
CS	110
Computer	Architecture	

Lecture	5:	
Intro	to	Assembly	Language,	

RISC-V	Intro	
Instructor:

Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

History

2

50 years ago:
Apollo Guidance
Computer
programmed in
Assembly
30x30x30cm, 32 kg.
10,000 lines of machine
code manually entered –
tons of easter eggs!
abcnews.go.com/Technology/apollo-11s-source-
code-tons-easter-eggs-
including/story?id=40515222

Margaret Hamilton with the
code she wrote.

• Lead Apollo flight software designer.
• Came	up	with	the	idea	of	naming	the	

discipline,	"software	engineering"
• https://en.wikipedia.org/wiki/Margaret_

Hamilton_%28scientist%29

Levels	of	
Representation/Interpretation

lw xt0,	0(x2)
lw xt1,	4(x2)
sw xt1,	0(x2)
sw xt0,	4(x2)

High	Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	RISC-V)

Machine		Language	
Program	(RISC-V)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions

3

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

Assembly	Language

• Basic	job	of	a	CPU:	execute	lots	of	instructions.
• Instructions	are	the	primitive	operations	that	the
CPU	may	execute.
• Different	CPUs	implement	different	sets	of	
instructions.		The	set	of	instructions	a	particular	
CPU	implements	is	an	
Instruction	Set	Architecture (ISA).

– Examples:	ARM,	Intel	x86,	MIPS,	RISC-V,	
IBM/Motorola	PowerPC	(old	Mac),	Intel	IA64,	...

4

Instruction	Set	Architectures
• Early	trend	was	to	add	more	and	more	instructions	
to	new	CPUs	to	do	elaborate	operations

– VAX	architecture	had	an	instruction	to	multiply	
polynomials!

• RISC	philosophy	(Cocke IBM,	Patterson,	Hennessy,	
1980s)	–
Reduced	Instruction	Set	Computing

– Keep	the	instruction	set	small	and	simple,	makes	it	
easier	to	build	fast	hardware.

– Let	software	do	complicated	operations	by	composing	
simpler	ones.

5

RISC-V	Architecture

• New	open-source,	license-free	
ISA	spec

– Supported	by	growing	shared	software	ecosystem
– Appropriate	for	all	levels	of	computing	system,	from	

microcontrollers	to	supercomputers
– 32-bit,	64-bit,	and	128-bit	variants	(we’re	using	32-bit	in	

class,	textbook	uses	64-bit)

• Why	RISC-V	instead	of	Intel	80x86?
– RISC-V	is	simple,	elegant.		Don’t	want	to	
get	bogged	down	in	gritty	details.

– RISC-V	has	exponential	adoption	rate

RISC-V	Green	Card

6

Assembly	Variables:	Registers

• Unlike	HLL	like	C	or	Java,	assembly	cannot	use	
variables

– Why	not?	Keep	Hardware	Simple
• Assembly	Operands	are	registers

– Limited	number	of	special	locations	built	directly	
into	the	hardware

– Operations	can	only	be	performed	on	these!

• Benefit:	Since	registers	are	directly	in	
hardware,	they	are	very	fast	
(faster	than	1	ns	- light	travels	30cm	in	1	ns!!!)

7

Processor

Control

Datapath

Registers,	inside	the	Processor

8

PC

Registers
Arithmetic	&	Logic	Unit

(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Processor-Memory	Interface I/O-Memory	Interfaces

Program

Data

Write	Data

Read	Data

Great	Idea	#3:	Principle	of	Locality	/	
Memory	Hierarchy

9

Number	of	Registers

• Drawback:	Since	registers	are	in	hardware,	there	is	
a	predetermined	number	of	them

– Solution:	Assembly	code	must	be	very	carefully	put	
together	to	efficiently	use	registers

• 32	registers	in	RISC-V
– Why	32?	Smaller	is	faster,	but	too	small	is	bad.

• Each	RISC-V	register	is	32	bits	wide	(in	RV32	
variant)

– Groups	of	32	bits	called	a	word in	RV32
– P&H	textbook	uses	64-bit	variant	RV64	(doubleword)

10

RISC-V	Registers

• Registers	are	numbered	from	0	to	31
• Number	references:

– x0,	x1,	x2,	…	x30,	x31
• x0	:	special:	always	holds	value	zero

=>	only	31	registers	to	hold	variable	values
• Each	register	can	be	referred	to	by	number	or	
name

–Cover	names	later

11

C,	Java	variables	vs.	registers

• In	C	(and	most	High	Level	Languages)	variables	
declared	first	and	given	a	type

• Example:		 int fahr, celsius;
char a, b, c, d, e;

• Each	variable	can	ONLY	represent	a	value	of	
the	type	it	was	declared	as	
(cannot	mix	and	match	int and	char variables).
• In	Assembly	Language,	registers	have	no	type;	
operation determines	how	register	contents	are	
treated

12

Assembly	Instructions

•In	assembly	language,	each	statement	(called	
an	Instruction),	executes	exactly	one	of	a	short	
list	of	simple	commands
•Unlike	in	C	(and	most	other	High	Level	
Languages),	each	line	of	assembly	code	
contains	at	most	1	instruction
•Instructions	are	related	to	operations	
(=,	+,	-,	*,	/)	in	C	or	Java

13

Comments	in	Assembly

• Another	way	to	make	your	code	more	
readable:	comments!
• Hash	(#)	is	used	for	RISC-V	comments

– anything	from	hash	mark	to	end	of	line	is	a	
comment	and	will	be	ignored

– This	is	just	like	the	C99	//
• Note:	Different	from	C.

– C	comments	have	format	
/*	comment	*/	
so	they	can	span	many	lines

14

RISC-V	Addition	and	Subtraction	(1/4)

•Syntax	of	Instructions:
–One two,	three,	four
–where:
–One	=	operation	by	name	
–two	=	operand	getting	result	(“destination”)
–three	=	1st	operand	for	operation	(“source1”)
–four	=	2nd	operand	for	operation	(“source2”)

•Syntax	is	rigid:
–1	operator,	3	operands
–Why?	Keep	Hardware	simple	via	regularity

add x1, x2, x3

15

Addition	and	Subtraction	of	Integers	(2/4)

•Addition	in	Assembly
– Example: addx1,x2,x3 (in	RISC-V)
– Equivalent	to: a	=	b	+	c	 (in	C)
– where		C	variables	⇔ RISC-V	registers	are:

a	⇔ x1,	b	⇔ x2,	c	⇔ x3
•Subtraction	in	Assembly

– Example: subx3,x4,x5 (in	RISC-V)
– Equivalent	to: d	=	e	- f	 (in	C)
– where		C	variables	⇔ RISC-V	registers	are:

d	⇔ x3,	e	⇔ x4,	f	⇔ x5
16

Addition	and	Subtraction	of	Integers	(3/4)

• How	to	do	the	following	C	statement?
a	=	b	+	c	+	d	- e;

• Break	into	multiple	instructions
add x10, x1, x2 # a_temp = b + c
add x10, x10, x3 # a_temp = a_temp + d
sub x10, x10, x4 # a = a_temp - e

• Notice:	A	single	line	of	C	may	break	up	into	several	
lines	of	RISC-V.
• Notice:	Everything	after	the	hash	mark	on	each	
line	is	ignored	(comments).	

17

Addition	and	Subtraction	of	Integers	(4/4)

•How	do	we	do	this?
f	=	(g	+	h)	- (i +	j);

•Use	intermediate	temporary	register
add x5, x20, x21 # a_temp = g + h
add x6, x22, x23 # b_temp = i + j
sub x19, x5, x6 # f = (g + h)- (i + j)

18

Immediates

• Immediates are	numerical	constants.
• They	appear	often	in	code,	so	there	are	special	
instructions	for	them.
• Add	Immediate:

– addi x3,x4,10 (in	RISC-V)
– f	=	g	+	10	(in	C)
– where	RISC-V	registers	x3,x4 are	associated	with	C	
variables	f,	g	

• Syntax	similar	to	add	instruction,	except	that	last	
argument	is	a	number	instead	of	a	register.

19

Immediates

• There	is	no	Subtract	Immediate	in	RISC-V:	Why?
–There	are	add	and	sub,	but	no	addi counterpart

• Limit	types	of	operations	that	can	be	done	to	
absolute	minimum	

– if	an	operation	can	be	decomposed	into	a	simpler	
operation,	don’t	include	it

– addi …,	-X	=	subi …,	X	=>	so	no	subi

addi x3,x4,-10 (in	RISC-V)
f	=	g	- 10	(in	C)

– where	RISC-V	registers	x3, x4 are	associated	with	C	
variables	f,	g	

20

Register	Zero

• One	particular	immediate,	the	number	zero	
(0),	appears	very	often	in	code.
• So	the	register	zero	(x0)	is	‘hard-wired’	to	
value	0;	e.g.

– add x3,x4,x0 (in	RISC-V)
– f	=	g	(in	C)
– where	RISC-V	registers	x3,x4 are	associated	with	C	
variables	f,	g

• Defined	in	hardware,	so	an	instruction	
– add x0,x3,x4 will	not	do	anything!

21

Processor

Control

Datapath

Data	Transfer:
Load	from	and	Store	to memory

22

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	Data=	
Store	to	
memory

Read	Data=	
Load	from
memory

Processor-Memory	Interface I/O-Memory	Interfaces

Program

Data

Fast	but	limited	place
To	hold	values

Much	larger	place
To	hold	values,	but	

slower	than	registers!

0
1
2
3
…

Memory	Addresses	are	in	Bytes

• Lots	of	data	is	smaller	than	32	bits,	but	rarely	
smaller	than	8	bits	– works	fine	if	everything	is	a	
multiple	of	8	bits

• 8	bit	chunk	is	called	a	byte
(1	word	=	4	bytes)

• Memory	addresses	are	really
in	bytes,	not	words

• Word	addresses	are	4	bytes	
apart	
– Word	address	is	same	as	address	of	
leftmost	byte	– most	significant	byte
(i.e.	Big-endian	convention)	

0
4
8
12
…

1
5
9
13
…

2
6
10
14
…

3
7
11
15
…

Little	Endian:
Most	significant	byte	in	a	word

23

Big	Endian:
Most	significant	byte	in	a	word

Big-endian	and	little-endian	from	Jonathan	Swift's	Gulliver's	Travels
Big	Endian vs.	Little	Endian

Big	Endian
ADDR3 ADDR2 ADDR1 ADDR0
BYTE0 BYTE1 BYTE2 BYTE3

00000001 00000100 00000000 00000000

Examples
Names	in	China	(e.g.,	Schwertfeger,	Sören)

Java	Packages:	(e.g.,	org.mypackage.HelloWorld)
Dates	done	correctly	ISO	8601	YYYY-MM-DD	

(e.g.,	2018-09-07)
Eating	Pizza	crust	first

Unix	file	structure	(e.g.,	/usr/local/bin/python)
”Network	Byte	Order”:	most	network	protocols

IBM z/Architecture;	very	old	Macs

Little	Endian
ADDR3 ADDR2 ADDR1 ADDR0
BYTE3 BYTE2 BYTE1 BYTE0

00000000 00000000 00000100 00000001

Examples
Names	in	the	west	(e.g.,	Sören	Schwertfeger)
Internet	names	(e.g.,	sist.shanghaitech.edu.cn)
Dates	written	in	England	DD/MM/YYYY	
(e.g.,	07/09/2018)
Eating	Pizza	skinny	part	first	(the	normal	way)

CANopen
Intel	x86;	RISC-V

Consider	the	number	1025	as	we	normally	write	it:
BYTE3 BYTE2 BYTE1 BYTE0

00000000 00000000 00000100 00000001

• The	order	in	which	BYTES are	stored	in	memory
• Bits	always	stored	as	usual.	(E.g.,	0xC2=0b	1100	0010)

en.wikipedia.org/wiki/Big_endian

bi-endian:	ARM	(runs	mostly	little	endian),	MIPS,	IA-64,	PowerPC 24

RISC-V:	Little	Endian
ADDR3 ADDR2 ADDR1 ADDR0
BYTE3 BYTE2 BYTE1 BYTE0

00000000 00000000 00000100 00000001
• Hexadecimal number:

0xFD34AB88 (4,248,087,432ten) =>
– Byte 0: 0x88 (136ten)
– Byte 1: 0xAB (171ten)
– Byte 2: 0x34 (52ten)
– Byte 3: 0xFD (253ten)

• Little Endian: The ”Endianess” is little:
– It starts with the smallest (least significant) Byte
– Swapped from how we write the number

0
4
8
12
…

1
5
9
13
…

2
6
10
14
…

3
7
11
15
…

Little	Endian
Most	significant	byte	in	a	word
(numbers	are	addresses)

25

0x88
64

0xAB
65

0x34
66

0xFD
67

Data:

Address: 64 address	of	word	(e.g.	int)
Address:

(E.g.,	0xC2=0b	1100	0010)

Great	Idea	#3:	Principle	of	Locality	/	
Memory	Hierarchy

26

Speed	of	Registers	vs.	Memory

• Given	that	
– Registers:	32	words	(128	Bytes)
– Memory:	Billions	of	bytes	(2	GB	to	16	GB	on	laptop)

• and	the	RISC	principle	is…
– Smaller	is	faster

• How	much	faster	are	registers	than	memory??
• About	100-500	times	faster!

– in	terms	of	latency	of	one	access

27

Load	from Memory	to	Register
• C	code

int A[100];
g = h + A[3];

• Using	Load	Word	(lw)	in	RISC-V:
lw x10,12(x15) #	Reg	x10	gets	A[3]
add x11,x12,x10 #	g	=	h	+	A[3]

Note:	 x15 – base	register	(pointer	to	A[0])
12 – offset	in	bytes

Offset	must	be	a	constant	known	at	assembly	time

Data flow

28

Store from	Register	to Memory
• C	code

int A[100];
A[10] = h + A[3];

• Using	Store	Word	(sw)	in	RISC-V:
lw x10,12(x15) #	Temp	reg x10	gets	A[3]
add x10,x12,x10 #	Temp	reg x10	gets	h	+	A[3]
sw x10,40(x15) #	A[10]	=	h	+	A[3]

Note:	 x15 – base	register	(pointer)
12,40 – offsets	in	bytes

x15+12	and	x15+40	must	be	multiples	of	4

Data flow

29

Question:
We want to translate *x = *y +1 into RISC-V
(x, y int pointers stored in: x10 x11)

A: addi x10,x11,1

B: lw x10,1(x11)
sw x11,0(x10)

C: lw x13,0(x11)
addi x13,x13,1
sw x13,0(x10)

D: sw x13,0(x11)
addi x13,x13,1
lw x13,0(x10)

E: lw x10,1(x13)
sw x11,0(x13)

30

Loading and Storing Bytes
• In	addition	to	word	data	transfers	
(lw,	sw),	RISC-V	has	byte	data	transfers:
– load	byte:	lb
– store	byte:	sb

• Same	format	as	lw,	sw

• E.g.,		lb x10,3(x11)
– contents	of	memory	location	with	address	=	sum	of	“3”	+	
contents	of	register	x11 is	copied	to	the	low	byte	position of	
register	x10.

byte
loaded

zzz zzzzx

This bit
…is copied to “sign-extend”

xxxx xxxx xxxx xxxx xxxx xxxxx10
:

31

Question.	What’s	in	x12?

32

0x0

0x3

0x5

0xF

0xFFFFFFFF

addi x11,x0,0x3F5
sw x11,0(x5)
lb x12,1(x5)

A:
B:
C:
D:
E:

RISC-V	Logical	Instructions

Logical
operations

C
operators

Java
operators

RISC-V
instructions

Bit-by-bit AND & & and
Bit-by-bit OR | | or
Bit-by-bit XOR ^ ^ xor
Bit-by-bit NOT ~ ~ xori
Shift left << << sll
Shift right >> >> srl 33

• Useful	to	operate	on	fields	of	bits	within	a	word	
− e.g.,	characters	within	a	word	(8	bits)

• Operations	to	pack	/unpack	bits	into	words
• Called	logical	operations

Logic Shifting
• Shift	Left:	sll x11,x12,2 #x11=x12<<2

– Store	in	x11 the	value	from	x12 shifted	2	bits	to	the	
left	(they	fall	off	end),	inserting	0’s on	right;	<<	in	C.
Before:		0000	0002hex
0000	0000	0000	0000	0000	0000	0000	0010two
After:	 0000	0008hex
0000	0000	0000	0000	0000	0000	0000	1000two

What	arithmetic	effect	does	shift	left	have?
multiply	with	2n

• Shift	Right:	srl is	opposite	shift;	>>

34

Arithmetic	Shifting
• Shift	right	arithmetic	moves	n bits	to	the	right	
(insert	high	order	sign	bit	into	empty	bits)

• For	example,	if	register	x10	contained
1111	1111	1111	1111	1111	1111	1110	0111two=	-25ten

• If	executed	sra x10,	x10,	4,	result	is:
1111	1111	1111	1111	1111	1111	1111	1110two=	-2ten

• Unfortunately,	this	is	NOT	same	as	dividing	by	2n
− Fails	for	odd	negative	numbers
− C	arithmetic	semantics	is	that	division	should	round	towards	0

35

36

Peer	Instruction

We want to translate *x = *y into RISC-V
x, y ptrs stored in: x3 x5

1: add x3, x5, zero
2: add x5, x3, zero
3: lw x3, 0(x5)
4: lw x5, 0(x3)
5: lw x8, 0(x5)
6: sw x8, 0(x3)
7: lw x5, 0(x8)
8: sw x3, 0(x8)

1
2
3
4
5®6
6®5
7®8

A
B
C
D
E
F
G

Computer	Decision	Making

• Based	on	computation,	do	something	different
• In	programming	languages:	if-statement

• RISC-V:	if-statement	instruction	is
beq register1,register2,L1

means:	go	to	statement	labeled	L1	
if	(value	in	register1)	==	(value	in	register2)
….otherwise,	go	to	next	statement

• beq stands	for	branch	if	equal
• Other	instruction:	bne for	branch	if	not	equal 37

Types	of	Branches

• Branch – change	of	control	flow

• Conditional	Branch – change	control	flow	
depending	on	outcome	of	comparison
– branch	if	equal	(beq)	or	branch	if	not equal	(bne)
– Also	branch	if	less	than	(blt)	and	branch	if	greater	
than	or	equal	(bge)

• Unconditional	Branch – always	branch
– a	RISC-V	instruction	for	this:	jump (j),	as	in	j label

38

Example	if Statement

• Assuming	translations	below,	compile	if block
f	→	x10 g	→	x11 h	→	x12
i →	x13 j	→	x14

if (i == j) bne x13,x14,Exit
f = g + h; add x10,x11,x12

Exit:
• May	need	to	negate	branch	condition

39

Example	if-else Statement

• Assuming	translations	below,	compile
f	→	x10 g	→	x11 h	→	x12
i →	x13 j	→	x14

if (i == j) bne x13,x14,Else
f = g + h; add x10,x11,x12

else j Exit
f = g – h; Else: sub x10,x11,x12

Exit:

40

Magnitude Compares in RISC-V

• Until	now,	we’ve	only	tested	equalities	(==	and	!=	in	C);		
General	programs	need	to	test	<	and	>	as	well.

• RISC-V	magnitude-compare	branches:
“Branch	on	Less	Than”
Syntax:								blt reg1,reg2, label
Meaning: if	(reg1	<	reg2)	//	treat	registers	as	signed	integers

goto label;
• “Branch	on	Less	Than	Unsigned”

Syntax:								bltu reg1,reg2, label
Meaning: if	(reg1	<	reg2)		//	treat	registers	as	unsigned	integers

goto label;

41

C	Loop	Mapped	to	RISC-V	Assembly

int A[20];
int sum = 0;
for (int i=0; i < 20; i++)

sum += A[i];

add x9, x8, x0 # x9=&A[0]
add x10, x0, x0 # sum=0
add x11, x0, x0 # i=0
addi x13,x0, 20 # x13=20

Loop:
bge x11,x13,Done
lw x12, 0(x9) # x12=A[i]
add x10,x10,x12 # sum+=
addi x9, x9,4 # &A[i+1]
addi x11,x11,1 # i++
j Loop

Done:

42

“And	in	Conclusion…”
• In	RISC-V	Assembly	Language:

– Registers	replace	C	variables
– One	instruction	(simple	operation)	per	line
– Simpler	is	Better,	Smaller	is	Faster

• In	RV32,	words	are	32b
• Instructions:

add,	addi,	sub
• Registers:

– 32	registers,	referred	to	as	x0 – x31
– Zero:	x0

43

“And	in	Conclusion…”
• Memory	is	byte-addressable,	but	lw and	sw access	
one	word at	a	time.

• A	pointer	(used	by	lw and	sw)	is	just	a	memory	
address,	we	can	add	to	it	or	subtract	from	it	(using	
offset).

• A	Decision	allows	us	to	decide	what	to	execute	at	
run-time	rather	than	compile-time.

• C	Decisions	are	made	using	conditional	statements
within	if,	while,	do while,	for.

• RISC-V	Decision	making	instructions	are	the	
conditional	branches:	beq and	bne.

• Instructions:
• lw, sw, lb, sb, lbu, beq, bne, blt, bltu, bge, j

44

