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In-Order Superscalar Pipeline

• Fetch two instructions per cycle; 
issue both simultaneously if one is 
integer/memory and other is floating point

• Inexpensive way of increasing throughput, 
examples include Alpha 21064 (1992) & 
MIPS R5000 series (1996)

• Same idea can be extended to wider issue 
by duplicating functional units (e.g. 4-issue 
UltraSPARC & Alpha 21164) but regfile
ports and bypassing costs grow quickly
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Superscalar Processor
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Phases of Instruction Execution
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Fetch: Instruction bits retrieved from 
instruction cache.I-cache

Fetch Buffer

Issue Buffer

Functional Units

Architectural
State

Execute: Instructions and operands issued to 
functional units. When execution completes, 
all results and exception flags are available.

Decode: Instructions dispatched to 
appropriate issue buffer

Result Buffer
Commit: Instruction irrevocably updates 
architectural state (aka “graduation”), or 
takes precise trap/interrupt.
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Superscalar:
Dynamic Multiple Issue

• Hardware guarantees correct execution =>
– Compiler does not need to (but can) optimize

• Dynamic pipeline scheduling: 
– Instructions execute based on:

• What functional units are free
• Avoiding of data hazards

– Reservation Station 
• Buffer of instructions waiting to be executed
• With operands (Registers) needed
• Once all operands are available: execute!

– Commit Unit (Reorder buffer): supply the operands to reservation station; write to 
register; in original order

– Unified Physical Register File :
Registers are renamed for use in reservation station and commit unit
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Separating Completion from Commit

• Re-order buffer holds register results from 
completion until commit
– Entries allocated in program order during decode
– Buffers completed values and exception state until in-order commit 

point
– Completed values can be used by dependents before committed 

(bypassing)
– Each entry holds program counter, instruction type, destination 

register specifier and value if any, and exception status (info often 
compressed to save hardware)
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“Data-in-ROB” Design
(HP PA8000, Pentium Pro, Core2Duo, Nehalem)

• Managed as circular buffer in program order, new instructions dispatched to free 
slots, oldest instruction committed/reclaimed when done (“p” bit set on result)

• Tag is given by index in ROB (Free pointer value)
• In dispatch, non-busy source operands read from architectural register file and 

copied to Src1 and Src2 with presence bit “p” set.  Busy operands copy tag of 
producer and clear “p” bit.

• Set valid bit “v” on dispatch, set issued bit “i” on issue
• On completion, search source tags, set “p” bit and copy data into src on tag 

match.  Write result and exception flags to ROB.
• On commit, check exception status, and copy result into architectural register 

file if no trap.

Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode

Oldest

Free
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ROB

Data Movement in Data-in-ROB Design
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Register Renaming
• Programmers/ Compilers (have to) re-use 

registers for different, unrelated purposes
• Idea: Re-name on the fly to resolve (fake)

dependencies (anti-dependency)
• Additional benefit: CPU can have more physical 

registers than ISA!
– Alpha 21264 CPU has 80 integer register; ISA only 32
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Alternative to ”Data-in-ROB”:
Unified Physical Register File
(MIPS R10K, Alpha 21264, Intel Pentium 4 & Sandy/Ivy Bridge)

• Rename all architectural registers into a single physical 
register file during decode, no register values read

• Functional units read and write from single unified register file 
holding committed and temporary registers in execute

• Commit only updates mapping of architectural register to 
physical register, no data movement
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Renamed Registers
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ld x1, (x3)
addi x3, x1, 4
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x11)

ld P1, (Px)
addi P2, P1, 4
sub P3, Py, Pz
add P4, P2, P3
ld P5, (P1)
add P6, P5, P4
sd P6, (P1)
ld P7, (Pw)

Rename

• Physical regfile holds committed and speculative values
• Physical registers decoupled from ROB entries (no data in ROB)

Architectural Registers (from ISA) Physical Registers (in CPU)



Conclusion Superscalar CPUs

• “Iron Law” of Processor Performance to 
estimate speed

• Complex Pipelines: more in CA II
• Multiple Functional Units => Parallel execution

– Static Multiple Issues (VLIW)
• E.g. 2 instructions per cycle

– Dynamic Multiple Issues (Superscalar)
• Re-order instructions
• Issue Buffer; Re-order Buffer; Commit Unit
• Re-naming of registeres
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New-School Machine Structures
(It’s a bit more complicated!)

• Parallel Requests
Assigned to computer
e.g., Search “Katz”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates @ one time

• Programming Languages
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Components of a Computer
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Datapath

Adding Cache to Computer
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Processor-DRAM Gap (Latency)

1980 microprocessor executes ~one instruction in same time as DRAM access
2017 microprocessor executes ~1000 instructions in same time as DRAM access

Slow DRAM access has disastrous impact on CPU performance! 



Great Idea #3: Principle of Locality / 
Memory Hierarchy

Note: These names
are a bit dated



Big Idea: Memory Hierarchy
Processor

Size of memory at each level

Increasing
distance from

processor,
decreasing  

speed

Level 1

Level 2

Level n

Level 3

. . .

Inner

Outer

Levels in 
memory 
hierarchy

As we move to outer levels the latency goes up
and price per bit goes down. 
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Real Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual 
Memory. IBM Systems Journal 10(3): 168-192 (1971)
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Big Idea: Locality

• Temporal Locality (locality in time)
– If a memory location is referenced, then it will 

tend to be referenced again soon

• Spatial Locality (locality in space)
– If a memory location is referenced, the locations 

with nearby addresses will tend to be referenced 
soon
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Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program 
Restructuring for Virtual Memory. IBM Systems 
Journal 10(3): 168-192 (1971)
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Principle of Locality

• Principle of Locality: Programs access small 
portion of address space at any instant of time 
(spatial locality) and repeatedly access that 
portion (temporal locality)

• What program structures lead to temporal 
and spatial locality in instruction accesses? 

• In data accesses?
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Memory Reference Patterns
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Cache Philosophy
• Programmer-invisible hardware mechanism to 

give illusion of speed of fastest memory with 
size of largest memory
– Works fine even if programmer has no idea what a 

cache is
– However, performance-oriented programmers 

today sometimes “reverse engineer” cache design 
to design data structures to match cache
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Second-
Level
Cache

(SRAM)

Typical Memory Hierarchy

Control

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip Components

RegFile

Main
Memory
(DRAM)D
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Size (bytes):    100’s   10K’s                         M’s                    G’s                      T’s
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• Principle of locality + memory hierarchy presents programmer with 
≈ as much memory as is available in the cheapest technology at the 
≈ speed offered by the fastest technology

Cost/bit:         highest                                                                             lowest

Third-
Level
Cache

(SRAM)



How is the Hierarchy Managed?

• registers « memory
– By compiler (or assembly level programmer)

• cache « main memory
– By the cache controller hardware

• main memory « disks (secondary storage)
– By the operating system (virtual memory)
– Virtual to physical address mapping assisted by the 

hardware (‘translation lookaside buffer’ or TLB)
– By the programmer (files)

Also a type of cache



Memory Access without Cache

• Load word instruction: lw t0,0(t1)
• t1 contains 1022ten, Memory[1022] = 99

1. Processor issues address 1022ten to Memory
2. Memory reads word at address 1022ten (99)
3. Memory sends 99 to Processor
4. Processor loads 99 into register t0
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Processor

Control

Datapath

Adding Cache to Computer
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Memory Access with Cache
• Load word instruction: lw t0,0(t1)
• t1 contains 1022ten, Memory[1022] = 99
• With cache: Processor issues address 1022ten to 

Cache
1. Cache checks to see if has copy of data at address 

1022ten
2a. If finds a match (Hit): cache reads 99, sends to processor
2b. No match (Miss): cache sends address 1022 to Memory

I. Memory reads 99 at address 1022ten
II. Memory sends 99 to Cache
III. Cache replaces word with new 99
IV. Cache sends 99 to processor

2. Processor loads 99 into register t0
29



Cache “Tags”
• Need way to tell if have copy of location in 

memory so that can decide on hit or miss
• On cache miss, put memory address of block 

in “tag address” of cache block
1022 placed in tag next to data from memory (99)

30

Tag (= Address in this simple example) Data

252 12
1022 99
131 7

2041 20

From earlier
instructions



Anatomy of a 
16 Byte Cache, 

4 Byte Block
• Operations:

1. Cache Hit
2. Cache Miss
3. Refill cache from 

memory

• Cache needs Address 
Tags to decide if 
Processor Address is a 
Cache Hit or Cache Miss
– Compares all 4 tags
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Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address
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Data
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Tag Data

252 12
1022 99
131 7

2041 20

Tag Data

252 12
1022 99
511 11

2041 20

Cache Replacement
• Suppose processor now requests location 511, which 

contains 11?
• Doesn’t match any cache block, so must “evict” one 

resident block to make room
– Which block to evict?

• Replace “victim” with new memory block at address 511
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Block Must be Aligned in Memory

• Word blocks are aligned, so binary address of 
all words in cache always ends in 00two

• How to take advantage of this to save 
hardware and energy?

• Don’t need to compare last 2 bits of 32-bit 
byte address (comparator can be narrower)

=> Don’t need to store last 2 bits of 32-bit byte 
address in Cache Tag (Tag can be narrower)
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Anatomy of a 32B 
Cache, 8B Block
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• Blocks must be aligned 
in pairs, otherwise 
could get same word 
twice in cache

Ø Tags only have even-
numbered words

Ø Last 3 bits of address 
always 000two

Ø Tags, comparators can 
be narrower 

• Can get hit for either 
word in block

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

42
1947

12

130
2040

1000
7
20

-10



Hardware Cost of 
Cache

• Need to compare every 
tag to the Processor 
address

• Comparators are 
expensive

• Optimization: use 2 
“sets” => ½ comparators

• 1 Address bit selects 
which set

• Compare only tags from 
selected set

• Generalize to more sets
3535
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Processor Address Fields used by 

Cache Controller
• Block Offset: Byte address within block

• Set Index: Selects which set

• Tag: Remaining portion of processor address

• Size of Index = log2 (number of sets)

• Size of Tag = Address size – Size of Index 

– log2 (number of bytes/block)

Block offsetSet IndexTag
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Processor Address (32-bits total)



What is limit to number of sets?
• For a given total number of blocks, we can 

save more comparators if have more than 2 
sets

• Limit: As Many Sets as Cache Blocks => only 
one block per set – only needs one 
comparator! 

• Called “Direct-Mapped” Design
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Direct Mapped Cache Ex: 
Mapping a 6-bit Memory Address

• In example, block size is 4 bytes/1 word

• Memory and cache blocks always the same size, unit of transfer between 
memory and cache

• # Memory blocks >> # Cache blocks
– 16 Memory blocks = 16 words = 64 bytes => 6 bits to address all bytes

– 4 Cache blocks, 4 bytes (1 word) per block

– 4 Memory blocks map to each cache block

• Memory block to cache block, aka index: middle two bits

• Which memory block is in a given cache block, aka tag: top two bits
38
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One More Detail: Valid Bit

• When start a new program, cache does not 
have valid information for this program

• Need an indicator whether this tag entry is 
valid for this program

• Add a “valid bit” to the cache tag entry
0 => cache miss, even if by chance, address = tag
1 => cache hit, if processor address = tag
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Caching:  A Simple First Example

00
01
10
11

Cache Main Memory

Q: Where in the cache is 
the mem block?

Use 2 middle memory 
address bits – the index 
– to determine which 
cache block (i.e., 
modulo the number of 
blocks in the cache)

Tag Data

Q: Is the memory block in 
cache?
Compare the cache tag to the 
high-order 2 memory address 
bits to tell if the memory 
block is in the cache 
(provided valid bit is set)

Valid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

One word blocks
Two low order bits (xx) 
define the byte in the
block (32b words)

Index

406bit Memory Address



• One word blocks, cache size = 1K words (or 4KB)

Direct-Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30       . . .       13 12  11     . . .       2  1  0
Byte offset

What kind of locality are we taking advantage of?

20

Data

32

Hit
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Valid bit 
ensures 

something 
useful in 

cache for 
this index

Compare 
Tag with 

upper part 
of Address 
to see if a 

Hit

Read 
data 
from 
cache 
instead 
of 
memory 
if a Hit

Comparator



• Four  words/block, cache size = 1K words

Multiword-Block Direct-Mapped Cache
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Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30   . . .      13 12 11    . . .    4 3  2  1  0 Byte offset

20

20Tag

Hit

What kind of locality are we taking advantage of?
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