \overline{c}$

- $= a \cdot b + a + \overline{c}$
- = (a AND b) OR a OR (NOT c)



Exhaustive list of the output value generated for each combination of inputs

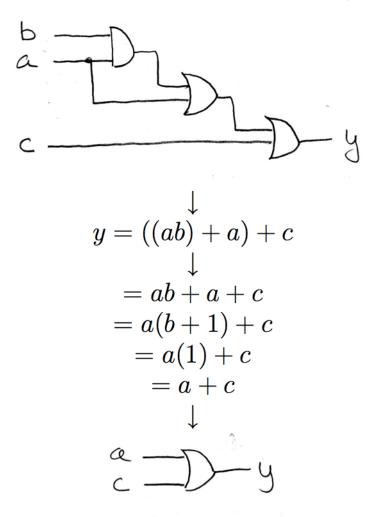
How many logic functions can be defined with N inputs?

a	b	c	d	У
0	0	0	0	F(0,0,0,0)
0	0	0	1	F(0,0,0,1)
0	0	1	0	F(0,0,1,0)
0	0	1	1	F(0,0,1,1)
0	1	0	0	F(0,1,0,0)
0	1	0	1	F(0,1,0,1)
0	1	1	0	F(0,1,1,0)
0	1	1	1	F(0,1,1,1)
1	0	0	0	F(1,0,0,0)
1	0	0	1	F(1,0,0,1)
1	0	1	0	F(1,0,1,0)
1	0	1	1	F(1,0,1,1)
1	1	0	0	F(1,1,0,0)
1	1	0	1	F(1,1,0,1)
1	1	1	0	F(1,1,1,0)
1	1	1	1	F(1,1,1,1)

Truth Table Example #1: y = F(a,b): 1 iff $a \neq b$ a b y 000 0 1 1 1 0 1 1 1 0

Truth Table Example #3: 32-bit Unsigned Adder					
Α	В	C	_		
000 0	000 0	000 00	-		
000 0	000 1	000 01			
•	•	•	How		
•	•	•	Many Rows?		
•	•	•			
111 1	111 1	111 10			

Truth Table Example #4: 3-input Majority Circuit

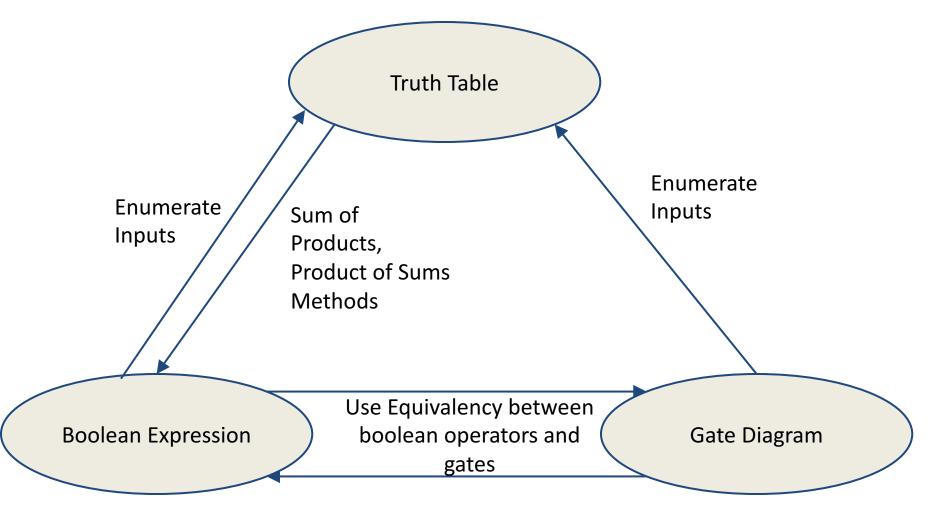

Y =

This is called *Sum of Products* form; Just another way to represent the TT as a logical expression

More simplified forms (fewer gates and wires)

b a C ()

Boolean Algebra: Circuit & Algebraic Simplification


original circuit

equation derived from original circuit

algebraic simplification

simplified circuit

Representations of Combinational Logic (groups of logic gates)

Laws of Boolean Algebra

$X \overline{X} = 0$	$X + \overline{X} = 1$
X 0 = 0	X + 1 = 1
X 1 = X	X + 0 = X
X X = X	X + X = X
X Y = Y X	X + Y = Y + X
(X Y) Z = Z (Y Z)	(X + Y) + Z = Z + (Y + Z)
X (Y + Z) = X Y + X Z	X + Y Z = (X + Y) (X + Z)
X Y + X = X	(X + Y) X = X
$\overline{X}Y + X = X + Y$	$(\overline{X} + Y) X = X Y$
$\overline{XY} = \overline{X} + \overline{Y}$	$\overline{X + Y} = \overline{X} \overline{Y}$

Complementarity Laws of 0's and 1's Identities **Idempotent Laws** Commutativity Associativity Distribution Uniting Theorem Uniting Theorem v. 2 DeMorgan's Law

Boolean Algebraic Simplification Example

y = ab + a + c

- -

· · ·

. .

Boolean Algebraic Simplification Example

$$y = ab + a + c$$

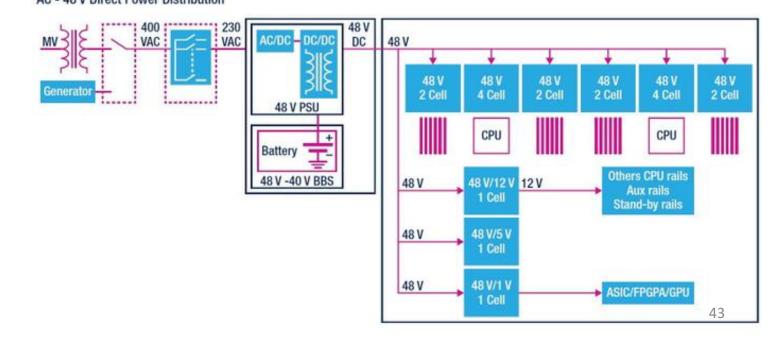
= a(1) + c

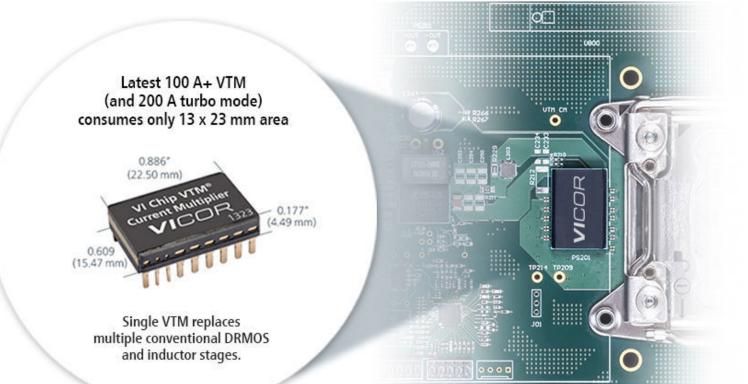
= a + c

= a(b+1) + c

- abcy
- 0000
- 0011
- 0100
- 0111
- 1001
- 1011
- 1101
- 1111

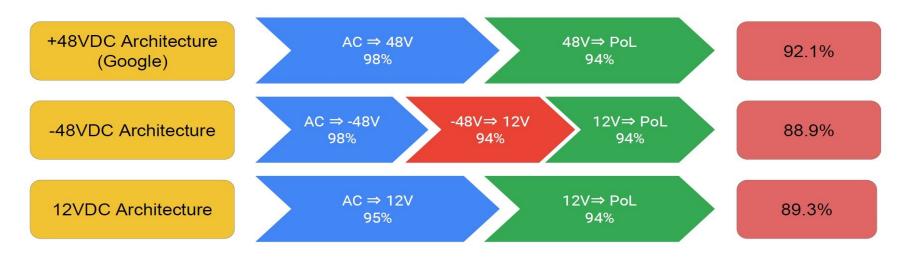
distribution, identity law of 1's identity

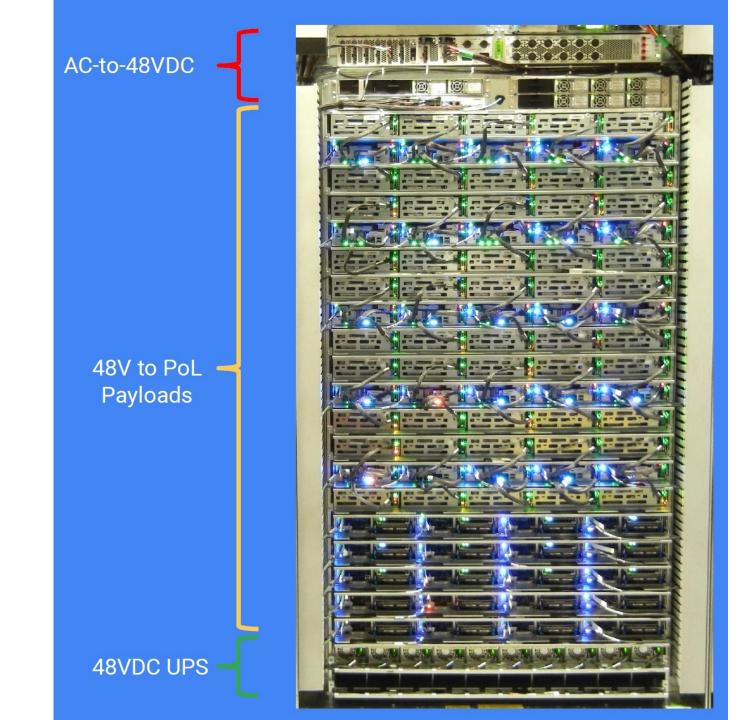

Question

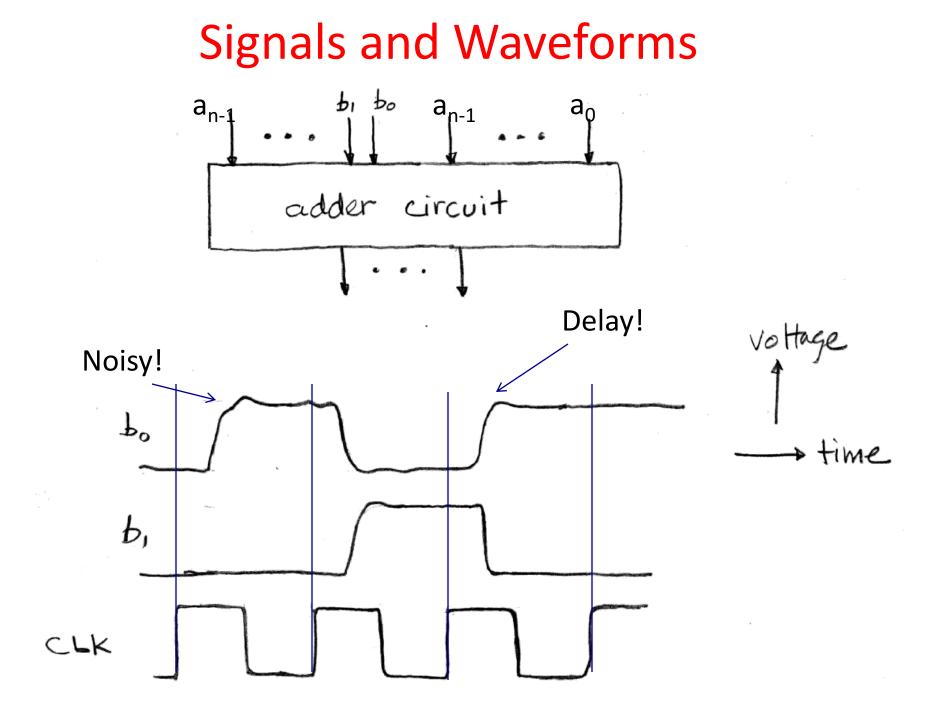

• Simplify $Z = A + BC + \overline{A}(\overline{BC})$

- A: Z = 0
- B: $Z = \overline{A(1 + BC)}$
- C: Z = (A + BC)
- D: Z = BC
- E: Z = 1

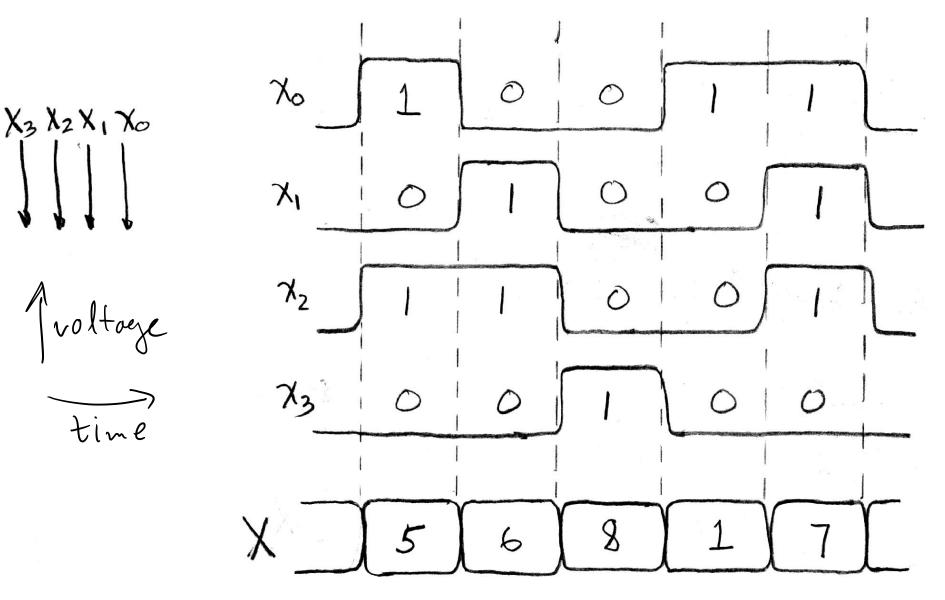
News (2017): Open Compute Project Summit: Google & ST Microelectronics: 48V to Chip

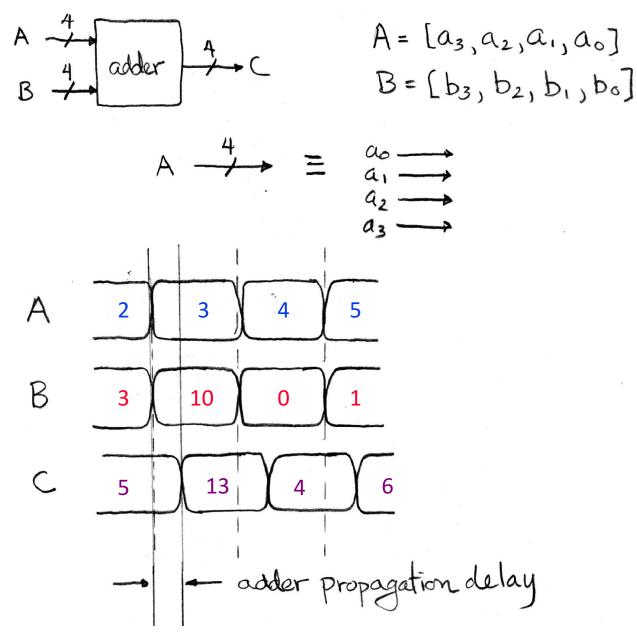

- Point-of-Load-(PoL) Converter
- 48V to 0.5V .. 1V .. up to 12V > 300 W @ 1V!
- Efficiency: 230V AC 89.3%; <u>48V DC 92.1%</u>





Typical Conversion Efficiency


System Efficiency



Signals and Waveforms: Grouping

Signals and Waveforms: Circuit Delay

Sample Debugging Waveform

<mark>wave – default File <u>E</u>dit <u>C</u>ursor <u>Z</u>oom <u>B</u>ookm</mark>	ark F <u>o</u> rma	t <u>W</u> indow													_ 8
🗃 🖬 🖨 🕴 👗 🖻 🛍 🕴 📐 ,	🕅 🗠 🛃	「 @ , €	Q Q Q	. <mark>B</mark> H		1. 1.	X								
/tb/DBG_00[10]	St0														
🥙 /tb/DBG_00[9]	St0														
🥙 /tb/DBG_00[8]	St0														
🥑 /tb/DBG_00[7]	St1														
🥙 /tb/DBG_00[6]	St0	Π	Π	1			Π	h n			Π	n n	П		Π
/tb/DBG_00[5]	St0														
<pre>/tb/DBG_00[4]</pre>	St0														
/tb/DBG_00[3]	St0														
<pre>/tb/DBG_00[2]</pre>	St0														
<pre>/tb/DBG_00[1]</pre>	St0														
<pre>/tb/DBG_00[0]</pre>	St0	ΠΠ	ΠΠ		ΠΠ	ΠΠ	ΠΠ	ΠΠ	ΠΠ		ΠΠ	ΠΠ	ΠΠ	ΠΠ	Π
⊡ ⊡/tb/A	0000	1003	4.lfef	0035 0	038,00	36 003	8,0037	-		003	9.1fee	003a.1	fee 00	3b/1fe	d
⊞-@ /tb/IB	3a	3a				3e									
⊞-@ /tb/ROMAD	0000	1fef		0038					(1	fee			1	fed	
⊡- ⊘_/tb/D	ff	(f f									00	ff		39	
	0	2	3	1 2				3 4	5 1	2			3 1	2	
🥘 /tb/0E_n	St0														
/tb/RAMCS_n	St1			<u>⊢</u>											
<pre> /tb/ROMCS_n /ul /# </pre>	St0														
⊘ /tb/₩E_n ⊘ /tb/X_0E_n	St1 St0														
<pre>/tb/X_UE_n /tb/X_RAMCS_n</pre>	Stu St1														
<pre>/tb/X_ROMCS_n</pre>	StO														
/tb/ReadVRAM	St0														
/tb/CSyncX	St0														
	0 ps 0 ps	98) us	102	2 us		l us	100			8 us		Dus
•															
96986540 ps to 111169300 p															

Type of Circuits

- *Synchronous Digital Systems* consist of two basic types of circuits:
 - Combinational Logic (CL) circuits
 - Output is a function of the inputs only, not the history of its execution
 - E.g., circuits to add A, B (ALUs)
 - Sequential Logic (SL)
 - Circuits that "remember" or store information
 - aka "State Elements"
 - E.g., memories and registers (Registers)