
CS	110
Computer	Architecture	

Lecture	4:	Introduction	to	C,	Part	III

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Review
• Pointers and arrays are virtually same
• C knows how to increment pointers
• C is an efficient language, with little protection

• Array bounds not checked
• Variables not automatically initialized

• Use handles to change pointers
• (Beware) The cost of efficiency is more overhead for

the programmer.
• “C gives you a lot of extra rope but be careful not to

hang yourself with it!”

Valid	Pointer	Arithmetic

• Add	an	integer	to	a	pointer.
• Subtract	2	pointers	(in	the	same	array)
• Compare	pointers	(<,	<=,	==,	!=,	>,	>=)
• Compare	pointer	to	NULL	(indicates	that	the	
pointer	points	to	nothing)

Everything	else	illegal	since	makes	no	sense:
• adding	two	pointers
• multiplying	pointers	
• subtract	pointer	from	integer

Arguments	in	main()

• To	get	arguments	to	the	main	function,	use:
– int main(int argc, char *argv[])

• What	does	this	mean?
– argc contains	the	number	of	strings	on	the	
command	line	(the	executable	counts	as	one,	plus	
one	for	each	argument).	Here	argc is	2:
sort	myFile

– argv is	a	pointer	to	an	array	containing	the	
arguments	as	strings

4

Example

• foo hello 87
• argc = 3 /* number arguments */
• argv[0] = "foo",
argv[1] = "hello",
argv[2] = "87"
–Array	of	pointers	to	strings

5

C	Memory	Management
• How	does	the	C	compiler	determine	where	to	
put	all	the	variables	in	machine’s	memory?

• How	to	create	dynamically	sized	objects?
• To	simplify	discussion,	we	assume	one	
program	runs	at	a	time,	with	access	to	all	of	
memory.

• Later,	we’ll	discuss	virtual	memory,	which	lets	
multiple	programs	all	run	at	same	time,	each	
thinking	they	own	all	of	memory.

6

C	Memory	
Management

• Program’s	address	space
contains	4	regions:
– stack:	local	variables	inside	

functions,	grows	downward
– heap:	space	requested	for	

dynamic	data	via	malloc();	
resizes	dynamically,	grows	
upward

– static	data:	variables	declared	
outside	functions,	does	not	grow	
or	shrink.	Loaded	when	program	
starts,	can	be	modified.

– code:	loaded	when	program	
starts,	does	not	change

code

static	data

heap

stack~	FFFF	FFFFhex

~	0000	0000hex

77

Memory	Address
(32	bits	assumed	here)

Where	are	Variables	Allocated?

• If	declared	outside	a	function,	
allocated	in	“static”	storage	

• If	declared	inside	function,	
allocated	on	the	“stack”
and	freed	when	function
returns
– main()	is	treated	like
a	function

int myGlobal;
main() {
int myTemp;

}

8

The	Stack
• Every	time	a	function	is	called,	a	new	frame	

is	allocated	on	the	stack
• Stack	frame	includes:

– Return	address	(who	called	me?)
– Arguments
– Space	for	local	variables

• Stack	frames	contiguous	
blocks	of	memory;	stack	pointer	
indicates	start	of	stack	frame

• When	function	ends,	stack	frame	is	tossed	
off	the	stack;	frees	memory	for	future	stack	
frames

• We’ll	cover	details	later	for	RISC-V	processor fooD frame

fooB frame

fooC frame

fooA frame

Stack	Pointer
9

fooA() { fooB(); }
fooB() { fooC(); }
fooC() { fooD(); }

Stack		Animation

• Last	In,	First	Out	(LIFO)	data	structure
main ()
{ a(0);
}

void a (int m)
{ b(1);
}
void b (int n)
{ c(2);
}
void c (int o)
{ d(3);
}
void d (int p)
{
}

stack

Stack	PointerStack	grows	
down

10

Managing	the	Heap
C	supports	five	functions	for	heap	management:
• malloc() allocate	a	block	of	uninitialized	memory
• calloc() allocate	a	block	of	zeroed	memory
• free() free	previously	allocated	block	of	memory
• realloc() change	size	of	previously	allocated	block

• careful	– it	might	move!

11

Malloc()
• void *malloc(size_t n):

– Allocate	a	block	of	uninitialized	memory
– NOTE:	Subsequent	calls	might	not	yield	blocks	in	contiguous	addresses
– n is	an	integer,	indicating	size	of	allocated	memory	block	in	bytes
– size_t is	an	unsigned	integer	type	big	enough	to	“count”	memory	bytes
– sizeof returns	size	of	given	type	in	bytes,	produces	more	portable	code
– Returns	void* pointer	to	block;	NULL return	indicates	no	more	memory
– Think	of	pointer	as	a	handle	that	describes	the	allocated	block	of	memory;	

Additional	control	information	stored	in	the	heap	around	the	allocated	
block!

• Examples:		
int *ip;
ip = (int *) malloc(sizeof(int));

typedef struct { … } TreeNode;
TreeNode *tp = (TreeNode *) malloc(sizeof(TreeNode));

12

“Cast”	operation,	changes	type	of	a	variable.	
Here	changes	(void *) to	(int *)

Managing	the	Heap
• void free(void *p):

– Releases	memory	allocated	by malloc()
– p is	pointer	containing	the	address originally	returned	by	malloc()

int *ip;
ip = (int *) malloc(sizeof(int));
...
free((void*) ip); /* Can you free(ip) after ip++ ? */

typedef struct {… } TreeNode;
TreeNode *tp = (TreeNode *) malloc(sizeof(TreeNode));

...
free((void *) tp);

– When insufficient	free	memory,	malloc() returns NULL pointer;	Check	for	it!
if ((ip = (int *) malloc(sizeof(int))) == NULL){

printf(“\nMemory is FULL\n”);
exit(1); /* Crash and burn! */

}
– When	you	free memory,	you	must	be	sure	that	you	pass	the	original	address	

returned	from malloc() to	free(); Otherwise,	system	exception	(or	worse)!

13

Using	Dynamic	Memory
typedef struct node {

int key;
struct node *left;
struct node *right;

} Node;

Node *root = 0;

Node *create_node(int key, Node *left, Node *right)
{

Node *np;
if ((np = (Node*) malloc(sizeof(Node))) == NULL)
{ printf("Memory exhausted!\n"); exit(1); }
else
{ np->key = key;

np->left = left;
np->right = right;
return np;

}
}

void insert(int key, Node **tree)
{

if ((*tree) == NULL)
{ (*tree) = create_node(key, NULL, NULL); return; }

if (key <= (*tree)->key)
insert(key, &((*tree)->left));

else
insert(key, &((*tree)->right));

} 14

Root

Key=10

Left Right

Key=5

Left Right
Key=16

Left Right

Key=11

Left Right

Observations

• Code,	Static	storage	are	easy:	they	never	grow	
or	shrink

• Stack	space	is	relatively	easy:	stack	frames	are	
created	and	destroyed	in	last-in,	first-out	
(LIFO)	order

• Managing	the	heap	is	tricky:	memory	can	be	
allocated	/	deallocated at	any	time

15

Question!
int x = 2;
int result;

int foo(int n)
{ int y;

if (n <= 0) { printf("End case!\n"); return 0; }
else
{ y = n + foo(n-x);

return y;
}

}
result = foo(10);

Right	after	the	printf executes	but	before	the	return 0,	how	many	copies	of	x and	y are	there
allocated	in	memory?

A:	#x	=	1,	#y	=	1
B:	#x	=	1,	#y	=	5
C:	#x	=	1,	#y	=	6
D:	#x	=	5,	#y	=	1
E:	#x	=	6,	#y	=	6

16

How	are	Malloc/Free	implemented?

• Underlying	operating	system	allows	malloc
library	to	ask	for	large	blocks	of	memory	to	
use	in	heap	(e.g.,	using	Unix	sbrk() call)

• C	standard	malloc library	creates	data	
structure	inside	unused	portions	to	track	free	
space

17

Simple	Slow	Malloc Implementation

18

Initial	Empty	Heap	space	from	Operating	System

Free	Space

Malloc library	creates	linked	list	of	empty	blocks	(one	block	initially)

FreeObject	1

Free

First	allocation	chews	up	space	from	start	of	free	space

After	many	mallocs and	frees,	have	potentially	long	linked	list	of	odd-sized	blocks
Frees	link	block	back	onto	linked	list	– might	merge	with	neighboring	free	space

Faster	malloc implementations

• Keep	separate	pools	of	blocks	for	different	
sized	objects

• “Buddy	allocators”	always	round	up	to	power-
of-2	sized	chunks	to	simplify	finding	correct	
size	and	merging	neighboring	blocks:

19

Power-of-2	“Buddy	Allocator”

20

free

used

Malloc Implementations

• All	provide	the	same	library	interface,	but	can	
have	radically	different	implementations

• Uses	headers	at	start	of	allocated	blocks	and	
space	in	unallocated	memory	to	hold	
malloc’s internal	data	structures

• Rely	on	programmer	remembering	to	free	
with	same	pointer	returned	by	malloc

• Rely	on	programmer	not	messing	with	internal	
data	structures	accidentally!

21

AMD’d current	Ryzen	2000	
(Zen+)
• AMD’s	newest	processor	
• Ryzen	7	2700X	(USD	369):	
– 8	cores	with	SMT	->	16	threads
– 3.7GHz	(Turbo:	4.35GHz)
– Cache:	L2:	4MB,	L3	20MB
– TDP:	120W
– 12	nm	FinFET
– Up	to	8	channels	of	DDR4	memory

22

23

24

25

26

Common	Memory	Problems

• Using	uninitialized	values
• Using	memory	that	you	don’t	own
– Deallocated stack	or	heap	variable
– Out-of-bounds	reference	to	stack	or	heap	array
– Using	NULL	or	garbage	data	as	a	pointer

• Improper	use	of	free/realloc by	messing	with	the	
pointer	handle	returned	by	malloc/calloc

• Memory	leaks	(you	allocated	something	you	
forgot	to	later	free)

27

Using	Memory	You	Don’t	Own

int *ipr, *ipw;
void ReadMem() {

int i, j;
ipr = (*int) malloc(4 * sizeof(int));
i = *(ipr - 1000); j = *(ipr + 1000);
free(ipr);

}

void WriteMem() {
ipw = (*int) malloc(5 * sizeof(int));
*(ipw - 1000) = 0; *(ipw + 1000) = 0;
free(ipw);

}
28

•What	is	wrong	with	this	code?
• Using	pointers	beyond	the	range	that	had	been	malloc’d

–May	look	obvious,	but	what	if	mem	refs	had	been	result	of	pointer	arithmetic	that	
erroneously	took	them	out	of	the	allocated	range?

Faulty	Heap	Management

• What	is	wrong	with	this	code?
int *pi;
void foo() {

pi = malloc(8*sizeof(int));
…
free(pi);

}

void main() {
pi = malloc(4*sizeof(int));
foo();
…

}

29

Faulty	Heap	Management

• Memory	leak:	more	mallocs than	frees
int *pi;
void foo() {

pi = malloc(8*sizeof(int));
/* Allocate memory for pi */
/* Oops, leaked the old memory pointed to by pi */
…
free(pi); /* foo() is done with pi, so free it */

}

void main() {
pi = malloc(4*sizeof(int));
foo(); /* Memory leak: foo leaks it */
…

}

30

Faulty	Heap	Management

• What	is	wrong	with	this	code?

31

int *plk = NULL;
void genPLK() {

plk = malloc(2 * sizeof(int));
… … …
plk++;

}

Faulty	Heap	Management

• Potential	memory	leak	– handle	has	been	
changed,	do	you	still	have	copy	of	it	that	can	
correctly	be	used	in	a	later	free?

32

int *plk = NULL;
void genPLK() {

plk = malloc(2 * sizeof(int));
… … …
plk++;

}

Faulty	Heap	Management

• What	is	wrong	with	this	code?

33

void FreeMemX() {
int fnh = 0;
free(&fnh);

}

void FreeMemY() {
int *fum = malloc(4 * sizeof(int));
free(fum+1);
free(fum);
free(fum);

}

Faulty	Heap	Management

• Can’t	free	non-heap	memory;	Can’t	free	
memory	that	hasn’t	been	allocated

34

void FreeMemX() {
int fnh = 0;
free(&fnh);

}

void FreeMemY() {
int *fum = malloc(4 * sizeof(int));
free(fum+1);
free(fum);
free(fum);

}

Using	Memory	You	Haven’t	Allocated

• What	is	wrong	with	this	code?

35

void StringManipulate() {
const char *name = “Safety Critical";
char *str = malloc(10);
strncpy(str, name, 10);
str[10] = '\0';
printf("%s\n", str);

}

Using	Memory	You	Haven’t	Allocated

• Reference	beyond	array	bounds

36

void StringManipulate() {
const char *name = “Safety Critical";
char *str = malloc(10);
strncpy(str, name, 10);
str[10] = '\0';
/* Write Beyond Array Bounds */
printf("%s\n", str);
/* Read Beyond Array Bounds */

}

Using	Memory	You	Don’t	Own

37

• What’s	wrong	with	this	code?

char *append(const char* s1, const char *s2) {
const int MAXSIZE = 128;
char result[128];
int i=0, j=0;
for (j=0; i<MAXSIZE-1 && j<strlen(s1); i++,j++) {
result[i] = s1[j];
}
for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {
result[i] = s2[j];
}
result[++i] = '\0';
return result;

}

Using	Memory	You	Don’t	Own

38

• Beyond	stack	read/write

char *append(const char* s1, const char *s2) {
const int MAXSIZE = 128;
char result[128];
int i=0, j=0;
for (j=0; i<MAXSIZE-1 && j<strlen(s1); i++,j++) {
result[i] = s1[j];
}
for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {
result[i] = s2[j];
}
result[++i] = '\0';
return result;

}
Function	returns	pointer	to	stack	
memory	– won’t	be	valid	after	

function	returns

result is	a	local	array	name	–
stack	memory	allocated

Using	Memory	You	Don’t	Own

• What	is	wrong	with	this	code?

39

typedef struct node {
struct node* next;
int val;

} Node;

int findLastNodeValue(Node* head) {
while (head->next != NULL) {

head = head->next;
}
return head->val;

}

Using	Memory	You	Don’t	Own

• Following	a	NULL	pointer	to	mem addr 0!

40

typedef struct node {
struct node* next;
int val;

} Node;

int findLastNodeValue(Node* head) {
while (head->next != NULL) {

head = head->next;
}
return head->val;

}

Managing	the	Heap
• realloc(p,size):

– Resize	a	previously	allocated	block	at	p to	a	new	size
– If	p is	NULL,	then	realloc behaves	like	malloc
– If	size is	0,	then	realloc behaves	like	free,	deallocating the	block	from	the	

heap
– Returns	new	address	of	the	memory	block;	NOTE:	it	is	likely	to	have	moved!
E.g.:	allocate	an	array	of	10	elements,	expand	to	20	elements	later

int *ip;
ip = (int *) malloc(10*sizeof(int));
/* always check for ip == NULL */
… … …
ip = (int *) realloc(ip,20*sizeof(int));
/* always check for ip == NULL */
/* contents of first 10 elements retained */
… … …
realloc(ip,0); /* identical to free(ip) */

41

Using	Memory	You	Don’t	Own

• What	is	wrong	with	this	code?

int* init_array(int *ptr, int new_size) {
ptr = realloc(ptr, new_size*sizeof(int));
memset(ptr, 0, new_size*sizeof(int));
return ptr;

}

int* fill_fibonacci(int *fib, int size) {
int i;
init_array(fib, size);
/* fib[0] = 0; */ fib[1] = 1;
for (i=2; i<size; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib;

}
42

Using	Memory	You	Don’t	Own

• Improper	matched	usage	of	mem handles

int* init_array(int *ptr, int new_size) {
ptr = realloc(ptr, new_size*sizeof(int));
memset(ptr, 0, new_size*sizeof(int));
return ptr;

}

int* fill_fibonacci(int *fib, int size) {
int i;
/* oops, forgot: fib = */ init_array(fib, size);
/* fib[0] = 0; */ fib[1] = 1;
for (i=2; i<size; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib;

}
43

What	if	array	is	moved	to	
new	location?

Remember:	reallocmay	move	entire	block

And	In	Conclusion,	…
• All	data	is	in	memory

– Each	memory	location	has	an	address	to	use	to	refer	to	it	and	a	
value	stored	in	it

• Pointer	is	a	C	version	(abstraction)	of	a	data	address
– * “follows”	a	pointer	to	its	value
– & gets	the	address	of	a	value
– Arrays	and	strings	are	implemented	as	variations	on	pointers

• C	is	an	efficient	language,	but	leaves	safety	to	the	
programmer
– Variables	not	automatically	initialized
– Use	pointers	with	care:	they	are	a	common	source	of	bugs	in	

programs

44

And	In	Conclusion,	…

• C	has	three	main	memory	segments	in	which	
to	allocate	data:
– Static	Data:	Variables	outside	functions
– Stack:	Variables	local	to	function
– Heap:		Objects	explicitly	malloc-ed/free-d.

• Heap	data	is	biggest	source	of	bugs	in	C	code

45

