
CS	110
Computer	Architecture	

Lecture	6:	
More	RISC-V,	RISC-V	Functions	

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Levels	of	
Representation/Interpretation

lw xt0,	0(x2)
lw xt1,	4(x2)
sw xt1,	0(x2)
sw xt0,	4(x2)

High	Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	RISC-V)

Machine		Language	
Program	(RISC-V)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions

2

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

Processor

Control

Datapath

Review:	Components	of	a	Computer

3

Program	Counter

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	
Data

Read
Data

Processor-Memory	Interface I/O-Memory	Interfaces

Program

Data

Last	lecture
• In	RISC-V	Assembly	Language:

– Registers	replace	C	variables
– One	instruction	(simple	operation)	per	line
– Simpler	is	Better,	Smaller	is	Faster

• In	RV32,	words	are	32bit
• Instructions:

add,	 addi,	 sub, lw, sw, lb
• Registers:

– 32	registers,	referred	to	as	x0 – x31
– Zero:	x0

4

RISC-V:	Little	Endian
ADDR3 ADDR2 ADDR1 ADDR0
BYTE3 BYTE2 BYTE1 BYTE0

00000000 00000000 00000100 00000001
• Hexadecimal number:

0xFD34AB88 (4,248,087,432ten) =>
– Byte 0: 0x88 (136ten)
– Byte 1: 0xAB (171ten)
– Byte 2: 0x34 (52ten)
– Byte 3: 0xFD (253ten)

• Little Endian: The ”Endianess” is little:
– It starts with the smallest (least significant) Byte
– Swapped from how we write the number

0
4
8
12
…

1
5
9
13
…

2
6
10
14
…

3
7
11
15
…

Little	Endian
Most	significant	byte	in	a	word
(numbers	are	addresses)

5

0x88
64

0xAB
65

0x34
66

0xFD
67

Data:

Address: 64 address	of	word	(e.g.	int)
Address:

(E.g.,	1025	=	0x401	=	0b	0100	0000	0001)

6

Peer	Instruction

We want to translate *x = *y into RISC-V
x, y ptrs stored in: x3 x5

1: add x3, x5, zero
2: add x5, x3, zero
3: lw x3, 0(x5)
4: lw x5, 0(x3)
5: lw x8, 0(x5)
6: sw x8, 0(x3)
7: lw x5, 0(x8)
8: sw x3, 0(x8)

1
2
3
4
5®6
6®5
7®8

A
B
C
D
E
F
G

RISC-V	Logical	Instructions

Logical
operations

C
operators

Java
operators

RISC-V
instructions

Bit-by-bit AND & & and
Bit-by-bit OR | | or
Bit-by-bit XOR ^ ^ xor
Bit-by-bit NOT ~ ~ xori
Shift left << << sll
Shift right >> >> srl 7

• Useful	to	operate	on	fields	of	bits	within	a	word	
− e.g.,	characters	within	a	word	(8	bits)

• Operations	to	pack	/unpack	bits	into	words
• Called	logical	operations

RISC-V	Logical	Instructions

• Always	two	variants
– Register:	 and x5, x6, x7 # x5 = x6 & x7
– Immediate:	 andi x5, x6, 3 # x5 = x6 & 3

• Used	for	‘masks’

– andi with	0000 00FFhex isolates	the	least	significant	byte
– andi with	FF00 0000hex isolates	the	most	significant	byte		

– andi with	0000 0008hex isolates	the	4th bit	(0000	1000two)	

Your	Turn.		What	is	in	x11?

xor x11, x10, x10
ori x11, x11, 0xFF
andi x11, x11, 0xF0

0x0

0xF

0xF0

0xFF00

0xFFFFFFFF

A:
B:
C:
D:
E:

Logic Shifting
• Shift	Left:	sll x11,x12,2 #x11=x12<<2

– Store	in	x11 the	value	from	x12 shifted	2	bits	to	the	
left	(they	fall	off	end),	inserting	0’s on	right;	<<	in	C.
Before:		0000	0002hex
0000	0000	0000	0000	0000	0000	0000	0010two
After:	 0000	0008hex
0000	0000	0000	0000	0000	0000	0000	1000two

What	arithmetic	effect	does	shift	left	have?
multiply	with	2n

• Shift	Right:	srl is	opposite	shift;	>>

10

Arithmetic	Shifting
• Shift	right	arithmetic	moves	n bits	to	the	right	
(insert	high	order	sign	bit	into	empty	bits)

• For	example,	if	register	x10	contained
1111	1111	1111	1111	1111	1111	1110	0111two=	-25ten

• If	executed	sra x10,	x10,	4,	result	is:
1111	1111	1111	1111	1111	1111	1111	1110two=	-2ten

• Unfortunately,	this	is	NOT	same	as	dividing	by	2n
− Fails	for	odd	negative	numbers
− C	arithmetic	semantics	is	that	division	should	round	towards	0

11

Your	Turn.		What	is	in	x12?

x10 holds 0x34FF

slli x12, x10, 0x10
srli x12, x12, 0x08
and x12, x12, x10

0x0

0x3400

0x4F0

0xFF00

0x34FF

A:
B:
C:
D:
E:

Helpful	RISC-V	Assembler	Features

• Symbolic	register	names
– E.g.,	a0-a7 for	argument	registers	(x10-x17)
– E.g.,	zero for	x0
– E.g.,	t0-t6 (temporary) s0-s11 (saved)	

• Pseudo-instructions
– Shorthand	syntax	for	common	assembly	idioms
– E.g., mv rd, rs = addi rd, rs, 0
– E.g.,	 li rd, 13 = addi rd, x0, 13

Computer	Decision	Making

• Based	on	computation,	do	something	different
• In	programming	languages:	if-statement

• RISC-V:	if-statement	instruction	is
beq register1, register2, L1

means:	go	to	statement	labeled	L1	
if	(value	in	register1)	==	(value	in	register2)
….otherwise,	go	to	next	statement

• beq stands	for	branch	if	equal
• Other	instruction:	bne for	branch	if	not	equal 14

Types	of	Branches

• Branch – change	of	control	flow

• Conditional	Branch – change	control	flow	
depending	on	outcome	of	comparison
– branch	if	equal	(beq)	or	branch	if	not equal	(bne)
– Also	branch	if	less	than	(blt)	and	branch	if	greater	
than	or	equal	(bge)

• Unconditional	Branch – always	branch
– a	RISC-V	instruction	for	this:	jump (j),	as	in	j label

15

Label
• Holds	the	address	of	data	or	instructions

– Think:	”constant	pointer”
– Will	be	replaced	by	the	actual	address	(number)	
during	assembly	(or	linking)

• Also	available	
in	C	for	”goto”:

• NEVER use
goto !!!!	
Very	bad	
programming
style! 16

17

Label

Example	if Statement
• Assuming	translations	below,	compile	if block
f	→	x10 g	→	x11 h	→	x12
i →	x13 j	→	x14

if (i == j) bne x13,x14,Exit
f = g + h; add x10,x11,x12

Exit:

• May	need	to	negate	branch	condition
18

Example	if-else Statement

• Assuming	translations	below,	compile
f	→	x10 g	→	x11 h	→	x12
i →	x13 j	→	x14

if (i == j) bne x13,x14,Else
f = g + h; add x10,x11,x12

else j Exit
f = g – h; Else: sub x10,x11,x12

Exit:

19

Magnitude Compares in RISC-V

• Until	now,	we’ve	only	tested	equalities	(==	and	!=	in	C);		
General	programs	need	to	test	<	and	>	as	well.

• RISC-V	magnitude-compare	branches:
“Branch	on	Less	Than”
Syntax:								blt reg1,reg2, label
Meaning: if	(reg1	<	reg2)	//	treat	registers	as	signed	integers

goto label;
• “Branch	on	Less	Than	Unsigned”

Syntax:								bltu reg1,reg2, label
Meaning: if	(reg1	<	reg2)		//	treat	registers	as	unsigned	integers

goto label;

20

C	Loop	Mapped	to	RISC-V	Assembly

int A[20];
int sum = 0;
for (int i=0; i < 20; i++)

sum += A[i];

add x9, x8, x0 # x9=&A[0]
add x10, x0, x0 # sum=0
add x11, x0, x0 # i=0
addi x13,x0, 20 # x13=20

Loop:
bge x11,x13,Done
lw x12, 0(x9) # x12=A[i]
add x10,x10,x12 # sum+=
addi x9, x9,4 # &A[i+1]
addi x11,x11,1 # i++
j Loop

Done:

21

Administrivia
• HW2	Autolab is	online	– due	in	one	week!	March	14

– START	latest	today!
– Go	to	OH	if	you	have	problems	– don’t	ask	your	fellow	

students
– Use	piazza	frequently.

• HW3	and	Project	1.1	will	be	published	this	weekend!

• Midterm	I	is	in	one	month	during	lecture	hours	…
(April	3rd)

22

Schedule
2	weeks	for	HW	and	Projects;	start	early!

23

Procedures	in	RISC-V

24

How	Program	is	Stored

25

Memory

Bytes

Program

Data

One	RISC-V	Instruction	=	32	bits

Assembler	to	Machine	Code
(more	later	in	course)

26

foo.S bar.S

Assembler Assembler

foo.o bar.o

Linker lib.o

a.out

Assembler	source	files	(text)

Machine	code	object	files

Pre-built	object	
file	libraries

Machine	code	executable	file

Assembler	converts	human-
readable	assembly	code	to	
instruction	bit	patterns

Processor

Control

Datapath

Executing	a	Program

27

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory

BytesInstruction
Address

Read	
Instruction	
Bits

Program

Data

• The	PC	(program	counter)	is	internal	register	inside	processor	holding	byte
address	of	next	instruction	to	be	executed.

• Instruction	is	fetched	from	memory,	then	control	unit	executes	instruction	
using	datapath and	memory	system,	and	updates	program	counter	(default	is	
add	+4	bytes	to	PC,	to	move	to	next	sequential	instruction)

C	Functions
main() {

int i,j,k,m;
...
i = mult(j,k); ...
m = mult(i,i); ...

}

/* really dumb mult function */
int mult (int mcand, int mlier){

int product = 0;
while (mlier > 0) {
product = product + mcand;
mlier = mlier -1; }

return product;
}

What information must
compiler/programmer

keep track of?

What instructions can
accomplish this?

Six	Fundamental	Steps	in	
Calling	a	Function

1. Put	parameters	in	a	place	where	function	can	
access	them

2. Transfer	control	to	function
3. Acquire	(local)	storage	resources	needed	for	

function
4. Perform	desired	task	of	the	function
5. Put	result	value	in	a	place	where	calling	code	

can	access	it	and	restore	any	registers	you	used
6. Return	control	to	point	of	origin,	since	a	

function	can	be	called	from	several	points	in	a	
program

29

RISC-V	Function	Call	Conventions

• Registers	faster	than	memory,	so	use	them

• a0–a7 (x10-x17):	eight	argument	registers	to	
pass	parameters	and	return	values	(a0-a1)

• ra:	one	return	address	register	to	return	to	the	point	
of	origin	(x1)

• Also	s0-s1 (x8-x9) and	s2-s11 (x18-x27):	
saved	registers	(more	about	those	later)

30

Instruction	Support	for	Functions	(1/4)

... sum(a,b);... /* a, b: s0, s1 */
}
int sum(int x, int y) {
return x+y;

}
address (shown in decimal)
1000
1004
1008
1012
1016
…
2000
2004

C

In	RISC-V,	all	instructions	are	4	
bytes,	and	stored	in	memory	
just	like	data.	So	here	we	show	
the	addresses	of	where	the	
programs	are	stored.

31

R
IS

C
-V

Instruction	Support	for	Functions	(2/4)

... sum(a,b);... /* a, b: s0, s1 */
}
int sum(int x, int y) {
return x+y;

}
address (shown in decimal)
1000 add a0, s0, x0 # x = a
1004 mv a1, s1 # y = b
1008 addi ra, zero, 1016 # ra=1016
1012 j sum # jump to sum
1016 … # next instruction
…
2000 sum: add a0, a0, a1
2004 jr ra # new instr. “jump register”

C

32

R
IS

C
-V

Instruction	Support	for	Functions	(3/4)

... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {
return x+y;

}

2000 sum: add a0, a0, a1
2004 jr ra # new instr. “jump register”

• Question:	Why	use jr here?	Why	not use	j?

• Answer:	summight	be	called	by	many	places,	so	we	can’t	
return	to	a	fixed	place.	The	calling	proc	to	summust	be	able	
to	say	“return	here”	somehow.

C

33

R
IS

C
-V

Instruction	Support	for	Functions	(4/4)
• Single	instruction	to	jump	and	save	return	address:	
jump	and	link	(jal)

• Before:
1008 addi ra, zero, 1016 # $ra=1016
1012 j sum # goto sum

• After:
1008 jal sum # ra=1012, goto sum

• Why	have	a	jal?
– Make	the	common	case	fast:	function	calls very	common.
– Reduce	program	size		
– Don’t	have	to	know	where code	is in	memory	with	jal!

34

RISC-V	Function	Call	Instructions
• Invoke	function:	jump	and	link	instruction	(jal)

(really	should	be	laj “link	and	jump”)
– “link”	means	form	an	address	or	link	that	points	to	
calling	site	to	allow	function	to	return	to	proper	address

– Jumps	to	address	and	simultaneously	saves	the	address	
of	the	following instruction	in	register	ra (x1)
jal FunctionLabel

• Return	from	function:	jump	register	instruction	(jr)	
– Unconditional	jump	to	address	specified	in	register
jr ra

– Assembler	shorthand:	 ret = jr ra
35

Notes	on	Functions
• Calling	program	(caller)	puts	parameters	into	
registers	a0-a7 and	uses	jal X to	invoke	
(callee)	at	address	labeled	X

• Must	have	register	in	computer	with	address	of	
currently	executing	instruction
– Instead	of	Instruction	Address	Register (better	name),	
historically	called	Program	Counter (PC)

– It’s	a	program’s	counter;	it	doesn’t	count	programs!

• What	value	does	jal X place	into	ra?	????
• jr ra puts	address	inside	ra back	into	PC

36

Where	Are	Old	Register	Values	Saved
to	Restore	Them	After	Function	Call?

• Need	a	place	to	save	old	values	before	call	
function,	restore	them	when	return,	and	delete	

• Ideal	is	stack:	last-in-first-out	queue	
(e.g.,	stack	of	plates)
– Push:	placing	data	onto	stack
– Pop:	removing	data	from	stack

• Stack	in	memory,	so	need	register	to	point	to	it
• sp is	the	stack	pointer	in	RISC-V	(x2)
• Convention	is	grow	from	high	to	low	addresses

– Push decrements	sp,	Pop increments	sp

37

Stack

• Stack	frame	includes:
• Return	“instruction”	address
• Parameters
• Space	for	other	local	variables

• Stack	frames	contiguous	
blocks	of	memory;	stack	pointer	tells	where	
bottom	of	stack	frame	is

• When	procedure	ends,	stack	frame	is	tossed	off	
the	stack;	frees	memory	for	future	stack	frames

frame

frame

frame

frame

$sp

0xBFFFFFF0

Example
int Leaf
(int g, int h, int i, int j)

{
int f;
f = (g + h) – (i + j);
return f;

}
• Parameter	variables	g,	h,	i,	and	j in	argument	
registers	a0,	a1,	a2,	and	a3,	and	f in	s0

• Assume	need	one	temporary	register	s1

39

Stack	Before,	During,	After	Function

• Need	to	save	old	values	of	s0 and	s1

sp

Before	call

sp
Saved s1

During	call

Saved s0

sp

After	call

Saved s1
Saved s0

RISC-V	Code	for	Leaf()

41

Leaf:
addi sp, sp, -8 # adjust stack for 2 items
sw s1, 4(sp) # save s1 for use afterwards
sw s0, 0(sp) # save s0 for use afterwards

add s0, a0, a1 # f = g + h
add s1, a2, a3 # s1 = i + j
sub a0, s0, s1 # return value (g + h) – (i + j)

lw s0, 0(sp) # restore register s0 for caller
lw s1, 4(sp) # restore register s1 for caller
addi sp, sp, 8 # adjust stack to delete 2 items
jr ra # jump back to calling routine

Nested	Procedures	(1/2)

int sumSquare(int x, int y) {
return mult(x,x)+ y;

}
• Something	called	sumSquare,	now	
sumSquare is	calling	mult

• So	there’s	a	value	in	ra that	sumSquare
wants	to	jump	back	to,	but	this	will	be	
overwritten	by	the	call	to	mult

42

Need	to	save	sumSquare return	address	
before	call	to	mult

Nested	Procedures	(2/2)

• In	general,	may	need	to	save	some	other	info	in	
addition	to	ra.

• When	a	C	program	is	run,	there	are	3	important	
memory	areas	allocated:
– Static:	Variables	declared	once	per	program,	cease	to	
exist	only	after	execution	completes	- e.g.,	C	globals

– Heap:	Variables	declared	dynamically	via	malloc
– Stack:	Space	to	be	used	by	procedure	during	
execution;	this	is	where	we	can	save	register	values

43

Register	Conventions	(1/2)

• CalleR:	the	calling	function
• CalleE:	the	function	being	called
• When	callee returns	from	executing,	the	caller	
needs	to	know	which	registers	may	have	changed	
and	which	are	guaranteed	to	be	unchanged.

• Register	Conventions:	A	set	of	generally	accepted	
rules	as	to	which	registers	will	be	unchanged	
after	a	procedure	call	(jal)	and	which	may	be	
changed.

Register	Conventions	(2/2)

To	reduce	expensive	loads	and	stores	from	spilling	
and	restoring	registers,	RISC-V	function-calling	
convention	divides	registers	into	two	categories:

1. Preserved	across	function	call
– Caller	can	rely	on	values	being	unchanged
– sp,	gp,	tp, “saved	registers”	s0- s11 (s0 is	also fp)

2. Not	preserved	across	function	call
– Caller	cannot	rely	on	values	being	unchanged
– Argument/return	registers	a0-a7,ra,	

“temporary	registers”	t0-t6

RISC-V	Symbolic	Register	Names
Numbers:	hardware	understands

Human-friendly	symbolic	names	in	assembly	code

Question

• Which	statement	is	FALSE?

47

B:	 jal saves	PC+1	in	ra

C:	 The	callee can	use	temporary	registers
(ti)	without	saving	and	restoring	them

D:	 The	caller	can	rely	on	save	registers	(si)
without	fear	of	callee changing	them

A:		RISC-V	uses	jal to	invoke	a	function	and
jr to	return	from	a	function	

Allocating	Space	on	Stack

• C	has	two	storage	classes:	automatic	and	static
– Automatic variables	are	local	to	function	and	
discarded	when	function	exits

– Static	variables	exist	across	exits	from	and	entries	to	
procedures

• Use	stack	for	automatic	(local)	variables	that	
don’t	fit	in	registers

• Procedure	frame	or activation	record:	segment	
of	stack	with	saved	registers	and	local	variables

48

Stack	Before,	During,	After	Function

sp

Before	call

sp

During	call

Saved	argument	
registers	(if	any)

Saved	return	
address	(if	needed)

Saved	saved	
registers	(if	any)

Local	variables
(if	any)

sp

After	call

Using	the	Stack	(1/2)

• We	have	a	register	sp which	always	points	
to	the	last	used	space	in	the	stack.

• To	use	stack,	we	decrement	this	pointer	by	
the	amount	of	space	we	need	and	then	fill	it	
with	info.

• So,	how	do	we	compile	this?
int sumSquare(int x, int y) {

return mult(x,x)+ y;
}

50

Using	the	Stack	(2/2)

sumSquare:
addi sp, sp, -8 # space on stack
sw ra, 4(sp) # save ret addr
sw a1, 0(sp) # save y
mv a1, a0 # mult(x,x)
jal mult # call mult
lw a1, 0(sp) # restore y
add a0, a0, a1 # mult()+y
lw ra, 4(sp) # get ret addr
addi sp, sp, 8 # restore stack
jr ra

mult: ...

int sumSquare(int x, int y) {
return mult(x,x)+ y; }

“push”

“pop”

Basic	Structure	of	a	Function

entry_label:
addi sp,sp, -framesize
sw ra, framesize-4(sp) # save ra
save other regs if need be

...

restore other regs if need be
lw ra, framesize-4(sp) # restore $ra
addi sp, sp, framesize
jr ra

Epilogue

Prologue

Body (call other functions…)

ra

memory

52

Where	is	the	Stack	in	Memory?
• RV32	convention	(RV64	and	RV128	have	different	memory	layouts)
• Stack	starts	in	high	memory	and	grows	down

– Hexadecimal:	bfff_fff0hex

– Stack	must	be	aligned	on	16-byte	boundary	(not	true	in	examples	
above)

• RV32	programs	(text	segment)	in	low	end
– 0001_0000hex

• static	data	segment	(constants	and	other	static	variables)	above	
text	for	static	variables
– RISC-V	convention	global	pointer	(gp)	points	to	static
– RV32	gp =	1000_0000hex

• Heap	above	static	for	data	structures	that	grow	and	shrink	;	grows	
up	to	high	addresses

RV32	Memory	Allocation

“And	in	Conclusion…”
• Registers	we	know	so	far	(All	of	them!)

– a0-a7	for	function	arguments,	a0-a1	for	return	values
– sp,	stack	pointer,		ra return	address
– s0-s11	saved	registers
– t0-t6	temporaries
– zero

• Instructions	we	know:
– Arithmetic:	add,	addi,	sub
– Logical:	sll,	srl,	sla,	slli,	srli,	slai,	and,	or,	xor,	andi,	ori,	xori
– Decision:	beq,	bne,	blt,	bge
– Unconditional	branches	(jumps):	j,	jr
– Functions	called	with	jal,	return	with	jr ra.

• The	stack	is	your	friend:	Use	it	to	save	anything	you	need.		
Just	leave	it	the	way	you	found	it!

