
CS	110
Computer	Architecture	

Course	Summary

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C



Meltdown	and	Spectre

• Hardware vulnerability
• Affecting Intel	x86	microprocessors,

IBM	POWER	processors,	and	some
ARM-based	microprocessors

• All	Operating	Systems	effected!
• They	are	considered	"catastrophic"	by	security	analysts!
• Allow	to	read	all	memory	(e.g.	from	other	process	or	other	

Virtual	Machines	(e.g.	other	users	data	on	Amazon	cloud	
service!)	)

• Towards	the	end	of	this	CA	course	you	can	understand	the	
basics	of	how	Meltdown	and	Spectre work.	Keywords:
– Virtual	Memory;	Protection	Levels;	Instruction	Pipelining;	

Speculative	Execution;	CPU	Caching;	 2



Meltdown	&	Spectre

• KAISER	=	KPTI:	Kernel	page-table	isolation

• Disclaimer:	Most	details	that	follow	are	
oversimplified!!!

3



4

VM:	Address	Translation	&	Protection

• Every instruction and data access needs address 
translation and protection checks

A good VM design needs to be fast (~ one cycle) and 
space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write



OS:	Kernel	Memory	Space
• User	processes	have	memory	pages	in	the	kernel	
space	(managed	by	kernel,	but	with	user	data,	e.g.	
network	package	received)	

5



6



KPTI:	Meltdown	only!

• Without	KPTI:
– Executing	user-space	code	(applications),	Linux	keeps	
entire	kernel	memory	mapped	in	page	tables	(but	
protected	from	access)	

– Advantage:	System	call into	the	kernel	or	
Interrupt: kernel	page	tables	are	always	present	=>	
most	context-switching	overheads	(TLB	flush,	page-
table	swapping,	etc.)	can	be	avoided!

• With	KPTI:	5%	- 30%	slower	(depending	on	
workload:	more	syscalls (e.g.	Databases)	slower)

7



Three	Cve’s

• Common	Vulnerabilities	and	Exposures (CVE)	system	
provides	a	reference-method	for	publicly	
known information-security vulnerabilities and	
exposures

• CVE-2017-5715	- aka	Spectre,	branch	target	injection
• CVE-2017-5753	- aka	Spectre,	bounds	check	bypass
• CVE-2017-5754	- aka	Meltdown,	rogue	data	cache	
load,	memory	access	permission	check	performed	
after	kernel	memory	read



AttackerDomain of Victim

Secret

Channel
TransmitterAccess

Secret

Receiver

Attack	Schema

1. Create	a	channel
2. Create	the	transmitter
3. Launch	the	transmitter
4. Access	the	secret

Material	from	MIT:	Adam	Belay,	Srini Devadas,	Joel	Emer



Control	Speculation

I:	Compute

I+1:	Compute

I+2:	Compute

I+3:	Compute

I:	Control	Flow

J:	Compute

J+1:	Compute

J+2:	Compute

K:	Compute

K+1:	Compute

K+2:	Compute

Correct	direction Mis-speculated	
direction

Sequential	
Instruction
Execution

Non-Sequential	
Instruction
Execution

Transmitter	Code



Domain of Victim

Transmitter

Secret

Receiver
ChannelAccess

Secret

Attacker

Pre-existing	(RSA	example)
Written	by	attacker	(Meltdown)
Synthesized	out	of	existing	victim	code	by	attacker	(Spectre style)

Building	a	Transmitter



Meltdown	and	Spectre Attack	
Examples



Attack:	Mis-speculation	exfiltrates
secrets	through	cache

Transmitter
Cache

Receiver

Covert	Channel

Side	Channel

Secret

Speculative
Execution

Normal
Execution



Meltdown
Problem:	Attacker	can	influence	speculative	control	flow
Bug:	Speculative	execution	not	subject	to	page	
permission	checks
Attack:	User	code	can	read	kernel	data	(secret)

Three	steps:
1. Setup:	flush	the	cache
2. Transmit:	force	speculation	that	depends	on	secret
3. Receive:	measure	cache	timings



Meltdown	example
Setup:
clflush(timing_ptr[guess]);

Transmit:
timing_ptr[*kernel_addr];

Receive:
mfence();
s = rdtsc(); *timing_ptr[guess];
e = rdtscp();
if (e - s < CACHE_MISS_THRESHOLD)

printf(“guess was right!\n”);

Page	Fault
May	still	read	
*kernel_addr (speculatively)



Code	explained

• clflush(ptr):	Cache	Line	Flush	(remove	from	$)
• mfence():	in	out-of-order	processors	ensure	
that	all	prior	memory	operations	have	been	
finished

• X86:	Time	Stamp	Counter (TSC)	64-bit register:	
number	of	clock	cycles	since	reset
– rdtsc():	read	TSC	
– rdtscp():	read	TSC	NOW	(without	out-of-order	re-
ordering)

16



Spectre

• Problem:	Attacker	can	influence	speculative	
control	flow	(same	as	before)

• Attack:	Exfiltrate secrets	within	a	process	
address	space	(e.g.	a	web	browser).	Can	also	
be	used	to	attack	the	kernel.

• Could	use	attacker	provided	code	(JIT)	or	
could	co-opt	existing	program	code

• Same	three	steps!	Different	setup	and	
transmitters.



Spectre examples

Transmit	- Bounds	Check	Bypass:
if (x < array1_size)

array2[array1[x] * 256];



Spectre examples

Transmit	- Bounds	Check	Bypass:
if (x < array1_size)

array2[array1[x] * 256];

Transmit	- Branch	Target	Injector:
fnptr_t foo = choose_function();
foo(bar);



Fixing	those	bugs
• KPTI	for	meltdown	(speed	penalty!)
• Software:	Serialize	code	(no	out	of	order)
• Patches	for	Operating	Systems
• BIOS	patches:

– Patch	the	firmware	of	the	processors	=>
different	micro-code	get’s	executed	(microcode	fixes)

– Old	processors	without	patches,	e.g.:
– Intel	processors	that	will	never	get	updates:

• Bloomfield	(2011), Bloomfield	Xeon,	Clarksfield (2012),	
Gulftown,	Harpertown Xeon	C0	and	E0,	Jasper	Forest,	
Penryn/QC,	SoFIA 3GR,	Wolfdale (2011),	Wolfdale Xeon,	
Yorkfield (2011),	and	Yorkfield Xeon.

• Wait	for	new	hardware	w/o	those	bugs…
20



New	School	Computer	Architecture	(1/3)

21

Personal	
Mobile	
Devices



22

New	School	Computer	Architecture	(2/3)



23

New	School	Computer	Architecture	(3/3)



Old	Machine	Structures

24

CA

I/O	systemProcessor

Compiler
Operating
System
(Mac	OSX)

Application	(ex:	browser)

Digital	Design
Circuit	Design

Instruction	Set
Architecture

Datapath	&	Control	

transistors

MemoryHardware

Software Assembler



New-School	Machine	Structures
(It’s	a	bit	more	complicated!)

• Parallel	Requests
Assigned	to	computer
e.g.,	Search	“Katz”

• Parallel	Threads
Assigned	to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	instructions

• Parallel	Data
>1	data	item	@	one	time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	functioning	in	

parallel	at	same	time
• Programming	Languages 25

Smart
Phone

Warehouse	
Scale	

Computer

Software								Hardware

Leverage
Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															

Input/Output

Computer

Cache	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Project	1

Project	3

Project	2



CA	is	NOT	about	C	Programming

• It’s	about	the	hardware-software	interface
– What	does	the	programmer	need	to	know	to	
achieve	the	highest	possible	performance

• Languages	like	C	are	closer	to	the	underlying	
hardware,	unlike	languages	like	Python!	
– Allows	us	to	talk	about	key	hardware	features	in	
higher	level	terms

– Allows	programmer	to	explicitly	harness	
underlying	hardware	parallelism	for	high	
performance:	“programming	for	performance”

26



Great	Ideas	in	Computer	Architecture

1. Design	for	Moore’s	Law
2. Abstraction	to	Simplify	Design
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy
5. Memory	Hierarchy
6. Performance	via	

Parallelism/Pipelining/Prediction

27



Powers	of	Ten	inspired	CA	Overview

• Going	Top	Down	cover	3	Views
1. Architecture	(when	possible)
2. Physical	Implementation	of	that	architecture
3. Programming	system	for	that	architecture	

and	implementation	(when	possible)

• See	http://www.powersof10.com/film

28



Earth

29

107 meters



The	Dalles,	Oregon

30

104 meters



The	Dalles,	Oregon

31

104 meters



Google’s	Oregon	WSC

32

103 meters



Google’s	Oregon	WSC

33

104 meters

103 meters102 meters10
	k
ilo
m
et
er
s



Google	Warehouse

• 90	meters	by	75	meters,	10	Megawatts
• Contains	40,000	servers,	190,000	disks
• Power	Utilization	Effectiveness:	1.23

– 85%	of	0.23	overhead	goes	to	cooling	losses
– 15%	of	0.23	overhead	goes	to	power	losses

• Contains	45,	40-foot	long	containers
– 8	feet	x 9.5	feet	x 40	feet

• 30	stacked	as	double	layer,	15	as	single	layer

34



Containers	in	WSCs

35

102 meters
10
0	
m
et
er
s



Google	Container

36

101 meters



Google	Container

• 2	long	rows,	each		with	29	
racks

• Cooling	below	raised	floor
• Hot	air	returned	behind	

racks

37

100 meters
10
	m

et
er
s



Equipment	Inside	a	Container

38

Server	(in	rack	
format):

7	foot	Rack:		servers	+	Ethernet	local	
area	network	switch	in	middle	(“rack	
switch”)

Array	(aka	cluster):		
server	racks	+	larger	local	
area	network	switch	
(“array	switch”)	10X	
faster	=>	cost	100X:	cost	
f(N2)



Google	Rack
• Google	rack	with	20	

servers	+	Network	Switch	
in	the	middle

• 48-port	1	Gigabit/sec	
Ethernet	switch	every	
other	rack

• Array	switches	connect	to	
racks	via	multiple	1	Gbit/s
links

• 2	datacenter	routers	
connect	to	array	switches	
over	10	Gbit/s links

39

100 meters
1	
m
et
er



Great	Ideas	in	Computer	Architecture
1. Design	for	Moore’s	Law

-- WSC,	Container,	Rack
2. Abstraction	to	Simplify	Design
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy

--Multiple	WSCs,	Multiple	Racks,	Multiple	Switches
5. Memory	Hierarchy
6. Performance	via	

Parallelism/Pipelining/Prediction
-- Task	level	Parallelism,	Data	Level	Parallelism

40



Google	Server	Internals

41

Google	Server

10-1 meters
10
	c
en

tim
et
er
s



Google	Board	Details

• Supplies	only	12	volts
• Battery	per	board	vs.	
large	battery	room
– Improves	PUE:	99.99%	
efficient	local	battery	vs
94%	for	battery	room

• 2	SATA	Disk	Drives
– 1	Terabyte	capacity	each
– 3.5	inch	disk	drive
– 7200	RPM

• 2	AMD	Opteron
Microprocessors
– Dual	Core,	2.2	GHz

• 8	DIMMs
– 8	GB	DDR2	DRAM

• 1	Gbit/sec	Ethernet	
Network	Interface	Card

42



Programming	Multicore	
Microprocessor:	OpenMP

#include	<omp.h>
#include	<stdio.h>
static	long	num_steps =	100000;	
int	value[num_steps];	
int	reduce()	
{ int	i;	 int	sum	=	0;	
#pragma omp parallel	for	private(x)	reduction(+:sum)

for	(i=1;	i<=	num_steps;	i++){	
sum	=	sum	+	value[i];	

}	
}

43



Great	Ideas	in	Computer	Architecture
1. Design	for	Moore’s	Law

-- More	transistors	=	Multicore	+	SIMD
2. Abstraction	to	Simplify	Design
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy
5. Memory	Hierarchy

-- More	transistors	=	Cache	Memories
6. Performance	via	Parallelism/Pipelining/

Prediction
-- Thread-level	Parallelism

44



AMD	Opteron Microprocessor

45

10-2 meters
ce
nt
im

et
er
s



AMD	Opteron Microarchitecture

72	physical	
registers

46



AMD	Opteron Pipeline	Flow
• For	integer	operations

− 12	stages	(Floating	Point	is 17	stages)
− Up	to	106	RISC-ops	in	progress

47



AMD	Opteron Block	Diagram

48

AGUAGU

Int	Decode	&	Rename

FADD FMISCFMUL
44-entry
Load/Store
Queue

36-entry	FP	scheduler

FP	Decode	&	Rename

ALU

AGU

ALU

MULT

ALU

Res Res Res

L1
Icache
64B

L1
Dcache
64KB

Fetch Branch
Prediction

Instruction	Control	Unit	(72	entries)

Fastpath Microcode	Engine
Scan/Align/Decode

µops



AMD	Opteron Microprocessor

49

10-2 meters
ce
nt
im

et
er
s



AMD	Opteron Core

50

10-3 meters
m
ill
im

et
er
s



Programming	One	Core:	
C	with	Intrinsics	

void	mmult(int n,	float	*A,	float	*B,	float	*C)
{
for	(	int i =	0;	i <	n;	i+=4	)
for	(	int j	=	0;	j	<	n;	j++	)	
{
__m128	c0	=	_mm_load_ps(C+i+j*n);
for(	int k	=	0;	k	<	n;	k++	)
c0	=	_mm_add_ps(c0,	_mm_mul_ps(_mm_load_ps(A+i+k*n),		

_mm_load1_ps(B+k+j*n)));
_mm_store_ps(C+i+j*n,	c0);
}

}



Inner	loop	from	gcc –O	-S
Assembly	snippet	from	innermost	loop:

movaps (%rax),	%xmm9
mulps %xmm0,	%xmm9
addps %xmm9,	%xmm8
movaps 16(%rax),	%xmm9
mulps %xmm0,	%xmm9
addps %xmm9,	%xmm7
movaps 32(%rax),	%xmm9
mulps %xmm0,	%xmm9
addps %xmm9,	%xmm6
movaps 48(%rax),	%xmm9
mulps %xmm0,	%xmm9
addps %xmm9,	%xmm5



Great	Ideas	in	Computer	Architecture
1. Design	for	Moore’s	Law
2. Abstraction	to	Simplify	Design

-- Instruction	Set	Architecture,	Micro-operations
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy
5. Memory	Hierarchy
6. Performance	via	

Parallelism/Pipelining/Prediction
-- Instruction-level	Parallelism	(superscalar,	pipelining)
-- Data-level	Parallelism

53



SIMD	Adder

• Four	32-bit	adders	that	
operate	in	parallel
– Data	Level	Parallelism

54



One	32-bit	Adder

55



1	bit	of	32-bit	Adder

56



Complementary	MOS	Transistors	
(NMOS	and	PMOS)	of	NAND	Gate

3v

X Y

0v

Z

57

x y z

0 volts

3 volts

0 volts

3 volts

0 volts

0 volts
3 volts

3 volts

3 volts

3 volts

3 volts

0 volts

NAND	gate



Physical	Layout	of	NAND	Gate

58

10-7 meters
10

0	
na
no

m
et
er
s



Scanning	Electron	Microscope

59

10-7 meters

Cross	Section
Top	View

10
0	
na
no

m
et
er
s



Block	Diagram	of	Static	RAM

60

10-6 meters



1	Bit	SRAM	in	6	Transistors

61



Physical	Layout	of	SRAM	Bit

62

10-7 meters
10

0	
na
no

m
et
er
s



SRAM	Cross	Section

63

10-7 meters
10

0	
na
no

m
et
er
s



DIMM	Module

• DDR	=	Double	Data	Rate
– Transfers	bits	on	Falling	AND	Rising	Clock	Edge

• Has	Single	Error	Correcting,	Double	Error	
Detecting	Redundancy	(SEC/DED)
– 72	bits	to	store	64	bits	of	data
– Uses	“Chip	kill”	organization	so	that	if	single	
DRAM	chip	fails	can	still	detect	failure

• Average	server	has	22,000	correctable	errors	
and	1	uncorrectable	error	per	year	

64



DRAM	Bits

65

10-6 meters
1	
m
ic
ro
n



DRAM	Cell	in	Transistors

66



Physical	Layout	of	DRAM	Bit

67



Cross	Section	of	DRAM	Bits

68

10-7 meters

10
0	
na
no

m
et
er
s



AMD	Opteron	Dependability
•	L1	cache	data	is	SEC/DED	protected
•	L2	cache	and	tags	are	SEC/DED	protected
•	DRAM	is	SEC/DED	protected	with	chipkill
•	On-chip	and	off-chip	ECC	protected	arrays	include	
autonomous,	background	hardware	scrubbers

•	Remaining	arrays	are	parity	protected	
– Instruction	cache,	tags	and	TLBs
– Data	tags	and	TLBs
– Generally	read	only	data	that	can	be	recovered	
from	lower	levels

69



• The	blocked	version	of	the	i-j-k algorithm	is	written	
simply	as	(A,B,C	are	submatricies of	a,	b,	c)

for (i=0;i<N/r;i++)
for (j=0;j<N/r;j++)
for (k=0;k<N/r;k++)
C[i][j] += A[i][k]*B[k][j]

– r =	block	(sub-matrix)	size	(Assume	r divides	N)
– X[i][j] =		a	sub-matrix	of	X,	defined	by	block	row	i and	
block	column	j

Programming	Memory	Hierarchy:	
Cache	Blocked	Algorithm



Great	Ideas	in	Computer	Architecture
1. Design	for	Moore’s	Law

-- Higher	capacities	caches	and	DRAM
2. Abstraction	to	Simplify	Design
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy

-- Parity,	SEC/DEC
5. Memory	Hierarchy

-- Caches,	TLBs
6. Performance	via	Parallelism/Pipelining/Prediction

-- Data-level	Parallelism

71



Course	Summary

• As	the	field	changes,	Computer	Architecture	
courses	change,	too!

• It	is	still	about	the	software-hardware	
interface
– Programming	for	performance!
– Parallelism:	Task-,	Thread-,	Instruction-,	and	Data-
MapReduce,	OpenMP,	C,	SSE	instrinsics

– Understanding	the	memory	hierarchy	and	its	
impact	on	application	performance

72


