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Great Idea #3: Principle of Locality / 
Memory Hierarchy

Note: These names
are a bit dated



Big Idea: Locality

• Temporal Locality (locality in time)
– If a memory location is referenced, then it will 

tend to be referenced again soon

• Spatial Locality (locality in space)
– If a memory location is referenced, the locations 

with nearby addresses will tend to be referenced 
soon
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Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program 
Restructuring for Virtual Memory. IBM Systems 
Journal 10(3): 168-192 (1971)
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Anatomy of a 
16 Byte Cache, 

4 Byte Block
• Operations:

1. Cache Hit
2. Cache Miss
3. Refill cache from 

memory

• Cache needs Address 
Tags to decide if 
Processor Address is a 
Cache Hit or Cache Miss
– Compares all 4 tags
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Hardware Cost of 
Cache

• Need to compare every 
tag to the Processor 
address

• Comparators are 
expensive

• Optimization: use 2 
“sets” => ½ comparators

• 1 Address bit selects 
which set

• Compare only tags from 
selected set

• Generalize to more sets
7 7
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Caching:  A Simple First Example

00
01
10
11

Cache Main Memory

Q: Where in the cache is 
the mem block?

Use 2 middle memory 
address bits – the index 
– to determine which 
cache block (i.e., 
modulo the number of 
blocks in the cache)

Tag Data

Q: Is the memory block in 
cache?
Compare the cache tag to the 
high-order 2 memory address 
bits to tell if the memory 
block is in the cache 
(provided valid bit is set)

Valid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

One word blocks
Two low order bits (xx) 
define the byte in the 
block (32b words)

Index

86bit Memory Address



• One word blocks, cache size = 1K words (or 4KB)

Direct-Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30       . . .                 13 12  11     . . .          2  1  0
Byte offset

What kind of locality are we taking advantage of?
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• Four  words/block, cache size = 1K words

Multiword-Block Direct-Mapped Cache
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Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30   . . .                 13 12  11    . . .    4  3  2  1  0 Byte offset

20

20Tag
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What kind of locality are we taking advantage of?
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Cache Names for Each Organization
• “Fully Associative”: Line can go anywhere
– First design in lecture
– Note: No Index field, but 1 comparator/ line

• “Direct Mapped”: Line goes one place 
– Note: Only 1 comparator
– Number of sets = number blocks

• “N-way Set Associative”: N places for a line
– Number of sets = number of lines/ N
– N comparators
– Fully Associative: N = number of lines
– Direct Mapped: N = 1
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Range of Set-Associative Caches
• For a fixed-size cache, and a given block size, each 

increase by a factor of 2 in associativity doubles the 
number of blocks per set (i.e., the number of “ways”) 
and halves the number of sets –
• decreases the size of the index by 1 bit and 

increases the size of the tag by 1 bit
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Block offsetIndexTag

More Associativity (more ways)



Total Cash Capacity =

13

Associativity *  # of sets  *  block_size
Bytes = blocks/set  *  sets  *  Bytes/block 

Byte OffsetTag Index

C = N *  S  *  B

address_size = tag_size + index_size + offset_size
= tag_size + log2(S) + log2(B)



Handling Stores with Write-Through

• Store instructions write to memory, changing 
values

• Need to make sure cache and memory have same 
values on writes: 2 policies

1) Write-Through Policy: write cache and write 
through the cache to memory
– Every write eventually gets to memory
– Too slow, so include Write Buffer to allow processor to 

continue once data in Buffer
– Buffer updates memory in parallel to processor
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Write-Through 
Cache

• Write both values in 
cache and in memory

• Write buffer stops CPU 
from stalling if memory 
cannot keep up

• Write buffer may have 
multiple entries to 
absorb bursts of writes

• What if store misses in 
cache?
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Handling Stores with Write-Back

2) Write-Back Policy: write only to cache and 
then write cache block back to memory when 
evict block from cache
– Writes collected in cache, only single write to 

memory per block
– Include bit to see if wrote to block or not, and 

then only write back if bit is set
• Called “Dirty” bit (writing makes it “dirty”)
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Write-Back 
Cache

• Store/cache hit, write data in 
cache only & set dirty bit
– Memory has stale value

• Store/cache miss, read data 
from memory, then update 
and set dirty bit
– “Write-allocate” policy

• Load/cache hit, use value 
from cache

• On any miss, write back 
evicted block, only if dirty. 
Update cache with new block 
and clear dirty bit.
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Write-Through vs. Write-Back

• Write-Through:
– Simpler control logic
– More predictable timing 

simplifies processor control 
logic

– Easier to make reliable, since 
memory always has copy of 
data (big idea: Redundancy!)

• Write-Back
– More complex control logic
– More variable timing (0,1,2 

memory accesses per 
cache access)

– Usually reduces write 
traffic

– Harder to make reliable, 
sometimes cache has only 
copy of data
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Cache (Performance) Terms

• Hit rate: fraction of accesses that hit in the cache
• Miss rate: 1 – Hit rate
• Miss penalty: time to replace a line/ block from 

lower level in memory hierarchy to cache
• Hit time: time to access cache memory (including 

tag comparison)

• Abbreviation: “$” = cache ( cash … )

19



Average Memory Access Time (AMAT)
• Average Memory Access Time (AMAT) is the 

average time to access memory considering 
both hits and misses in the cache

AMAT =  Time for a hit  
+  Miss rate × Miss penalty
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B:  400 psec

C:  600 psec

A:  ≤200 psec�

�

�

�
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Question
AMAT =  Time for a hit  +  Miss rate x Miss penalty

Given a 200 psec clock, a miss penalty of 50 clock 
cycles, a miss rate of 0.02 misses per instruction and 
a cache hit time of 1 clock cycle, what is AMAT?



0 4 0 4

0 4 0 4

miss miss miss miss

miss miss miss miss

00    Mem(0) 00    Mem(0)
01 4

01    Mem(4)
000

00    Mem(0)
01 4

00    Mem(0)
01 4

00    Mem(0)
01 4

01    Mem(4)
000

01    Mem(4)
000

• Ping-pong effect due to conflict misses - two memory 
locations that map into the same cache block

• 8 requests, 8 misses
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Example: Direct-Mapped Cache
with 4 Single-Word Blocks, Worst-Case Reference String
• Consider the main memory address (words) reference string 

of word numbers:                              0   4   0   4   0   4   0   4
Start with an empty cache - all blocks 
initially marked as not valid

01 4



Alternative Block Placement Schemes

• DM placement: mem block 12 in 8 block cache: only one cache 

block where mem block 12 can be found—(12 modulo 8) = 4

• SA placement: four sets x 2-ways (8 cache blocks), memory block 12 

in set (12 mod 4) = 0; either element of the set

• FA placement: mem block 12 can appear in any cache blocks
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Example: 2-Way Set Associative $
(4 words = 2 sets x 2 ways per set)

0

Cache

Main Memory

Q: How do we find it?

Use next 1 low order 

memory address bit to 

determine which cache 

set (i.e., modulo the 

number of sets in the 

cache)

Tag Data

Q: Is it there?

Compare all the cache 

tags in the set to the high 

order 3 memory address 

bits to tell if the memory 

block is in the cache

V

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Set

1

0

1

Way

0

1

One word blocks

Two low order bits 

define the byte in the 

word (32b words)
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Example: 4-Word 2-Way SA $
Same Reference String

0 4 0 4

• Consider the main memory address (word) reference string
0   4   0   4   0   4   0   4

miss miss hit hit

000    Mem(0) 000    Mem(0)

Start with an empty cache - all blocks 
initially marked as not valid

010    Mem(4) 010    Mem(4)

000    Mem(0) 000    Mem(0)

010    Mem(4)

• Solves the ping-pong effect in a direct-mapped cache due to 
conflict misses since now two memory locations that map into 
the same cache set can co-exist!

• 8 requests, 2 misses
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Four-Way Set-Associative Cache
• 28 = 256 sets each with four ways (each with one block)

31 30       . . .             10  9 . . .      2  1  0 Byte offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Set Index

DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1 select

Way 0 Way 1 Way 2 Way 3
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Different Organizations of an Eight-Block Cache

Total size of $ in blocks is equal to 
number of sets × associativity. For 
fixed $ size and fixed block size, 
increasing associativity decreases 
number of sets while increasing 
number of elements per set. With 
eight blocks, an 8-way set-
associative $ is same as a fully 
associative $. 
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Range of Set-Associative Caches
• For a fixed-size cache and fixed block size, each 

increase by a factor of two in associativity doubles the 
number of blocks per set (i.e., the number or ways) 
and halves the number of sets – decreases the size of 
the index by 1 bit and increases the size of the tag by 1 
bit

Word offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags, only a 
single comparator

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block
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Costs of Set-Associative Caches
• N-way set-associative cache costs
– N comparators (delay and area)
– MUX delay (set selection) before data is available
– Data available after set selection (and Hit/Miss decision).   

DM $: block is available before the Hit/Miss decision
• In Set-Associative, not possible to just assume a hit and continue 

and recover later if it was a miss
• When miss occurs, which way’s block selected for 

replacement?
– Least Recently Used (LRU): one that has been unused the 

longest (principle of temporal locality)
• Must track when each way’s block was used relative to other 

blocks in the set
• For 2-way SA $, one bit per set → set to 1 when a block is 

referenced; reset the other way’s bit (i.e., “last used”)
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Cache Replacement Policies
• Random Replacement

– Hardware randomly selects a cache evict
• Least-Recently Used

– Hardware keeps track of access history
– Replace the entry that has not been used for the longest time
– For 2-way set-associative cache, need one bit for LRU replacement

• Example of a Simple “Pseudo” LRU Implementation
– Assume 64 Fully Associative entries
– Hardware replacement pointer points to one cache entry
– Whenever access is made to the entry the pointer points to:

• Move the pointer to the next entry
– Otherwise: do not move the pointer
– (example of “not-most-recently used” replacement policy)

:

Entry 0
Entry 1

Entry  63

Replacement
Pointer
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Benefits of Set-Associative Caches
• Choice of DM $ versus SA $ depends on the cost of a miss 

versus the cost of implementation

• Largest gains are in going from direct mapped to 2-way 
(20%+ reduction in miss rate)
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Understanding Cache Misses:
The 3Cs

• Compulsory (cold start or process migration, 1st reference):
– First access to block impossible to avoid; small effect for long 

running programs
– Solution: increase block size (increases miss penalty; very large 

blocks could increase miss rate)
• Capacity:

– Cache cannot contain all blocks accessed by the program
– Solution: increase cache size (may increase access time)

• Conflict (collision):
– Multiple memory locations mapped to the same cache location
– Solution 1: increase cache size
– Solution 2: increase associativity (may increase access time)
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