
CS	110
Computer	Architecture	

Amdahl’s	Law,	Data-level	Parallelism	

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

IEEE	754	Floating-Point	Standard	(1/3)

Single	Precision	(Double	Precision	similar):

• Sign bit: 1	means	negative 0	means	positive

• Significand in	sign-magnitude	format	(not	2’s	complement)
– To	pack	more	bits,	leading	1	implicit	for	normalized	numbers
– 1	+	23	bits	single,	1	+	52	bits	double
– always	true:	0	<	Significand	<	1																													(for	normalized	numbers)

• Note:	0	has	no	leading	1,	so	reserve	exponent	value	0	just	for	
number	0

031
S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits

IEEE	754	Floating	Point	Standard	(2/3)

• IEEE	754	uses	“biased	exponent”
representation

– Designers	wanted	FP	numbers	to	be	used	even	if	no	
FP	hardware;	e.g.,	sort	records	with	FP	numbers	
using	integer	compares

– Wanted	bigger	(integer)	exponent	field	to	represent	
bigger	numbers

– 2’s	complement	poses	a	problem	(because	negative	
numbers	look	bigger)

• Use	just	magnitude	and	offset	by	half	the	range

IEEE	754	Floating	Point	Standard	(3/3)

• Summary	(single	precision):

•Called Biased Notation, where bias is
number subtracted to get final number
• IEEE 754 uses bias of 127 for single prec.
• Subtract 127 from Exponent field to get actual
value for exponent

031
S Exponent

30 23 22
Significand

1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, except with
exponent bias of 1023 (half, quad similar)

Representation	for	± ∞

• In	FP,	divide	by	0	should	produce	± ∞,	not	
overflow.

•Why?
– OK	to	do	further	computations	with	∞	
E.g.,		X/0		>		Y	may	be	a	valid	comparison

• IEEE	754	represents	± ∞
– Most	positive	exponent	reserved	for	∞
– Significands	all	zeroes

Representation	for	0

• Represent	0?
– exponent	all	zeroes
– significand	all	zeroes
– What	about	sign?		Both	cases	valid
+0: 0 00000000 00000000000000000000000
-0: 1 00000000 00000000000000000000000

Special	Numbers
• What	have	we	defined	so	far?	
(Single	Precision)
Exponent Significand Object
0 0 0
0 nonzero ???
1-254 anything +/- fl.	pt.	#
255 0 +/- ∞
255 nonzero ???

• Clever	idea:
– Use	exp=0,255	&	Sig!=0

Representation	for	Not	a	Number

• What	do	I	get	if	I	calculate
sqrt(-4.0)or	0/0?

– If	∞	not	an	error,	these	shouldn’t	be	either
– Called	Not	a Number	(NaN)
– Exponent	=	255,	Significand	nonzero

• Why	is	this	useful?
– Hope	NaNs help	with	debugging?
– They	contaminate:	op(NaN,	X)	=	NaN
– Can	use	the	significand	to	identify	which!

Representation	for	Denorms	(1/2)

• Problem:	There’s	a	gap	among	representable	FP	
numbers	around	0
– Smallest	representable	pos num:

• a	=	1.0…	2	*	2-126	=	2-126
– Second	smallest	representable	pos num:

• b =	1.000……1	2	*	2-126	
=	(1	+	0.00…12)	*	2-126	
=	(1	+	2-23)	*	2-126	
=	2-126	+	2-149

– a	- 0	=	2-126
– b	- a	=	2-149 b

a0 +-
Gaps!

Normalization
and implicit 1
is to blame!

Representation	for	Denorms (2/2)
•Solution:

• We still haven’t used Exponent = 0,
Significand nonzero

• DEnormalized number: no (implied)
leading 1, implicit exponent = -126.

• Smallest representable pos num:
a = 2-149

• Second smallest representable pos num:
b = 2-148

0 +-

Special	Numbers	Summary

•Reserve exponents, significands:
Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

Conclusion
• Floating	Point	lets	us:

– Represent	numbers	containing	both	integer	and	fractional	parts;	makes	
efficient	use	of	available	bits.

– Store	approximate values	for	very	large	and	very	small	#s.

• IEEE	754	Floating-Point	Standard is	most	widely	accepted	attempt	to	
standardize	interpretation	of	such	numbers	(Every	desktop	or	server	
computer	sold	since	~1997	follows	these	conventions)

•Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, except with
exponent bias of 1023 (half, quad similar)

Exponent tells Significand how much
(2i) to count by (…, 1/4, 1/2, 1, 2, …)

Can
store
NaN,
± ∞

www.h-schmidt.net/FloatApplet/IEEE754.html

Admin

• Midterm	II
– May	17	(next	Thursday!)
– Topics:	SDS,	MIPS	Pipelining,	Caches,	Floating	
Point,	Parallelism	(Till	today’s	lecture,	including	
today’s	lecture)

– Same	rules	as	Midterm	I	except:
• 2	cheat	A4	sheets	are	allowed	(both	handwritten	in	
English	by	you)

• MIPS	green	sheet	will	be	provided	again

13

New-School	Machine	Structures
(It’s	a	bit	more	complicated!)

• Parallel	Requests
Assigned	to	computer
e.g.,	Search	“Katz”

• Parallel	Threads
Assigned	to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	instructions

• Parallel	Data
>1	data	item	@	one	time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	@	one	time

• Programming	Languages
14

Smart
Phone

Warehouse	
Scale	

Computer

Software								Hardware

Harness
Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															(Cache)

Input/Output

Computer

Cache	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Today’s
Lecture

Using	Parallelism	for	Performance

• Two	basic	ways:
– Multiprogramming

• run	multiple	independent	programs	in	parallel
• “Easy”

– Parallel	computing
• run	one	program	faster
• “Hard”

• We’ll	focus	on	parallel	computing	for	next	few	
lectures

15

Single-Instruction/Single-Data	Stream
(SISD)

• Sequential	computer	
that	exploits	no	
parallelism	in	either	the	
instruction	or	data	
streams.	Examples	of	
SISD	architecture	are	
traditional	uniprocessor
machines

16

Processing	Unit

Single-Instruction/Multiple-Data	Stream
(SIMD	or	“sim-dee”)

• SIMD	computer	exploits	
multiple	data	streams	
against	a	single	
instruction	stream	to	
operations	that	may	be	
naturally	parallelized,	
e.g.,	Intel	SIMD	
instruction	extensions	
or	NVIDIA	Graphics	
Processing	Unit	(GPU)

17

Multiple-Instruction/Multiple-Data	Streams
(MIMD	or	“mim-dee”)

• Multiple	autonomous	
processors	
simultaneously	
executing	different	
instructions	on	different	
data.	
– MIMD	architectures	
include	multicore	and	
Warehouse-Scale	
Computers

18

Instruction	Pool

PU

PU

PU

PU

Da
ta
	P
oo

l

Multiple-Instruction/Single-Data	Stream
(MISD)

• Multiple-Instruction,	
Single-Data	stream	
computer	that	exploits	
multiple	instruction	
streams	against	a	single	
data	stream.
– Rare,	mainly	of	historical	
interest	only

19

Flynn*	Taxonomy,	1966

• Since	about	2013,	SIMD	and	MIMD	most	common	parallelism	
in	architectures	– usually	both	in	same	system!

• Most	common	parallel	processing	programming	style:	Single	
Program	Multiple	Data	(“SPMD”)
– Single	program	that	runs	on	all	processors	of	a	MIMD
– Cross-processor	execution	coordination	using	synchronization	

primitives
• SIMD	(aka	hw-level	data	parallelism):	specialized	function	

units,	for	handling	lock-step	calculations	involving	arrays
– Scientific	computing,	signal	processing,	multimedia	

(audio/video	processing)

20

*Prof.	Michael	
Flynn,	Stanford

Big	Idea:	Amdahl’s	(Heartbreaking)	Law
• Speedup	due	to	enhancement	E	is

Speedup	w/	E	=	 ----------------------
Exec	time	w/o	E
Exec	time	w/	E	

• Suppose	that	enhancement	E	accelerates	a	fraction	F			(F	<1)	
of	the	task	by	a	factor	S	(S>1)	and	the	remainder	of	the	task	is	
unaffected

Execution	Time	w/	E		=

Speedup	w/	E		=
21

Execution	Time	w/o	E	x	[(1-F)	+	F/S]	

1	/	[(1-F)	+	F/S]

Big	Idea:	Amdahl’s	Law

22

Speedup		=																							1
(1	- F)			+			F

SNon-speed-up	part Speed-up	part

1
0.5	+	0.5

2

1
0.5	+	0.25

= = 1.33

Example:	the	execution	time	of	half	of	the	program	can	
be	accelerated	by	a	factor	of	2.
What	is	the	program	speed-up	overall?

Example	#1:	Amdahl’s	Law

• Consider	an	enhancement	which	runs	20	times	faster	but	
which	is	only	usable	25%	of	the	time

Speedup	w/	E		=		1/(.75	+	.25/20)		=		1.31

• What	if	its	usable	only	15%	of	the	time?
Speedup	w/	E		=		1/(.85	+	.15/20)		=		1.17

• Amdahl’s	Law	tells	us	that	to	achieve	linear	speedup	with	
100	processors,	none	of	the	original	computation	can	be	
scalar!

• To	get	a	speedup	of	90	from	100	processors,	the	
percentage	of	the	original	program	that	could	be	scalar	
would	have	to	be	0.1%	or	less

Speedup	w/	E		=		1/(.001	+	.999/100)		=		90.99
23

Speedup	w/	E	=			1	/ [(1-F)	+	F/S]

24

If	the	portion	of
the	program	that
can	be	parallelized
is	small,	then	the
speedup	is	limited

The	non-parallel
portion	limits
the	performance

Strong	and	Weak	Scaling
• To	get	good	speedup	on	a	parallel	processor	while	
keeping	the	problem	size	fixed	is	harder	than	getting	
good	speedup	by	increasing	the	size	of	the	problem.
– Strong	scaling:	when	speedup	can	be	achieved	on	a	
parallel	processor	without	increasing	the	size	of	the	
problem

– Weak	scaling:	when	speedup	is	achieved	on	a	parallel	
processor	by	increasing	the	size	of	the	problem	
proportionally	to	the	increase	in	the	number	of	processors

• Load	balancing	is	another	important	factor:	every	
processor	doing	same	amount	of	work		
– Just	one	unit	with	twice	the	load	of	others	cuts	speedup	
almost	in	half

25

Question

26

Suppose	a	program	spends	80%	of	its	time	in	a	square	root	
routine.	How	much	must	you	speedup	square	root	to	make	
the	program	run	5	times	faster?

A:	5
B:	16
C:	20
D:	100
E:	None	of	the	above

Speedup	w/	E	=			1	/ [(1-F)	+	F/S]

SIMD	Architectures
• Data parallelism: executing same operation

on multiple data streams
• Example to provide context:

– Multiplying a coefficient vector by a data vector
(e.g., in filtering)
y[i] := c[i]× x[i], 0 ≤ i < n

• Sources of performance improvement:
– One instruction is fetched & decoded for entire

operation
– Multiplications are known to be independent
– Pipelining/concurrency in memory access as well

27

28

Intel	“Advanced	Digital	Media	Boost”

• To	improve	performance,	Intel’s	SIMD	instructions
– Fetch	one	instruction,	do	the	work	of	multiple	instructions

29

First	SIMD	Extensions:
MIT	Lincoln	Labs	TX-2,	1957

Intel	SIMD	Extensions

• MMX	64-bit	registers,	reusing	floating-point	
registers	[1992]

• SSE2/3/4,	new	128-bit	registers	[1999]
• AVX,	new	256-bit	registers	[2011]
• AVX-512:	512-bit	registers	[2016]

– Space	for	expansion	to	1024-bit	registers	

30

31

XMM	Registers

• Architecture	extended	with	eight	128-bit	data	registers:	
XMM	registers
– x86	64-bit	address	architecture	adds	8	additional	registers	

(XMM8	– XMM15)

Intel	Architecture	SSE2+
128-Bit	SIMD	Data	Types

3264	63

64	63

64	63

32	31

32	31

96	95

96	95 16	1548	4780	79122	121

64	63 32	3196	95 16	1548	4780	79122	121 16	/	128	bits

8	/	128	bits

4	/	128	bits

2	/	128	bits

• Note:	in	Intel	Architecture	(unlike	MIPS)	a	word	is	16	bits
– Single-precision	FP:	Double	word	(32	bits)
– Double-precision	FP:	Quad	word	(64	bits)

SSE/SSE2	Floating	Point	Instructions

xmm:	one	operand	is	a	128-bit	SSE2	register
mem/xmm:	other	operand	is	in	memory	or	an	SSE2	register
{SS}	Scalar	Single	precision	FP:	one	32-bit	operand	in	a	128-bit	register
{PS}	Packed	Single	precision	FP:	four	32-bit	operands	in	a	128-bit	register
{SD}	Scalar	Double	precision	FP:	one	64-bit	operand	in	a	128-bit	register
{PD}	Packed	Double	precision	FP,	or	two	64-bit	operands	in	a	128-bit	register
{A}	128-bit	operand	is	aligned	in	memory
{U}	means	the	128-bit	operand	is	unaligned	in	memory	
{H}	means	move	the	high	half	of	the	128-bit	operand
{L}	means	move	the	low	half	of	the	128-bit	operand

33

Move	
does	
both	
load	
and	

store

Packed	and	Scalar	Double-Precision	
Floating-Point	Operations	

34

Packed

Scalar

Example:	SIMD	Array	Processing

35

for each f in array
f = sqrt(f)

for each f in array
{

load f to the floating-point register
calculate the square root
write the result from the register to memory

}

for each 4 members in array
{

load 4 members to the SSE register
calculate 4 square roots in one operation
store the 4 results from the register to memory

}
SIMD	style

Data-Level	Parallelism	and	SIMD

• SIMD	wants	adjacent	values	in	memory	that	
can	be	operated	in	parallel

• Usually	specified	in	programs	as	loops
for(i=1000; i>0; i=i-1)

x[i] = x[i] + s;
• How	can	reveal	more	data-level	parallelism	
than	available	in	a	single	iteration	of	a	loop?

• Unroll	loop	and	adjust	iteration	rate

36

Looping	in	MIPS
Assumptions:	
- $t1	is	initially	the	address	of	the	element	in	the	array	with	the	highest	

address
- $f0	contains	the	scalar	value	s
- 8($t2)	is	the	address	of	the	last	element	to	operate	on
CODE:
Loop:	1. l.d $f2,0($t1) ;	$f2=array	element

2. add.d $f10,$f2,$f0 ;	add	s	to $f2
3. s.d $f10,0($t1) ;	store	result
4. addiu $t1,$t1,#-8 ;	decrement	pointer	8	byte	
5. bne $t1,$t2,Loop ;	repeat	loop	if $t1	!= $t2

37

Loop	Unrolled
Loop: l.d $f2,0($t1)											

add.d $f10,$f2,$f0											
s.d $f10,0($t1)
l.d $f4,-8($t1)										
add.d $f12,$f4,$f0											
s.d $f12,-8($t1)
l.d $f6,-16($t1)
add.d $f14,$f6,$f0
s.d $f14,-16($t1)
l.d $f8,-24($t1)
add.d $f16,$f8,$f0								
s.d $f16,-24($t1)
addiu $t1,$t1,#-32
bne $t1,$t2,Loop

NOTE:
1. Only	1	Loop	Overhead	every	4	iterations
2. This	unrolling	works	if	

loop_limit(mod 4)	=	0
3.			Using	different	registers	for	each	iteration	

eliminates	data	hazards	in	pipeline

38

Loop	Unrolled	Scheduled
Loop:l.d $f2,0($t1)												

l.d $f4,-8($t1)				
l.d $f6,-16($t1)
l.d $f8,-24($t1)
add.d $f10,$f2,$f0		
add.d $f12,$f4,$f0	
add.d $f14,$f6,$f0
add.d $f16,$f8,$f0
s.d $f10,0($t1)
s.d $f12,-8($t1)
s.d $f14,-16($t1)
s.d $f16,-24($t1)
addiu $t1,$t1,#-32
bne $t1,$t2,Loop

4	Loads	side-by-side:	Could	replace	with	4-wide	SIMD	
Load

4	Adds	side-by-side:	Could	replace	with	4-wide	SIMD	Add

4	Stores	side-by-side:	Could	replace	with	4-wide	SIMD	Store

39

Loop	Unrolling	in	C
• Instead	of	compiler	doing	loop	unrolling,	could	do	it	
yourself	in	C
for(i=1000; i>0; i=i-1)

x[i] = x[i] + s;
• Could	be	rewritten
for(i=1000; i>0; i=i-4) {

x[i] = x[i] + s;
x[i-1] = x[i-1] + s;
x[i-2] = x[i-2] + s;
x[i-3] = x[i-3] + s;
}

40

What	is	downside	of	doing	it	in	C?

Generalizing	Loop	Unrolling

• A	loop	of	n iterations
• k copies	of	the	body	of	the	loop
• Assuming	(n mod	k)	≠	0
Then	we	will	run	the	loop	with	1	copy	of	the	
body (n	mod	k)	times	and	with	k	copies	of	the	
body	floor(n/k)	times

41

Example:	Add	Two	Single-Precision
Floating-Point	Vectors

Computation	to	be	performed:

vec_res.x = v1.x + v2.x;
vec_res.y = v1.y + v2.y;
vec_res.z = v1.z + v2.z;
vec_res.w = v1.w + v2.w;

SSE	Instruction	Sequence:
(Note:	Destination	on	the	right	in	x86	assembly)
movaps address-of-v1, %xmm0

// v1.w | v1.z | v1.y | v1.x -> xmm0
addps address-of-v2, %xmm0

// v1.w+v2.w | v1.z+v2.z | v1.y+v2.y | v1.x+v2.x -> xmm0
movaps %xmm0, address-of-vec_res

42

mov a		ps :		move	from	mem	to	XMM	register,
memory	aligned,	packed	single	precision

add		ps :		add	from	mem to	XMM	register,
packed	single	precision

mov a		ps :		move	from	XMM	register	to	mem,	
memory	aligned,	packed	single	precision

43

Intel SSE	Intrinsics

• Intrinsics	are C	functions	and	procedures	for	
inserting	assembly	language	into	C	code,	including	
SSE	instructions
– With	intrinsics, can	program	using	these	instructions	
indirectly

– One-to-one	correspondence	between SSE	instructions	and	
intrinsics

Example	SSE	Intrinsics
• Vector	data	type:

_m128d
• Load	and	store	operations:

_mm_load_pd MOVAPD/aligned,	packed	double
_mm_store_pd MOVAPD/aligned,	packed	double
_mm_loadu_pd MOVUPD/unaligned,	packed	double
_mm_storeu_pd MOVUPD/unaligned,	packed	double

• Load	and	broadcast	across	vector
_mm_load1_pd MOVSD	+	shuffling/duplicating

• Arithmetic:
_mm_add_pd ADDPD/add,	packed	double
_mm_mul_pd MULPD/multiple,	packed	double

Corresponding	SSE	instructions:Intrinsics:

44

Example:	2	x	2	Matrix	Multiply

Ci,j =	(A×B)i,j =	∑ Ai,k× Bk,j
2

k =	1

Definition	of	Matrix	Multiply:

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x

C1,1=A1,1B1,1	+	A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1	+	A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

1 0

0 1

1 3

2 4

x

C1,1=	1*1 +	0*2	=	1 C1,2=	1*3	+	0*4	=	3

C2,1=	0*1	 +		1*2	=	2 C2,2=	0*3	+	1*4	=	4

=

45

Example:	2	x 2	Matrix	Multiply

• Using	the	XMM	registers
– 64-bit/double	precision/two	doubles	per	XMM	reg

C1
C2

C1,1
C1,2

C2,1
C2,2

Stored	in	memory	in	Column	order

B1
B2

Bi,1
Bi,2

Bi,1
Bi,2

A A1,i A2,i

C1,1 C1,2

C2,1 C2,2

�

C1 C2

46

Example:	2	x 2	Matrix	Multiply

• Initialization

• I	=	1

C1
C2

0

0

0

0

B1
B2

B1,1
B1,2

B1,1
B1,2

A A1,1 A2,1
_mm_load_pd:	Stored	in	memory	in	
Column	order

_mm_load1_pd:	SSE	instruction	that	loads	
a	double	word	and	stores	it	in	the	high	and	
low	double	words	of	the	XMM	register

47

• Initialization

• I	=	1

C1
C2

0

0

0

0

B1
B2

B1,1
B1,2

B1,1
B1,2

A A1,1 A2,1
_mm_load_pd:	Load	2	doubles	into	XMM	
reg,	Stored	in	memory	in	Column	order

_mm_load1_pd:	SSE	instruction	that	loads	
a	double	word	and	stores	it	in	the	high	and	
low	double	words	of	the	XMM	register	
(duplicates	value	in	both	halves	of	XMM)

48

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x

C1,1=A1,1B1,1	+	A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1	+	A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

Example:	2	x	2	Matrix	Multiply

Example:	2	x 2	Matrix	Multiply

• First	iteration	intermediate	result

• I	=	1

C1
C2

B1
B2

B1,1
B1,2

B1,1
B1,2

A A1,1 A2,1
_mm_load_pd:	Stored	in	memory	in	
Column	order

0+A1,1B1,1
0+A1,1B1,2

0+A2,1B1,1
0+A2,1B1,2

c1	=	_mm_add_pd(c1,_mm_mul_pd(a,b1));
c2	=	_mm_add_pd(c2,_mm_mul_pd(a,b2));
SSE	instructions	first	do	parallel	multiplies	
and	then	parallel	adds	in	XMM	registers

_mm_load1_pd:	SSE	instruction	that	loads	
a	double	word	and	stores	it	in	the	high	and	
low	double	words	of	the	XMM	register	
(duplicates	value	in	both	halves	of	XMM)

49

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x

C1,1=A1,1B1,1	+	A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1	+	A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x

C1,1=A1,1B1,1	+	A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1	+	A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

Example:	2	x 2	Matrix	Multiply

• First	iteration	intermediate	result

• I	=	2

C1
C2

0+A1,1B1,1
0+A1,1B1,2

0+A2,1B1,1
0+A2,1B1,2

B1
B2

B2,1
B2,2

B2,1
B2,2

A A1,2 A2,2
_mm_load_pd:	Stored	in	memory	in	
Column	order

c1	=	_mm_add_pd(c1,_mm_mul_pd(a,b1));
c2	=	_mm_add_pd(c2,_mm_mul_pd(a,b2));
SSE	instructions	first	do	parallel	multiplies	
and	then	parallel	adds	in	XMM	registers

_mm_load1_pd:	SSE	instruction	that	loads	
a	double	word	and	stores	it	in	the	high	and	
low	double	words	of	the	XMM	register	
(duplicates	value	in	both	halves	of	XMM)

50

Example:	2	x 2	Matrix	Multiply

• Second	iteration	intermediate	result

• I	=	2

C1
C2

B1
B2

B2,1
B2,2

B2,1
B2,2

A A1,2 A2,2
_mm_load_pd:	Stored	in	memory	in	
Column	order

C1,1

C1,2

C2,1

C2,2

c1	=	_mm_add_pd(c1,_mm_mul_pd(a,b1));
c2	=	_mm_add_pd(c2,_mm_mul_pd(a,b2));
SSE	instructions	first	do	parallel	multiplies	
and	then	parallel	adds	in	XMM	registers

_mm_load1_pd:	SSE	instruction	that	loads	
a	double	word	and	stores	it	in	the	high	and	
low	double	words	of	the	XMM	register	
(duplicates	value	in	both	halves	of	XMM)

51

A1,1B1,1+A1,2B2,1
A1,1B1,2+A1,2B2,2

A2,1B1,1+A2,2B2,1
A2,1B1,2+A2,2B2,2

Example:	2	x	2	Matrix	Multiply
(Part	1	of	2)

#include	<stdio.h>
//	header	file	for	SSE	compiler	intrinsics
#include	<emmintrin.h>

//	NOTE:	vector	registers	will	be	represented	in	
//	comments	as	v1	=	[a	|	b]

//	where	v1	is	a	variable	of	type	__m128d	and
//	a,	b	are	doubles

int main(void)	{
//	allocate	A,B,C	aligned	on	16-byte	boundaries
double	A[4]	__attribute__	((aligned	(16)));
double	B[4]	__attribute__	((aligned	(16)));
double	C[4]	__attribute__	((aligned	(16)));
int lda =	2;
int i =	0;
//	declare	several	128-bit	vector	variables
__m128d	c1,c2,a,b1,b2;

//	Initialize	A,	B,	C	for	example
/*	A	=																											(note	column	order!)		

1	0
0	1
*/
A[0]	=	1.0;	A[1]	=	0.0;		A[2]	=	0.0;		A[3]	=	1.0;

/*	B	=																														(note	column	order!)
1	3
2	4
*/
B[0]	=	1.0;		B[1]	=	2.0;		B[2]	=	3.0;		B[3]	=	4.0;

/*	C	=																													(note	column	order!)
0	0
0	0
*/
C[0]	=	0.0;	C[1]	=	0.0;		C[2]	=	0.0;	C[3]	=	0.0;

52

Example:	2	x 2	Matrix	Multiply
(Part	2	of	2)

//	used	aligned	loads	to	set
//	c1	=	[c_11	|	c_21]
c1	=	_mm_load_pd(C+0*lda);
//	c2	=	[c_12	|	c_22]
c2	=	_mm_load_pd(C+1*lda);

for	(i =	0;	i <	2;	i++)	{
/*	a	=	
i =	0:	[a_11	|	a_21]
i =	1:	[a_12	|	a_22]
*/
a	=	_mm_load_pd(A+i*lda);
/*	b1	=	
i =	0:	[b_11	|	b_11]
i =	1:	[b_21	|	b_21]
*/
b1	=	_mm_load1_pd(B+i+0*lda);
/*	b2	=	
i =	0:	[b_12	|	b_12]
i =	1:	[b_22	|	b_22]
*/
b2	=	_mm_load1_pd(B+i+1*lda);

/*	c1	=	
i =	0:	[c_11	+	a_11*b_11	|	c_21	+	a_21*b_11]
i =	1:	[c_11	+	a_21*b_21	|	c_21	+	a_22*b_21]
*/
c1	=	_mm_add_pd(c1,_mm_mul_pd(a,b1));
/*	c2	=	
i =	0:	[c_12	+	a_11*b_12	|	c_22	+	a_21*b_12]
i =	1:	[c_12	+	a_21*b_22	|	c_22	+	a_22*b_22]
*/
c2	=	_mm_add_pd(c2,_mm_mul_pd(a,b2));							

}

//	store	c1,c2	back	into	C	for	completion
_mm_store_pd(C+0*lda,c1);
_mm_store_pd(C+1*lda,c2);

//	print	C
printf("%g,%g\n%g,%g\n",C[0],C[2],C[1],C[3]);
return	0;

}

53

Inner	loop	from	gcc –O	-S
L2: movapd (%rax,%rsi),	%xmm1 //Load		aligned	A[i,i+1]->m1

movddup (%rdx),	%xmm0 //Load	B[j],	duplicate->m0
mulpd %xmm1,	%xmm0 //Multiply	m0*m1->m0
addpd %xmm0,	%xmm3 //Add	m0+m3->m3
movddup 16(%rdx),	%xmm0 //Load	B[j+1],	duplicate->m0
mulpd %xmm0,	%xmm1 //Multiply	m0*m1->m1
addpd %xmm1,	%xmm2 //Add	m1+m2->m2
addq $16,	%rax //	rax+16	->	rax (i+=2)
addq $8,	%rdx //	rdx+8	->	rdx (j+=1)
cmpq $32,	%rax //	rax ==	32?
jne L2 //	jump	to	L2	if	not	equal
movapd %xmm3,	(%rcx) //store	aligned	m3	into	C[k,k+1]
movapd %xmm2,	(%rdi) //store	aligned	m2	into	C[l,l+1]

54

And	in	Conclusion,	…
• Amdahl’s	Law:	Serial	sections	limit	speedup
• Flynn	Taxonomy
• Intel	SSE	SIMD	Instructions

– Exploit	data-level	parallelism	in	loops
– One	instruction	fetch	that	operates	on	multiple	
operands	simultaneously

– 128-bit	XMM	registers
• SSE	Instructions	in	C

– Embed	the	SSE	machine	instructions	directly	into	C	
programs	through	use	of	intrinsics

– Achieve	efficiency	beyond	that	of	optimizing	compiler

55

