
CS	110
Computer	Architecture	

Superscalar	CPUs

Instructor:
Sören	Schwertfeger

https://robotics.shanghaitech.edu.cn/courses/ca

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Agenda

• Control	Hazards
• Processor	Performance
• Complex	Pipelines

– Static	Multiple	Issues	(VLIW)
– Dynamic	Multiple	Issues	(Superscalar)

2

Pipelined	RISC-V	RV32I	Datapath

3

IMEM

ALU
+4

DMEM
Branch
Comp.

Reg[]

AddrA

AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

aluX

pcF+4

+4pcDpcF
pcX

pcM

instD

instX

rs1X

rs2X

aluM

rs2MimmXImm.
instM instW

Pipelining	Hazards
A	hazard is	a	situation	that	prevents	starting	the	
next	instruction	in	the	next	clock	cycle

1) Structural	hazard
– A	required	resource	is	busy
(e.g.	needed	in	multiple	stages)

2) Data	hazard
– Data	dependency	between	instructions
– Need	to	wait	for	previous	instruction	to	complete	its	

data	read/write
3) Control	hazard

– Flow	of	execution	depends	on	previous	instruction

4

Structural	Hazards:	More	Hardware
Instruction	and	Data	Caches

5

Processor

Control

Datapath
PC

Registers
Arithmetic & Logic Unit

(ALU)

Memory	(DRAM)

Bytes

Data

Program
Instruction	
Cache

Data
Cache

Data	Hazards:	Forwarding

add t0, t1, t2

or t3, t0, t5

sub t6, t0, t3

instruction sequence

xor t5, t1, t0

sw t0, 8(t3)

5 5 5 5 5/9 9 9 9 9Value of t0

Forwarding: grab operand from pipeline stage,
rather than register file

6

Forwarding	Path

7

IMEM

ALU
+4

DMEM
Branch
Comp.

Reg[]

AddrA

AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

aluX

pcF+4

+4pcDpcF
pcX

pcM

instD

instX

rs1X

rs2X

aluM

rs2MimmXImm.
instM instW

Forwarding	Control	
Logic

Load	Data	Hazard

1 cycle stall
unavoidable

8

forward

unaffected

lw Data	Hazard

• Slot	after	a	load	is	called	a	load	delay	slot
– If	that	instruction	uses	the	result	of	the	load,	then	
the	hardware	will	stall	for	one	cycle

– Equivalent	to	inserting	an	explicit	nop in	the	slot
• except	the	latter	uses	more	code	space

– Performance	loss
• Idea:

– Put	unrelated	instruction	into	load	delay	slot
– No	performance	loss!

9

Control	Hazards

beq t0, t1, label

sub t2, s0, t5

or t6, s0, t3

xor t5, t1, s0

sw s0, 8(t3)

executed regardless of
branch outcome!

executed regardless of
branch outcome!!!

PC updated
reflecting branch
outcome

10

Observation

• If	branch	not	taken,	then	instructions	fetched	
sequentially	after	branch	are	correct

• If	branch	or	jump	taken,	then	need	to	flush	
incorrect	instructions	from	pipeline	by	
converting	to	NOPs

11

Kill	Instructions	after	Branch	if	
Taken

beq t0, t1, label

sub t2, s0, t5

or t6, s0, t3

label: xxxxxx
PC updated
reflecting branch
outcome

12

Taken branch

Convert to NOP

Convert to NOP

Reducing	Branch	Penalties

• Every	taken	branch	in	simple	pipeline	costs	2	
dead	cycles

• To	improve	performance,	use	“branch	
prediction”	to	guess	which	way	branch	will	go	
earlier	in	pipeline

• Only	flush	pipeline	if	branch	prediction	was	
incorrect

13

Branch	Prediction

beq t0, t1, label

label: …..

…..

14

Taken branch

Guess next PC!

Check guess correct

Agenda

• Control	Hazards
• Processor	Performance
• Complex	Pipelines

– Static	Multiple	Issues	(VLIW)
– Dynamic	Multiple	Issues	(Superscalar)

15

Increasing	Processor	Performance

1. Clock	rate
– Limited	by	technology	and	power	dissipation

2. Pipelining
– “Overlap”	instruction	execution
– Deeper	pipeline:	5	=>	10	=>	15	stages

• Less work per	stage	à shorter clock cycle
• But	more	potential	for	hazards
• Multi-issue	“superscalar”	processor

16

Greater	Instruction-Level	Parallelism	(ILP)

• Multiple	issue	“superscalar”
– Replicate	pipeline	stages	=>	multiple	pipelines
– Start	multiple	instructions	per	clock	cycle
– CPI	<	1,	so	use	Instructions	Per	Cycle	(IPC)
– E.g.,	4GHz	4-way	multiple-issue

• 16	BIPS,	peak	CPI	=	0.25,	peak	IPC	=	4

– But	dependencies	reduce	this	in	practice

• “Out-of-Order”	execution
– Reorder	instructions	dynamically	in	hardware	to	reduce	
impact	of	hazards

• Hyper-threading
17

Hyper-threading	(simplified)

• Duplicate	all	elements	that	hold	the	state	(registers)
• Use	the	same	CL	blocks
• Use	muxes to	select	which	state	to	use	every	clock	cycle
• =>	run	2	independent	processes

– No	Hazards:	registers	different;	different	control	flow;	memory	different;
Threads:	memory	hazard	should	be	solved	by	software	(locking,	mutex,	…)

• Speedup?							
– No	obvious	speedup;	Complex	pipeline:	make	use	of	CL	blocks	in	case	of	unavailable	

resources	(e.g.	wait	for	memory)
18

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
Register Read

3. Execute 4. Memory 5. Write
Back

re
gi

st
er

s

PC
PC

Intel	Nehalem	i7
• Hyperthreading:

– About	5%	die	area
– Up	to	30%	speed	gain

(BUT	also	<	0%	possible)
• Pipeline:	20-24	stages!
• Out-of-order	execution

1. Instruction	fetch.
2. Instruction	dispatch	to	an	instruction	queue
3. Instruction:	Wait	in	queue	until	input	

operands	are	available	=>	instruction	can	
leave	queue	before	earlier,	older	instructions.

4. The	instruction	is	issued	to	the	appropriate	
functional	unit	and	executed	by	that	unit.

5. The	results	are	queued.
6. Write	to	register	only	after	all	older	

instructions	have	their	results	written.
19

Superscalar	Processor

20

Superscalar	=	Multicore?

• A	superscalar	processor	is	a	CPU	that	implements	a	form	of	parallelism	called	
instruction-level	parallelism	within	a	single	processor.	In	contrast	to	a	scalar	
processor	that	can	execute	at	most	one	single	instruction	per	clock	cycle,	a	
superscalar	processor	can	execute	more	than	one	instruction	during	a	clock	
cycle	by	simultaneously	dispatching	multiple	instructions	to	different	
execution	units	on	the	processor.	It	therefore	allows	for	more	throughput	(the	
number	of	instructions	that	can	be	executed	in	a	unit	of	time)	than	would	
otherwise	be	possible	at	a	given	clock	rate.	Each	execution	unit	is	not	a	
separate	processor	(or	a	core	if	the	processor	is	a	multi-core	processor),	but	
an	execution	resource	within	a	single	CPU	such	as	an	arithmetic	logic	unit.

• In	Flynn's	taxonomy,	a	single-core	superscalar	processor	is	classified	as	an	
SISD processor	(Single	Instruction	stream,	Single	Data	stream),	though	many	
superscalar	processors	support	short	vector	operations	and	so	could	be	
classified	as	SIMD	(Single	Instruction	stream,	Multiple	Data	streams).	A	multi-
core	superscalar	processor	is	classified	as	an	MIMD	processor	(Multiple	
Instruction	streams,	Multiple	Data	streams).

21

https://en.wikipedia.org/wiki/Superscalar_processor

“Iron	Law”	of	Processor	
Performance

22

Time			 =			Instructions Cycles				 Time
Program									Program									Instruction							Cycle

CPI = Cycles Per Instruction

× ×
Can time Can count Can look up

CPI = Cycles			 =			Time Instructions Time
Instruction		Program												Program											Cycle()÷ ×

Benchmark:	CPI	of	Intel	Core	i7

23

CPI = 1

Calculating	CPI	Another	Way

• First	calculate	CPI	for	each	individual	
instruction	(add,	sub,	and,	etc.)

• Next	calculate	frequency	of	each	individual	
instruction

• Finally	multiply	these	two	for	each	instruction	
and	add	them	up	to	get	final	CPI	(the	
weighted	sum)

24

Example	(RISC	processor)

Op Freqi CPIi Prod (% Time)
ALU 50% 1 .5 (23%)
Load 20% 5 1.0 (45%)
Store 10% 3 .3 (14%)
Branch 20% 2 .4 (18%)

2.2Instruction Mix (Where time spent)

25

Agenda

• Control	Hazards
• Processor	Performance
• Complex	Pipelines

– Static	Multiple	Issues	(VLIW)
– Dynamic	Multiple	Issues	(Superscalar)

26

Complex	Pipeline

27

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

• More	than	one	Functional	Unit
• Floating	point	execution!

• Fadd &	Fmul:	fixed	number	of	cycles;	>	1
• Fdiv:	unknown	number	of	cycles!

• Memory	access:	on	Cache	miss	unknown	number	of	cycles
• Issue:	Assign	instruction

to	functional	unit

GPRs
FPRs

Issues	in	Complex	Pipeline	Control

28

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

• Structural	conflicts	at	the	execution	stage	if	some FPU	or	memory	unit	is	not	
pipelined	and	takes	more	than	one	cycle
• Structural	conflicts	at	the	write-back	stage	due	to variable	latencies	of	different	
functional	units
• Out-of-order	write	hazards	due	to	variable	latencies	of	different	functional	
units

Modern	Complex	In-Order	Pipeline

• Delay	writeback so	all	operations	
have	same	latency	to	W	stage
– Write	ports	never	oversubscribed	

(one	inst.	in	&	one	inst.	out	every	
cycle)

– Stall	pipeline	on	long	latency	
operations,	e.g.,	divides,	cache	
misses

Commit	
Point

PC
Inst.	
Mem D Decode X1 X2

Data	
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined	
divider

How	to	prevent	increased	writeback latency	
from	slowing	down	single	cycle	integer	
operations? Bypassing

29

Agenda

• Control	Hazards
• Processor	Performance
• Complex	Pipelines

– Static	Multiple	Issues	(VLIW)
– Dynamic	Multiple	Issues	(Superscalar)

30

Static	Multiple	Issue
• aka.:	Very	Long	Instruction	Word	(VLIW)
• Compiler	bundles	instructions	together
• Compiler	takes	care	of	hazards
• CPU	executes	at	the	same	time

31

Static	Two-Issue	RISC-V	Datapath

32

In-Order	Superscalar	Pipeline

• Fetch	two	instructions	per	cycle;	
issue	both	simultaneously	if	one	is	
integer/memory	and	other	is	floating	point

• Inexpensive	way	of	increasing	throughput,	
examples	include	Alpha	21064	(1992)	&	
MIPS	R5000	series	(1996)

• Same	idea	can	be	extended	to	wider	issue	
by	duplicating	functional	units	(e.g.	4-issue	
UltraSPARC &	Alpha	21164)	but	regfile
ports	and	bypassing	costs	grow	quickly

Commit	
Point

2
PC

Inst.	
Mem D

Dual
Decode X1 X2

Data	
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3
Unpipelined	
divider

33

Agenda

• Control	Hazards
• Processor	Performance
• Complex	Pipelines

– Static	Multiple	Issues	(VLIW)
– Dynamic	Multiple	Issues	(Superscalar)

34

Superscalar:
Dynamic	Multiple	Issue

• Hardware	guarantees	correct	execution	=>
– Compiler	does	not	need	to	(but	can)	optimize

• Dynamic	pipeline	scheduling:	
– Re-order	instructions	based	on:

• What	functional	units	are	free
• Avoiding	of	data	hazards

– Reservation	Station	
• Buffer	of	instructions	waiting	to	be	executed
• With	operands	(Registers)	needed
• Once	all	operands	are	available:	execute!

– Commit	Unit	(Reorder	buffer):	supply	the	operands	to	reservation	
station;	write	to	register

– OR:	Unified	Physical	Register	File	:
Registers	are	renamed	for	use	in	reservation	station	and	commit	unit

35

Phases	of	Instruction	Execution

36

Fetch: Instruction	bits	retrieved	from	
instruction	cache.I-cache

Fetch	Buffer

Issue	Buffer

Functional	Units

Architectural
State

Execute:	Instructions	and	operands issued	to	
functional	units.	When	execution	completes,	
all	results	and	exception	flags	are	available.

Decode: Instructions dispatched	to	
appropriate	issue buffer

Result	Buffer
Commit:	Instruction	irrevocably	updates	
architectural	state	(aka	“graduation”),	or	
takes	precise	trap/interrupt.

PC

Commit

Decode/Rename

Separating	Completion	from	Commit

• Re-order	buffer	holds	register	results	from	
completion	until	commit
– Entries	allocated	in	program	order	during	decode
– Buffers	completed	values	and	exception	state	until	in-order	commit	

point
– Completed	values	can	be	used	by	dependents	before	committed	

(bypassing)
– Each	entry	holds	program	counter,	instruction	type,	destination	

register	specifier and	value	if	any,	and	exception	status	(info	often	
compressed	to	save	hardware)

37

In-Order	versus	
Out-of-Order	Phases

• Instruction	fetch/decode/rename	always	in-order
– Need	to	parse	ISA	sequentially	to	get	correct	semantics
– Proposals	for	speculative	OoO instruction	fetch,	e.g.,	Multiscalar.		

Predict	control	flow	and	data	dependencies	across	sequential	program	
segments	fetched/decoded/executed	in	parallel,	fixup if	prediction	
wrong

• Dispatch	(place	instruction	into	machine	buffers	to	
wait	for	issue)	also	always	in-order
– Some	use	“Dispatch”	to	mean	“Issue”

38

In-Order	Versus	Out-of-Order	Issue
• In-order	(InO)	issue:

– Issue	stalls on	read	after	write	(RAW),	dependencies	or	
structural	hazards,	or	possibly	write	after	read	(WAR),	
write	after	write	(WAW)	hazards

– Instruction	cannot	issue	to	execution	units	unless	all	
preceding	instructions	have	issued	to	execution	units

• Out-of-order	(OoO)	issue:
– Instructions	dispatched	in	program	order	to	reservation	
stations	(or	other	forms	of	instruction	buffer)	to	wait	for	
operands	to	arrive,	or	other	hazards	to	clear

– While	earlier	instructions	wait	in	issue	buffers,	following	
instructions	can	be	dispatched	and	issued	out-of-order

39

In-Order	versus	
Out-of-Order	Completion

• All	but	simplest	machines	have	out-of-order	
completion,	due	to	different	latencies	of	functional	
units	and	desire	to	bypass	values	as	soon	as	available

• Classic	RISC	V-stage	integer	pipeline	just	barely	has	
in-order	completion
– Load	takes	two	cycles,	but	following	one-cycle	integer	op	completes	at	

same	time, not	earlier
– Adding	pipelined	FPU	immediately	brings	OoO completion

40

Superscalar	Intel	Processors

• Pentium	4:	Marketing	demanded	higher	clock	rate	=>	
deeper	pipelines	&	high	power	consumption

• Afterwards:	Multi-core	processors

41

Arm	Cortex	A53	&	Intel	Core	i7	920

42

ARM	Cortex	A53	Pipeline

43

• Prediction	1	clock	cycle!	Predict:	branches,	future	function	returns;	8	clock	
cycles	on	mis-prediction	(flush	pipeline)

Speculative	&	Out-of-Order	Execution

44

