
CS 110
Computer Architecture

Caches Part 1

Instructor:
Sören Schwertfeger

https://robotics.shanghaitech.edu.cn/courses/ca

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca

In-Order Superscalar Pipeline

• Fetch two instructions per cycle;
issue both simultaneously if one is
integer/memory and other is floating point

• Inexpensive way of increasing throughput,
examples include Alpha 21064 (1992) &
MIPS R5000 series (1996)

• Same idea can be extended to wider issue
by duplicating functional units (e.g. 4-issue
UltraSPARC & Alpha 21164) but regfile
ports and bypassing costs grow quickly

Commit
Point

2
PC

Inst.
Mem D

Dual
Decode X1 X2

Data
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3
Unpipelined
divider

2

Superscalar Processor

3

Phases of Instruction Execution

4

Fetch: Instruction bits retrieved from
instruction cache.I-cache

Fetch Buffer

Issue Buffer

Functional Units

Architectural
State

Execute: Instructions and operands issued to
functional units. When execution completes,
all results and exception flags are available.

Decode: Instructions dispatched to
appropriate issue buffer

Result Buffer
Commit: Instruction irrevocably updates
architectural state (aka “graduation”), or
takes precise trap/interrupt.

PC

Commit

Decode/Rename

Superscalar:
Dynamic Multiple Issue

• Hardware guarantees correct execution =>
– Compiler does not need to (but can) optimize

• Dynamic pipeline scheduling:
– Instructions execute based on:

• What functional units are free
• Avoiding of data hazards

– Reservation Station
• Buffer of instructions waiting to be executed
• With operands (Registers) needed
• Once all operands are available: execute!

– Commit Unit (Reorder buffer): supply the operands to reservation station; write to
register; in original order

– Unified Physical Register File :
Registers are renamed for use in reservation station and commit unit

5

Separating Completion from Commit

• Re-order buffer holds register results from
completion until commit
– Entries allocated in program order during decode
– Buffers completed values and exception state until in-order commit

point
– Completed values can be used by dependents before committed

(bypassing)
– Each entry holds program counter, instruction type, destination

register specifier and value if any, and exception status (info often
compressed to save hardware)

6

“Data-in-ROB” Design
(HP PA8000, Pentium Pro, Core2Duo, Nehalem)

• Managed as circular buffer in program order, new instructions dispatched to free
slots, oldest instruction committed/reclaimed when done (“p” bit set on result)

• Tag is given by index in ROB (Free pointer value)
• In dispatch, non-busy source operands read from architectural register file and

copied to Src1 and Src2 with presence bit “p” set. Busy operands copy tag of
producer and clear “p” bit.

• Set valid bit “v” on dispatch, set issued bit “i” on issue
• On completion, search source tags, set “p” bit and copy data into src on tag

match. Write result and exception flags to ROB.
• On commit, check exception status, and copy result into architectural register

file if no trap.

Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode

Oldest

Free

7

ROB

Data Movement in Data-in-ROB Design

8

Architectural Register
File

Read operands
during decode

Read
operands at
issue

Functional Units

Read results for
commit

Bypass newer
values at dispatch

Result
Data

Write results at
completion

Write results at
commit

Source
Operands

Write sources
in dispatch

Register Renaming
• Programmers/ Compilers (have to) re-use

registers for different, unrelated purposes
• Idea: Re-name on the fly to resolve (fake)

dependencies (anti-dependency)
• Additional benefit: CPU can have more physical

registers than ISA!
– Alpha 21264 CPU has 80 integer register; ISA only 32

9

Alternative to ”Data-in-ROB”:
Unified Physical Register File
(MIPS R10K, Alpha 21264, Intel Pentium 4 & Sandy/Ivy Bridge)

• Rename all architectural registers into a single physical
register file during decode, no register values read

• Functional units read and write from single unified register file
holding committed and temporary registers in execute

• Commit only updates mapping of architectural register to
physical register, no data movement

10

Unified Physical
Register File

Read operands at issue

Functional Units

Write results at completion

Committed
Register
Mapping

Decode Stage
Register
Mapping

Renamed Registers

11

ld x1, (x3)
addi x3, x1, 4
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x11)

ld P1, (Px)
addi P2, P1, 4
sub P3, Py, Pz
add P4, P2, P3
ld P5, (P1)
add P6, P5, P4
sd P6, (P1)
ld P7, (Pw)

Rename

• Physical regfile holds committed and speculative values
• Physical registers decoupled from ROB entries (no data in ROB)

Architectural Registers (from ISA) Physical Registers (in CPU)

Conclusion Superscalar CPUs

• “Iron Law” of Processor Performance to
estimate speed

• Complex Pipelines: more in CA II
• Multiple Functional Units => Parallel execution

– Static Multiple Issues (VLIW)
• E.g. 2 instructions per cycle

– Dynamic Multiple Issues (Superscalar)
• Re-order instructions
• Issue Buffer; Re-order Buffer; Commit Unit
• Re-naming of registeres

12

New-School Machine Structures
(It’s a bit more complicated!)

• Parallel Requests
Assigned to computer
e.g., Search “Katz”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates @ one time

• Programming Languages
13

Smart
Phone

Warehouse
Scale

Computer

Software Hardware

Harness
Parallelism &
Achieve High
Performance

Logic Gates

Core Core…

Memory (Cache)

Input/Output

Computer

Cache Memory

Core

Instruction Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Processor

Control

Datapath

Components of a Computer

14

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Processor

Control

Datapath

Adding Cache to Computer

15

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Cache

Processor-DRAM Gap (Latency)

1980 microprocessor executes ~one instruction in same time as DRAM access
2017 microprocessor executes ~1000 instructions in same time as DRAM access

Slow DRAM access has disastrous impact on CPU performance!

Great Idea #3: Principle of Locality /
Memory Hierarchy

Note: These names
are a bit dated

Big Idea: Memory Hierarchy
Processor

Size of memory at each level

Increasing
distance from

processor,
decreasing

speed

Level 1

Level 2

Level n

Level 3

. . .

Inner

Outer

Levels in
memory
hierarchy

As we move to outer levels the latency goes up
and price per bit goes down.

18

Real Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual
Memory. IBM Systems Journal 10(3): 168-192 (1971)

Time

M
em

or
y

Ad
dr

es
s (

on
e

do
t p

er
 a

cc
es

s)

Big Idea: Locality

• Temporal Locality (locality in time)
– If a memory location is referenced, then it will

tend to be referenced again soon

• Spatial Locality (locality in space)
– If a memory location is referenced, the locations

with nearby addresses will tend to be referenced
soon

20

Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program
Restructuring for Virtual Memory. IBM Systems
Journal 10(3): 168-192 (1971)

Time

M
em

or
y

Ad
dr

es
s (

on
e

do
t p

er
 a

cc
es

s)

Spatial
Locality

Temporal
Locality

Principle of Locality

• Principle of Locality: Programs access small
portion of address space at any instant of time
(spatial locality) and repeatedly access that
portion (temporal locality)

• What program structures lead to temporal
and spatial locality in instruction accesses?

• In data accesses?

22

Memory Reference Patterns
Address

Time

Instruction
fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine
call

subroutine
return

argument access

vector access

scalar accesses

Cache Philosophy
• Programmer-invisible hardware mechanism to

give illusion of speed of fastest memory with
size of largest memory
– Works fine even if programmer has no idea what a

cache is
– However, performance-oriented programmers

today sometimes “reverse engineer” cache design
to design data structures to match cache

24

Second-
Level
Cache

(SRAM)

Typical Memory Hierarchy

Control

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip Components

RegFile

Main
Memory
(DRAM)D

ata
Cache

Instr
Cache

Speed (cycles): ½’s 1’s 10’s 100’s 1,000,000’s

Size (bytes): 100’s 10K’s M’s G’s T’s

25

• Principle of locality + memory hierarchy presents programmer with
≈ as much memory as is available in the cheapest technology at the
≈ speed offered by the fastest technology

Cost/bit: highest lowest

Third-
Level
Cache

(SRAM)

How is the Hierarchy Managed?

• registers « memory
– By compiler (or assembly level programmer)

• cache « main memory
– By the cache controller hardware

• main memory « disks (secondary storage)
– By the operating system (virtual memory)
– Virtual to physical address mapping assisted by the

hardware (‘translation lookaside buffer’ or TLB)
– By the programmer (files)

Also a type of cache

Memory Access without Cache

• Load word instruction: lw t0,0(t1)
• t1 contains 1022ten, Memory[1022] = 99

1. Processor issues address 1022ten to Memory
2. Memory reads word at address 1022ten (99)
3. Memory sends 99 to Processor
4. Processor loads 99 into register t0

27

Processor

Control

Datapath

Adding Cache to Computer

28

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Cache

Memory Access with Cache
• Load word instruction: lw t0,0(t1)
• t1 contains 1022ten, Memory[1022] = 99
• With cache: Processor issues address 1022ten to

Cache
1. Cache checks to see if has copy of data at address

1022ten
2a. If finds a match (Hit): cache reads 99, sends to processor
2b. No match (Miss): cache sends address 1022 to Memory

I. Memory reads 99 at address 1022ten
II. Memory sends 99 to Cache
III. Cache replaces word with new 99
IV. Cache sends 99 to processor

2. Processor loads 99 into register t0
29

Cache “Tags”
• Need way to tell if have copy of location in

memory so that can decide on hit or miss
• On cache miss, put memory address of block

in “tag address” of cache block
1022 placed in tag next to data from memory (99)

30

Tag (= Address in this simple example) Data

252 12
1022 99
131 7

2041 20

From earlier
instructions

Anatomy of a
16 Byte Cache,

4 Byte Block
• Operations:

1. Cache Hit
2. Cache Miss
3. Refill cache from

memory

• Cache needs Address
Tags to decide if
Processor Address is a
Cache Hit or Cache Miss
– Compares all 4 tags

31

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

7
20

12

131
2041

Tag Data

252 12
1022 99
131 7

2041 20

Tag Data

252 12
1022 99
511 11

2041 20

Cache Replacement
• Suppose processor now requests location 511, which

contains 11?
• Doesn’t match any cache block, so must “evict” one

resident block to make room
– Which block to evict?

• Replace “victim” with new memory block at address 511

32

Block Must be Aligned in Memory

• Word blocks are aligned, so binary address of
all words in cache always ends in 00two

• How to take advantage of this to save
hardware and energy?

• Don’t need to compare last 2 bits of 32-bit
byte address (comparator can be narrower)

=> Don’t need to store last 2 bits of 32-bit byte
address in Cache Tag (Tag can be narrower)

33

Anatomy of a 32B
Cache, 8B Block

34

• Blocks must be aligned
in pairs, otherwise
could get same word
twice in cache

Ø Tags only have even-
numbered words

Ø Last 3 bits of address
always 000two

Ø Tags, comparators can
be narrower

• Can get hit for either
word in block

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

42
1947

12

130
2040

1000
7
20

-10

Hardware Cost of
Cache

• Need to compare every
tag to the Processor
address

• Comparators are
expensive

• Optimization: use 2
“sets” => ½ comparators

• 1 Address bit selects
which set

• Compare only tags from
selected set

• Generalize to more sets
3535

Processor

32-bit
Address

Tag Data

32-bit
Data

Cache
32-bit

Address
32-bit
Data

Memory

Tag Data

Set 0

Set 1

Tag Data

Tag Data

Processor Address Fields used by

Cache Controller
• Block Offset: Byte address within block

• Set Index: Selects which set

• Tag: Remaining portion of processor address

• Size of Index = log2 (number of sets)

• Size of Tag = Address size – Size of Index

– log2 (number of bytes/block)

Block offsetSet IndexTag

36

Processor Address (32-bits total)

What is limit to number of sets?
• For a given total number of blocks, we can

save more comparators if have more than 2
sets

• Limit: As Many Sets as Cache Blocks => only
one block per set – only needs one
comparator!

• Called “Direct-Mapped” Design

37

Block offsetIndexTag

Direct Mapped Cache Ex:
Mapping a 6-bit Memory Address

• In example, block size is 4 bytes/1 word

• Memory and cache blocks always the same size, unit of transfer between
memory and cache

• # Memory blocks >> # Cache blocks
– 16 Memory blocks = 16 words = 64 bytes => 6 bits to address all bytes

– 4 Cache blocks, 4 bytes (1 word) per block

– 4 Memory blocks map to each cache block

• Memory block to cache block, aka index: middle two bits

• Which memory block is in a given cache block, aka tag: top two bits
38

05 1

Byte Within Block

Byte Offset

23

Block Within $

4

Mem Block Within
$ Block

Tag Index

One More Detail: Valid Bit

• When start a new program, cache does not
have valid information for this program

• Need an indicator whether this tag entry is
valid for this program

• Add a “valid bit” to the cache tag entry
0 => cache miss, even if by chance, address = tag
1 => cache hit, if processor address = tag

39

Caching: A Simple First Example

00
01
10
11

Cache Main Memory

Q: Where in the cache is
the mem block?

Use 2 middle memory
address bits – the index
– to determine which
cache block (i.e.,
modulo the number of
blocks in the cache)

Tag Data

Q: Is the memory block in
cache?
Compare the cache tag to the
high-order 2 memory address
bits to tell if the memory
block is in the cache
(provided valid bit is set)

Valid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

One word blocks
Two low order bits (xx)
define the byte in the
block (32b words)

Index

406bit Memory Address

• One word blocks, cache size = 1K words (or 4KB)

Direct-Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

41

Valid bit
ensures

something
useful in

cache for
this index

Compare
Tag with

upper part
of Address
to see if a

Hit

Read
data
from
cache
instead
of
memory
if a Hit

Comparator

• Four words/block, cache size = 1K words

Multiword-Block Direct-Mapped Cache

8
Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte offset

20

20Tag

Hit

What kind of locality are we taking advantage of?
42

2

Data

32

Word offset

