CS 110
Computer Architecture
Performance and Floating Point Arithmetic

Instructor:
Soren Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
1

Cache Design Space

Computer architects expend considerable effort optimizing organization of cache
hierarchy — big impact on performance and power!

e Several interacting dimensions
— Cache size
— Block size
— Associativity
— Replacement policy
— Write-through vs. write-back
— Write allocation

* Optimal choice is a compromise

— Depends on access characteristics
* Workload
* Use (I-cache, D-cache)

— Depends on technology / cost
* Simplicity often wins

Cache Size
Associativity
Block Size
Bad
Good Factor A Factor B
Less More

How to Reduce Miss Penalty?

Could there be locality on misses from a
cache?

Use multiple cache levels!

With Moore’s Law, more room on die for
bigger L1 caches and for second-level (L2)
cache

And in some cases even an L3 cache!
IBM mainframes have ~1GB L4 cache off-chip.

Review: Memory Hierarchy
Processor

Increasing
Inner distance from
. Level 1 processor,
Levels in decreasing
memory / Level 2 speed
hierarchy Level 3
Outer
Level n
< >

Size of memory at each level
As we move to outer levels the latency goes up

and price per bit goes down.

Local vs. Global Miss Rates

 [ocal miss rate — the fraction of references to
one level of a cache that miss

e Local Miss rate L2S = L2S Misses / L1S Misses
= L2S Misses / total L2 accesses

e Global miss rate — the fraction of references that
miss in all levels of a multilevel cache

e L2S local miss rate >> than the global miss rate

P43 I T LT T
— L1 Data Miss Rate

—— L2 Data Miss Rate

e e e R T, T

15%
L1 Cache: 32KB IS, 32KB DS

L2 Cache: 256 KB

10% L3 Cache: 4 MB

FIGURE 5.47 The L1, L2, and L3 data cache miss rates for the Intel Core i7 920 running
the full integer SPECCPU2006 benchmarks.

Local vs. Global Miss Rates

Local miss rate — the fraction of references to one
level of a cache that miss

Local Miss rate L2S = SL2 Misses / L1S Misses

Global miss rate — the fraction of references that
miss in all levels of a multilevel cache
* L2S local miss rate >> than the global miss rate

Global Miss rate = L2S Misses / Total Accesses
= (L2S Misses / L1S Misses) x (L1S Misses / Total Accesses)
= Local Miss rate L2S x Local Miss rate L1S

AMAT = Time for a hit + Miss rate x Miss penalty

AMAT = Time for a L1S hit + (local) Miss rate L1S x
(Time for a L2S hit + (local) Miss rate L2S x L2S Miss penalty)

Question

 Overall, what are L2 and L3 local miss rates?

25% - --- A: L2 > 50%, L3 > 50% ...
B: L2 ~ 50%, L3 < 50% L1 Data Miss Rate
C: L2 ~ 50%, .3 ~ 50% L2 Data Miss Rate

20% +---- o o == —A— .
D: L2 > 50%, L3 < 50% L3 Data Miss Rate
E: L2 > 50%, L3 ~50%

15% —F-----cmmmmm e e

10% —F-p-mmmmmm e e e

5%

0%

Characteristic

L1 cache organization

Intel Nehalem

Split instruction and data caches

AMD Opteron X4 (Barcelona)

Split instruction and data caches

L1 cache size

32 KB each for instructions/data per
core

64 KB each for instructions/data
per core

L1 block size

64 bytes

64 bytes

L1 write policy

Write-back, Write-allocate

Write-back, Write-allocate

L1 hit time (load-use)
L2 cache organization

Not Available

Unified (instruction and data) per core

3 clock cycles
Unified (instruction and data) per core

L2 cache size

256 KB (0.25 MB)

512 KB (0.5 MB)

L2 block size 64 bytes 64 bytes
L2 write policy Write-back, Write-allocate Write-back, Write-allocate
L2 hit time Not Available 9 clock cycles

L3 cache organization

Unified (instruction and data)

Unified (instruction and data)

L3 cache size

8192 KB (8 MB), shared

2048 KB (2 MB), shared

L3 block size 64 bytes 64 bytes
L3 write policy Write-back, Write-allocate Write-back, Write-allocate
L3 hit time Not Available 38 (?)clock cycles

CPl/Miss Rates/DRAM Access
Speclnt2006

Data Only Data Only Instructions and Data
M 0 o -
misses/1000 instr | misses/1000 instr | accesses/1000 instr

perl 0.75
bzip2 0.85 11.0 5.8 2.5
gce 1.72 24.3 13.4 14.8
mcf 10.00 106.8 88.0 88.5
go 1.09 4.5 1.4 1.7
hmmer 0.80 4.4 2.5 0.6
sjeng 0.96 1.9 0.6 0.8
libquantum 1.61 33.0 331 47.7
h264avc 0.80 8.8 1.6 0.2
omnetpp 2.94 30.9 27,7 29.8
astar 1.79 163 9.2 8.2
xalancbmk 2.0 38.0 15.8 11.4
Median 1.35 136 7.5 5.4

New-School Machine Structures
(It's a bit more compllcatedl)

Software Hardware
Parallel Requests

Assigned to computer Warehg)clgslg ¥
e.g., Search “Katz” Computer &
Harness
Parallel Threads 5 110jicm g How do
Assigned to core Achieve Hig we know?
e.g., Lookup, Ads Performance

Parallel Instructions

>1 instruction @ one time
e.g., 5 pipelined instructions

Parallel Data

>1 data item @ one time
e.g., Add of 4 pairs of words

Hardware descriptions
All gates @ one time

Programming Languages

B Logic Gates

11

What is Performance?

e Latency (or response time or execution time)

— Time to complete one task
* Bandwidth (or throughput)

— Tasks completed per unit time

12

Cloud Performance:
Why Application Latency Matters

Server Delay Increased imeto Queries/ Any clicks/ User satisfac- Revenue/

(ms) next click (ms) user user tion User
50 - e - - -
200 500 - -0.3% -0.4% --
500 1200 - -1.0% -0.9% -1.2%
1000 1900 -0.7% -1.9% -1.6% -2.8%
2000 3100 -1.8% -4.4% -3.8% -4.3%

Figure 6.10 Negative impact of delays at Bing search server on user behavior [Brutlag
and Schurman 2009].

* Key figure of merit: application responsiveness

— Longer the delay, the fewer the user clicks, the less the
user happiness, and the lower the revenue per user

13

Defining CPU Performance

What does it mean to say
X is faster than Y? TN

Ferrari vs. School Bus?‘ e ——2
2013 Ferrari599 GTB = —
— 2 passengers, quarter mile in 10 secs

2013 Type D school bus

— 50 passengers, quarter mile in 20 secs

Response Time (Latency): e.g., time to travel % mile
Throughput (Bandwidth): e.g., passenger-mi in 1 hour

14

Defining Relative CPU Performance

Performance, = 1/Program Execution Time,

Performance, > Performance, =>
1/Execution T|mex> 1/Execut|on Time, =>
Execution Time, > Execution Time,

Computer X is N times faster than Computer Y
Performance, / Performance, = N or
Execution TlmeY/ Execution Tlmex N

Bus to Ferrari performance:

— Program: Transfer 1000 passengers for 1 mile
— Bus: 3,200 sec, Ferrari: 40,000 sec

15

Measuring CPU Performance

Computers use a clock to determine when
events takes place within hardware

Clock cycles: discrete time intervals

— aka clocks, cycles, clock periods, clock ticks

Clock rate or clock frequency: clock cycles per
second (inverse of clock cycle time)

3 GigaHertz clock rate
=> clock cycle time = 1/(3x10°) seconds
clock cycle time = 333 picoseconds (ps)

CPU Performance Factors

* To distinguish between processor time and 1/0,
CPU time is time spent in processor

* CPU Time/Program
= Clock Cycles/Program
x Clock Cycle Time

* Or
CPU Time/Program
= Clock Cycles/Program +~ Clock Rate

17

lron Law of Performance

* A program executes instructions

. CPU Time/Program
= Clock Cycles/Program x Clock Cycle Time

= Instructions/Program
x Average Clock Cycles/Instruction
x Clock Cycle Time

e 1stterm called Instruction Count

e 2"dterm abbreviated CPI for average
Clock Cycles Per Instruction

 3rd termis 1/ Clock rate

18

Restating Performance Equation

* Time = Seconds

Program
Instructions y Clock cycles>< Seconds
Program Instruction Clock Cycle

19

What Affects Each Component?
A)Instruction Count, B)CPI, C)Clock Rate

Algorithm

Programming
Language

Compiler

Instruction Set Architecture

20

What Affects Each Component?
Instruction Count, CPI, Clock Rate

_______Affects What?

Algorithm Instruction Count,
CPI

Programming Instruction Count,

Language CPI

Compiler Instruction Count,
CPI

Instruction Set Instruction Count,

Architecture Clock Rate, CPI

21

Question

Computer | Clock Clock cycles | #instructions
frequency | per per program
instruction

A 1GHz 1000
B 2GHz 5 800
C 500MHz 1.25 400
D 5GHz 10 2000

 Which computer has the highest performance
for a given program?

22

Question

Computer | Clock Clock cycles | #instructions | Calculation
frequency | per per program
instruction

A 1GHz 1000 1ns * 2 * 1000 = 2us

B 2GHz 5 800 0.5ns 5 *800 = 2us

C 500MHz 1.25 400 2ns 1.25 * 400 = 1ps

D 5GHz 10 2000 0.2ns * 10 * 2000 = 4us

 Which computer has the highest performance
for a given program?

23

Workload and Benchmark

 Workload: Set of programs run on a computer

— Actual collection of applications run or made from
real programs to approximate such a mix

— Specifies programs, inputs, and relative frequencies
 Benchmark: Program selected for use in

comparing computer performance

— Benchmarks form a workload

— Usually standardized so that many use them

SPEC
(System Performance Evaluation Cooperative)

 Computer Vendor cooperative for
benchmarks, started in 1989

 SPECCPU2006

— 12 Integer Programs
— 17 Floating-Point Programs

e Often turn into number where bigger is faster

* SPECratio: reference execution time on old
reference computer divide by execution time
on new computer to get an effective speed-up

25

SPECrate 2017 | SPECspeed 2017
Integer Integer

500.perlbench_r
502.gcc_r
505.mcf_r
520.omnetpp_r
523.xalancbmk_r
525.x264_r
531.deepsjeng_r
541.leela_r
548.exchange2_r

557.XZ_T

SPECrate 2017 | SPECspeed 2017
Floating Point Floating Point

503.bwaves_r

507.cactuBSSN_r

508.namd_r
510.parest_r
511.povray_r
519.]bm_r
521.wrf_r
526.blender_r
527.cam4_r

538.imagick_r
544.nab_r

549.fotonik3d_r
554.roms_r

SPEC CPU 2017/

Language[1]
600.perlbench_s C
602.gcc_s C
605.mcf_s C
620.omnetpp_s C++
623.xalancbmk_s C++
625.x264_s C
631.deepsjeng_s C++
641.leela_s C++
648.exchange2_s Fortran
657.X7_S C
Language[1]
603.bwaves_s Fortran
607.cactuBSSN_s C++, C, Fortran
C++
C++
C++, C
619.]bm_s c
621.wrf_s Fortran, C
C++, C
627.cam4_s Fortran, C
628.pop2_s Fortran, C
638.imagick_s c
644.nab_s C
649.fotonik3d_s Fortran
654.roms_s Fortran

KLOC |2

362
1,304

134
520
96
10
21
1
33

KLOC |2

1
257
8
427
170
1
991
1,577
407
338
259
24
14
210

Application Area

Perl interpreter

GNU C compiler

Route planning

Discrete Event simulation - computer network

XML to HTML conversion via XSLT

Video compression

Artificial Intelligence: alpha-beta tree search (Chess)
Artificial Intelligence: Monte Carlo tree search (Go)
Artificial Intelligence: recursive solution generator (Sudoku)
General data compression

Application Area

Explosion modeling

Physics: relativity

Molecular dynamics

Biomedical imaging: optical tomography with finite elements
Ray tracing

Fluid dynamics

Weather forecasting

3D rendering and animation

Atmosphere modeling

Wide-scale ocean modeling (climate level)
Image manipulation

Molecular dynamics

Computational Electromagnetics
Regional ocean modeling

[1] For multi-language benchmarks, the first one listed determines library and link options (detailsc?)

[2] KLOC = line count (including comments/whitespace) for source files used in a build / 1000

SPECINT2006 on AMD Barcelona

Instruc- Clock | Execu- | Refer- |onc -
Description tion CPI | cycle tion ence | .o
Count (B time (ps)|Time (s)|Time (s

Interpreted string

processing 2,118 0.75 9,770 15.3
Block-sorting compression 2,389 0.85 400 817 9,650 11.8
GNU C compiler 1,050 1.72 400 724 8,050 11.1
Combinatorial

optimization 336 10.0 400 1,345 9,120 6.8
Go game 1,658 1.09 400 721 10,490 14.6
Search gene sequence 2,783 0.80 400 890 9,330 10.5
Chess game 2,176 0.96 400 837 12,100 14.5
Quantum computer

simulation 1,623 1.61 400 1,047 20,720 19.8
Video compression 3,102 0.80 400 993 22,130 22.3
Discrete event simulation

library 587 2.94 400 690 6,250 9.1
Games/path finding 1,082 1.79 400 773 7,020 9.1
XML parsing 1,058 2.70 400 1,143 6,900 °’6.0

Summarizing Performance ...

System Rate (Task 1) Rate (Task 2)
A 10 20
B 20 10

Clickers: Which system is faster?

As Syszam A
B:System|B

EJSamelpeiformance

Dx UnenswarElsle cuasicnd

28

... Depends Who's Selling

System Rate (Task 1) Rate (Task 2) Average
A 10 20 15
B 20 10 15
Average throughput
System Rate (Task 1) Rate (Task 2) Average
A 0.50 2.00 1.25
B 1.00 1.00 1.00

Throughput relative to B

System Rate (Task 1) Rate (Task 2) Average
A 1.00 1.00 1.00
B 2.00 0.50 1.25

Throughput relative to A

Summarizing SPEC Performance

e Varies from 6x to 22x faster than reference
computer

* Geometric mean of ratios: [»
N-th root of product "{H Execution time ratio,
of N ratios Yi-1
— Geometric Mean gives same relative answer no

matter what computer is used as reference

e Geometric Mean for Barcelonais 11.7

30

Admin

* Regrade requests for Midterm-| will be closed
on Friday!

* Project 2.2 will be published today!
 Next HW will be a little delayed.

Review of Numbers

* Computers are made to deal with numbers

* What can we represent in N bits?

— 2N things, and no more! They could be...
— Unsigned integers:
0 to 2MN-1
(for N=32, 2N-1 =4,294,967,295)
— Signed Integers (Two’s Complement)
_2(N-1) to 2(N-1) -1
(for N=32, 2(N-1) =2 ,147,483,648)

What about other numbers?

1. Very large numbers? (seconds/millennium)
=>31,556,926,000,, (3.1556926,, x 10%9)

2. Very small numbers? (Bohr radius)
=>0.0000000000529177,,m (5.29177,, x 101%)

3. Numbers with both integer & fractional parts?
=> 1.5

First consider #3.
...our solution will also help with #1 and #2.

Representation of Fractions

“Binary Point” like decimal point signifies
boundary between integer and fractional parts:

Example 6-bit XX.YYYy

representation: 21/f AN,
20 21 52 53 2

10.1010,,,, = 1x21 + 1x21 + 1x23 = 2.625,,,

If we assume “fixed binary point”, range of 6-bit
representations with this format:
0 to 3.9375 (almost 4)

Fractional Powers of 2

2-i

OO NONULIdbWDNREREDO

e
N = O

= e
U W

1.0 1

0.5 1/2
0.25 1/4
0.125 1/8
0.0625 1/16
0.03125 1/32
0.015625
0.0078125
0.00390625
0.001953125
0.0009765625
0.00048828125
0.000244140625
0.0001220703125
0.00006103515625
0.000030517578125

Representation of Fractions with Fixed Pt.

What about addition and multiplication?

A . 01-100 1‘5ten
Add_ltlon 1S + 00.100 0.5,
straightforward: 10.000 2.0, 01.100

00.100
o _ . 00 000
Multiplication a bit more complex: 000 00
0110 O
00000
00000
0000110000

Where’s the answer, 0.11? (need to remember where point is)

Representation of Fractions

So far, in our examples we used a “fixed” binary point.
What we really want is to “float” the binary point. Why?

Floating binary point most effective use of our limited bits
(and thus more accuracy in our number representation):

example: put 0.1640625,., into binary. Represent
with 5-bits choosing where to put the binary point.
... 000000.001010100000...
—

Store these bits and keep track of the binary
point 2 places to the left of the MSB

Any other solution would lose accuracy!

With floating-point rep., each nhumeral carries an exponent
field recording the whereabouts of its binary point.

The binary point can be outside the stored bits, so very
large and small numbers can be represented.

Scientific Notation (in Decimal)

mantissa __—-exponent
T~6.02,., x 1023

I

decimal point radix (base)

 Normalized form: no leadings Os
(exactly one digit to left of decimal point)

* Alternatives to representing 1/1,000,000,000
— Normalized: 1.0x 107
— Not normalized: 0.1 x 10%8,10.0 x 1010

Scientific Notation (in Binary)

mantissa _—~exponent

| \

“binary point” radix (base)

* Computer arithmetic that supports it called
floating point, because it represents numbers
where the binary point is not fixed, as it is for

Integers

— Declare such variablein Cas £loat

 double for double precision.

Floating-Point Representation (1/2)

* Normal format: +1. rwo 2V Viwo
 Multiple of Word Size (32 bits)
3130 23 22

IS| Exponent Q\
1 bit 8 bits 23 bits

S represents Sign
Xponent represents y’s
represents x’s

* Represent numbers as small as
2.0,,,, x 1038 to as large as 2.0,,,, x 1038

Floating-Point Representation (2/2)

 What if result too large?
(>2.0x1038 , < -2.0x1038)

— Overflow! => Exponent larger than represented in 8-bit
Exponent field

e What if result too small?
(>0 & < 2.0x1038, <0 & >-2.0x1038)

— Underflow! => Negative exponent larger than represented
in 8-bit Exponent field

overflow underflow overflow
) | <«] I I < | « | .
I % I X 11 2 | P |
-2x1038 -1 -2x10%® g 2x1038 1 2x1038

* What would help reduce chances of overflow and/or
underflow?

IEEE 754 Floating-Point Standard (1/3)

Single Precision (Double Precision similar):

3130 23 22 0
IS| Exponent |

1 bit 8 bits 23 bits

* Sign bit: 1 means negative O means positive

in sign-magnitude format (not 2’s complement)

— To pack more bits, leading 1 implicit for normalized numbers
— 1+ 23 bits single, 1 + 52 bits double
— always true: 0 < Significand < 1 (for normalized numbers)

 Note: 0 has no leading 1, so reserve exponent value 0 just for
number O

