
CS	110
Computer	Architecture	

Lecture	2:	Introduction	to	C,	Part	I

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Agenda

• Everything	is	a	Number
• Compile	vs.	Interpret
• Administrivia
• Quick	Start	Introduction	to	C
• Pointers
• And	in	Conclusion,	…

2

Agenda

• Everything	is	a	Number
• Compile	vs.	Interpret
• Administrivia
• Quick	Start	Introduction	to	C
• Pointers
• And	in	Conclusion,	…

3

BIG IDEA: Bits can represent anything!!
• Characters?

– 26 letters Þ 5 bits (25 = 32)
– upper/lower case + punctuation

Þ 7 bits (in 8) (“ASCII”)

– standard code to cover all the world’s languages Þ 8,16,32 bits
(“Unicode”)
www.unicode.com

• Logical values?
– 0 ® False, 1 ® True

• colors ? Ex:

• locations / addresses? commands?

• MEMORIZE: N bits Û at most 2N things

Red (00) Green (01) Blue (11)

Key	Concepts
• Inside	computers,	everything	is	a	number
• But	numbers	usually	stored	with	a	fixed	size
– 8-bit	bytes,	16-bit	half	words,	32-bit	words,	64-bit	
double	words,	…

• Integer	and	floating-point	operations	can	lead	
to	results	too	big/small	to	store	within	their	
representations:	overflow/underflow

5

Number	Representation

• Value	of	i-th digit	is	d × Baseiwhere	i starts	at	0	
and	increases	from	right	to	left:

• 12310	=	110 x 10102 +	210 x 10101 +	310 x 10100

=	1x10010 +	2x1010 +	3x110
=	10010 +	2010 +	310
=	12310

• Binary	(Base	2),	Hexadecimal	(Base	16),	Decimal	
(Base	10)	different	ways	to	represent	an	integer
– We	use	1two,	5ten,	10hex to	be	clearer	

(vs.	12,				48,			510,		1016)

6

Number	Representation

• Hexadecimal	digits:	
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

• FFFhex =	15tenx	16ten2 +	15tenx	16ten1 +	15tenx	16ten0
=	3840ten +	240ten +	15ten
=	4095ten

• 1111	1111	1111two =	FFFhex =	4095ten
• May	put	blanks	every	group	of	binary,	octal,	or	
hexadecimal	digits	to	make	it	easier	to	parse,	like	
commas	in	decimal

7

Signed	and	Unsigned	Integers

• C,	C++,	and	Java	have	signed	integers,	e.g.,	7,	-255:
int x, y, z;

• C,	C++	also	have	unsigned	integers,	e.g.	for	
addresses

• 32-bit	word	can	represent	232 binary	numbers
• Unsigned	integers	in	32	bit	word	represent	
0	to	232-1	(4,294,967,295)	(4	Gig)

8

Unsigned	Integers
0000	0000	0000	0000	0000	0000	0000	0000two =	0ten
0000	0000	0000	0000	0000	0000	0000	0001two =	1ten
0000	0000	0000	0000	0000	0000	0000	0010two =	2ten

...	 ...
0111	1111	1111	1111	1111	1111	1111	1101two =	2,147,483,645ten
0111	1111	1111	1111	1111	1111	1111	1110two =	2,147,483,646ten
0111	1111	1111	1111	1111	1111	1111	1111two =	2,147,483,647ten
1000	0000	0000	0000	0000	0000	0000	0000two =	2,147,483,648ten
1000	0000	0000	0000	0000	0000	0000	0001two =	2,147,483,649ten
1000	0000	0000	0000	0000	0000	0000	0010two =	2,147,483,650ten

...	 ...
1111	1111	1111	1111	1111	1111	1111	1101two =	4,294,967,293ten
1111	1111	1111	1111	1111	1111	1111	1110two =	4,294,967,294ten
1111	1111	1111	1111	1111	1111	1111	1111two =	4,294,967,295ten

9

Signed	Integers	and	
Two’s-Complement	Representation

• Signed	integers	in	C;	want	½	numbers	<0,	want	½	
numbers	>0,	and	want	one	0	

• Two’s	complement	treats	0	as	positive,	so	32-bit	
word	represents	232	integers	from
-231	(–2,147,483,648)	to	231-1	(2,147,483,647)
– Note:	one	negative	number	with	no	positive	version
– Book	lists	some	other	options,	all	of	which	are	worse
– Every	computer	uses	two’s	complement	today

• Most-significant	bit	(leftmost)	is	the	sign	bit,	
since	0	means	positive	(including	0),	1	means	
negative
– Bit	31	is	most	significant,	bit	0	is	least	significant

10

Two’s-Complement	Integers
0000	0000	0000	0000	0000	0000	0000	0000two =	0ten
0000	0000	0000	0000	0000	0000	0000	0001two =	1ten
0000	0000	0000	0000	0000	0000	0000	0010two =	2ten

...	 ...
0111	1111	1111	1111	1111	1111	1111	1101two =	2,147,483,645ten
0111	1111	1111	1111	1111	1111	1111	1110two =	2,147,483,646ten
0111	1111	1111	1111	1111	1111	1111	1111two =	2,147,483,647ten
1000	0000	0000	0000	0000	0000	0000	0000two =	–2,147,483,648ten
1000	0000	0000	0000	0000	0000	0000	0001two =	–2,147,483,647ten
1000	0000	0000	0000	0000	0000	0000	0010two =	–2,147,483,646ten

...	 ...
1111	1111	1111	1111	1111	1111	1111	1101two =	–3ten
1111	1111	1111	1111	1111	1111	1111	1110two =	–2ten
1111	1111	1111	1111	1111	1111	1111	1111two =	–1ten

11

Sign	Bit

Ways	to	Make	Two’s	Complement
• For	N-bit	word,	complement	to	2tenN

– For	4	bit	number	3ten=0011two,	two’s	complement	

(i.e.	-3ten)	would	be	

16ten-3ten=13ten or	10000two – 0011two =	1101two

12

• Here	is	an	easier	way:
– Invert	all	bits	and	add	1

– Computers	actually	do	it	like	this,	too

0011two

1100two
+							1two

3ten

1101two

Bitwise	complement

-3ten

Two’s-Complement	Examples

• Assume	for	simplicity	4	bit	width,	-8	to	+7	
represented

13

0011
0010

3
+2
5 0101

0011
1110

3
+	(-2)

1 1	0001

0111
0001

7
+1
-8 1000
Overflow!

1101
1110

-3
+	(-2)

-5 1	1011

1000
1111

-8
+	(-1)
+7 1	0111

Carry	into	MSB	=	
Carry	Out	MSB

Carry	into	MSB	=	
Carry	Out	MSB

Overflow!

Overflow	when	
magnitude	of	result	
too	big	to	fit	into	
result	representation

Carry	in	=	carry	from	less	significant	bits
Carry	out	=	carry	to	more	significant	bits

0	to	+31

-16	to	+15

-32	to	+31

B

C

D

14

Suppose	we	had	a	5-bit	word.	What	
integers	can	be	represented	in	two’s	
complement?

A

0	to	+31

-16	to	+15

15

Suppose	we	had	a	5-bit	word.	What	
integers	can	be	represented	in	two’s	
complement?

B

C

D

A -32	to	+31

Agenda

• Everything	is	a	Number
• Compile	vs.	Interpret
• Administrivia
• Quick	Start	Introduction	to	C
• Pointers
• And	in	Conclusion,	…

16

Processor

Control

Datapath

Components	of	a	Computer

17

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	
Data

Read
Data

Processor-Memory	Interface I/O-Memory	Interfaces

Program

Data

Great	Idea:	Levels	of	
Representation/Interpretation

lw t0,	0(s2)
lw t1,	4(s2)
sw t1,	0(s2)
sw t0,	4(s2)

High	Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	RISC-V)

Machine		Language	
Program	(RISC-V)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions

18

We	are	here!

Introduction	to	C
“The	Universal	Assembly	Language”

19

Intro	to	C
• C	is	not	a	“very	high-level”	language,	nor	a	
“big”	one,	and	is	not	specialized	to	any	
particular	area	of	application.	But	its	absence	
of	restrictions	and	its	generality	make	it	more	
convenient	and	effective	for	many	tasks	than	
supposedly	more	powerful	languages.

– Kernighan	and	Ritchie
• Enabled	first	operating	system	not	written	in	
assembly	language:	UNIX	- A	portable	OS!

20

Intro	to	C

• Why	C?:	we	can	write	programs	that	allow	us	
to	exploit	underlying	features	of	the	
architecture	– memory	management,	special	
instructions,	parallelism

• C	and	derivatives	(C++/Obj-C/C#)	still	one	of	
the	most	popular	application	programming	
languages	after	>40	years!

21

Disclaimer

• You	will	not	learn	how	to	fully	code	in	C	in	
these	lectures!	You’ll	still	need	your	C	
reference	for	this	course
– K&R	is	a	must-have
• Check	online	for	more	sources

• Key	C	concepts:	Pointers,	Arrays,	Implications	
for	Memory	management

• We	will	use	ANSI	C89	– original	”old	school”	C
– Because	it	is	closest	to	Assembly

22

Compilation:	Overview

• C	compilers	map	C	programs	into	architecture-
specific	machine	code	(string	of	1s	and	0s)
– Unlike	Java,	which	converts	to	architecture-
independent	bytecode

– Unlike	Python	environments,	which	interpret	the	code
– These	differ	mainly	in	exactly	when	your	program	is	
converted	to	low-level	machine	instructions	(“levels	of	
interpretation”)

– For	C,	generally	a	two	part	process	of	compiling	.c files	
to	.o files,	then	linking	the	.o files	into	executables;		

– Assembling	is	also	done	(but	is	hidden,	i.e.,	done	
automatically,	by	default);	we’ll	talk	about	that	later

23

C	Compilation	Simplified	Overview
(more	later	in	course)

24

foo.c bar.c

Compiler Compiler

foo.o bar.o

Linker lib.o

a.out

C	source	files	(text)

Machine	code	object	files

Pre-built	object	
file	libraries

Machine	code	executable	file

Compiler/assembler	
combined	here

Compilation:	Advantages

• Excellent	run-time	performance:	generally	
much	faster	than	Scheme	or	Java	for	
comparable	code	(because	it	optimizes	for	a	
given	architecture)

• Reasonable	compilation	time:	enhancements	
in	compilation	procedure	(Makefiles)	allow	
only	modified	files	to	be	recompiled

25

Compilation:	Disadvantages

• Compiled	files,	including	the	executable,	are	
architecture-specific,	depending	on	processor	
type	(e.g.,	MIPS	vs.	RISC-V)	and	the	operating	
system	(e.g.,	Windows	vs.	Linux)

• Executable	must	be	rebuilt	on	each	new	system
– I.e.,	“porting	your	code”	to	a	new	architecture

• “Change	® Compile	® Run	[repeat]”	iteration	
cycle	can	be	slow	during	development
– but	Make	tool	only	rebuilds	changed	pieces,	and	can	
do	compiles	in	parallel	(linker	is	sequential	though	->	
Amdahl’s	Law)

26

C	Pre-Processor	(CPP)

• C	source	files	first	pass	through	macro	processor,	CPP,	before	
compiler	sees	code

• CPP	replaces	comments	with	a	single	space
• CPP	commands	begin	with	“#”
• #include	“file.h”	/*	Inserts	file.h into	output	*/
• #include	<stdio.h>	/*	Looks	for	file	in	standard	location	*/
• #define	M_PI	(3.14159)	/*	Define	constant	*/
• #if/#endif /*	Conditional	inclusion	of	text	*/
• Use	-save-temps	option	to	gcc to	see	result	of	preprocessing
• Full	documentation	at:	http://gcc.gnu.org/onlinedocs/cpp/

27

foo.c CPP foo.i Compiler

Typed	Variables	in	C
int variable1 = 2;
float variable2 = 1.618;

char variable3 = 'A';

• Must	declare	the	type	of	
data	a	variable	will	hold
– Types	can't	change

28

Type Description Examples
int integer	numbers,	including	negatives 0,	78,	-1400
unsigned	int integer	numbers	(no	negatives) 0,	46,	900
long larger	signed	integer -6,000,000,000
char single	text	character	or	symbol 'a',	'D',	'?’
float floating	point	decimal	numbers 0.0,	1.618,	-1.4
double greater	precision/big	FP	number 10E100

Integers:	Python	vs.	Java	vs.	C

• C:	int should	be	integer	type	that	target	
processor	works	with	most	efficiently

• Only	guarantee:	sizeof(long long)	
≥	sizeof(long)	≥	sizeof(int)	≥		sizeof(short)
– Also,	short >=	16	bits,	long >=	32	bits
– All	could	be	64	bits 29

Language sizeof(int)
Python >=32	bits	(plain	ints),	infinite (long	ints)
Java 32	bits
C Depends	on	computer;	16 or	32	or	64

Consts and	Enums in	C

• Constant	is	assigned	a	typed	value	once	in	the	declaration;
value	can't	change	during	entire	execution	of	program
const float golden_ratio = 1.618;
const int days_in_week = 7;

• You	can	have	a	constant	version	of	any	of	the	standard	C	
variable	types

• Enums:	a	group	of	related	integer	constants.		Ex:
enum cardsuit {CLUBS,DIAMONDS,HEARTS,SPADES};
enum color {RED, GREEN, BLUE};

30

B:	Can	assign	to	“PI”	but	not	“pi”	

C:	Code	runs	at	same	speed	using	“PI”	or	“pi”

A:	Constants	“PI”	and	“pi”	have	same	type

31

Compare	“#define PI 3.14”	and
“const float pi=3.14”	– which	is	true?

Agenda

• Everything	is	a	Number
• Compile	vs.	Interpret
• Administrivia
• Quick	Start	Introduction	to	C
• Pointers
• And	in	Conclusion,	…

32

Administrivia
• Find	a	partner	for	the	lab.	Inform	your	lab	TA	
about	your	partner	selection	during	lab	1.	
Partner	teams	should	be	2	persons	– there	can	
be	exactly	one	3	person	lab	team	per	lab.

• Labs	start	next	week!	Check	your	schedule!	You	
cannot	get	checked	without	a	partner!

• The	tasks	for	Lab	1	are	posted	on	the	website.	
Prepare	for	it	over	the	weekend.

33

Administrivia
• We	have	registered	you	for	Autolab yesterday	
night.

• HW1	is	available	on	Autolab.	Due	next	Thursday.
• Website	is	down.	Hopefully	will	be	up	soon.	
Slides	will	be	posted	on	piazza	for	now.	Maybe	
Lab	1,	too.

• Register	in	piazza!	Will	be	part	of	your	grade!
– There	are	also	apps	for	your	phone…

34

Agenda

• Everything	is	a	Number
• Compile	vs.	Interpret
• Administrivia
• Quick	Start	Introduction	to	C
• Pointers
• And	in	Conclusion,	…

35

Typed	Functions	in	C

int number_of_people ()
{
return 3;

}

float dollars_and_cents ()
{
return 10.33;

}

int sum (int x, int y)
{

return x + y;
}

• You	have	to	declare	the	type	of	
data	you	plan	to	return	from	a	
function

• Return	type	can	be	any	C	
variable	type,	and	is	placed	to	
the	left	of	the	function	name

• You	can	also	specify	the	return	
type	as	void
– Just	think	of	this	as	saying	that	no	value	

will	be	returned
• Also	necessary	to	declare	types	

for	values	passed	into	a	function
• Variables	and	functions	MUST	be	

declared	before	they	are	used

36

Structs in	C
• Structs are	structured	groups	of	

variables,	e.g.,	

typedef struct {
int length_in_seconds;
int year_recorded;

} Song;

Song song1;

song1.length_in_seconds = 213;
song1.year_recorded = 1994;

Song song2;

song2.length_in_seconds = 248;
song2.year_recorded = 1988;

37

Dot	notation:	x.y = value

A	First	C	Program:	Hello	World
Original C:

main()
{
printf("\nHello World\n");

}

ANSI Standard C:

#include <stdio.h>

int main(void)
{
printf("\nHello World\n");
return 0;

}

38

C	Syntax:	main

• When	C	program	starts
– C	executable	a.out is	loaded	into	memory	by	
operating	system	(OS)

– OS	sets	up	stack,	then	calls	into	C	runtime	library,
– Runtime	1st initializes	memory	and	other	libraries,
– then	calls	your	procedure	named	main	()

• We’ll	see	how	to	retrieve	command-line	
arguments	in	main()	later…

39

A	Second	C	Program:
Compute	Table	of	Sines

#include <stdio.h>
#include <math.h>

int main(void)
{

int angle_degree;
double angle_radian, pi, value;
/* Print a header */
printf("\nCompute a table of the
sine function\n\n");

/* obtain pi once for all */
/* or just use pi = M_PI, where */
/* M_PI is defined in math.h */
pi = 4.0*atan(1.0);
printf("Value of PI = %f \n\n",
pi);

printf("angle Sine \n");

angle_degree = 0;
/* initial angle value */
/* scan over angle */
while (angle_degree <= 360)
/* loop until angle_degree > 360 */

{
angle_radian = pi*angle_degree/180.0;
value = sin(angle_radian);
printf (" %3d %f \n ",

angle_degree, value);
angle_degree = angle_degree + 10;
/* increment the loop index */

}
return 0;
}

40

Second	C	Program
Sample	Output

Compute a table of the sine
function

Value of PI = 3.141593

angle Sine
0 0.000000

10 0.173648
20 0.342020
30 0.500000
40 0.642788
50 0.766044
60 0.866025
70 0.939693
80 0.984808
90 1.000000

100 0.984808
110 0.939693
120 0.866025
130 0.766044
140 0.642788
150 0.500000
160 0.342020
170 0.173648
180 0.000000

190 -0.173648
200 -0.342020
210 -0.500000
220 -0.642788
230 -0.766044
240 -0.866025
250 -0.939693
260 -0.984808
270 -1.000000
280 -0.984808
290 -0.939693
300 -0.866025
310 -0.766044
320 -0.642788
330 -0.500000
340 -0.342020
350 -0.173648
360 -0.000000

41

C	Syntax:	Variable	Declarations

• All	variable	declarations	must	appear	before	they	
are	used	(e.g.,	at	the	beginning	of	the	block)	

• A	variable	may	be	initialized	in	its	declaration;	
if	not,	it	holds	garbage!

• Examples	of	declarations:
– Correct: {

int a = 0, b = 10;
...

−Incorrect: for (int i = 0; i < 10; i++)
}

42
Newer	C	standards	are	more	flexible	about	this,	more	later

C	Syntax	:	Control	Flow	(1/2)

• Within	a	function,	remarkably	close	to	Java	
constructs	in	terms	of	control	flow
– if-else

• if (expression) statement
• if (expression) statement1
else statement2

– while
• while (expression)

statement
• do

statement
while (expression);

43

C	Syntax	:	Control	Flow	(2/2)

– for
• for (initialize; check; update)
statement

– switch
• switch (expression){

case const1: statements
case const2: statements
default: statements

}
• break

44

