
CS 110
Computer Architecture

Caches Part 2

Instructor:
Sören Schwertfeger

https://robotics.shanghaitech.edu.cn/courses/ca

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca

Processor

Control

Datapath

Adding Cache to Computer

2

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Cache

Great Idea #3: Principle of Locality /
Memory Hierarchy

Note: These names
are a bit dated

Big Idea: Locality

• Temporal Locality (locality in time)
– If a memory location is referenced, then it will

tend to be referenced again soon

• Spatial Locality (locality in space)
– If a memory location is referenced, the locations

with nearby addresses will tend to be referenced
soon

4

Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program
Restructuring for Virtual Memory. IBM Systems
Journal 10(3): 168-192 (1971)

Time

M
em

or
y

Ad
dr

es
s (

on
e

do
t p

er
 a

cc
es

s)

Spatial
Locality

Temporal
Locality

Anatomy of a
16 Byte Cache,

4 Byte Block
• Operations:

1. Cache Hit
2. Cache Miss
3. Refill cache from

memory

• Cache needs Address
Tags to decide if
Processor Address is a
Cache Hit or Cache Miss
– Compares all 4 tags

6

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

7
20

12

131
2041

Hardware Cost of
Cache

• Need to compare every
tag to the Processor
address

• Comparators are
expensive

• Optimization: use 2
“sets” => ½ comparators

• 1 Address bit selects
which set

• Compare only tags from
selected set

• Generalize to more sets
7 7

Processor

32-bit
Address

Tag Data

32-bit
Data

Cache
32-bit

Address
32-bit
Data

Memory

Tag Data

Set 0

Set 1

Tag Data

Tag Data

Caching: A Simple First Example

00
01
10
11

Cache Main Memory

Q: Where in the cache is
the mem block?

Use 2 middle memory
address bits – the index
– to determine which
cache block (i.e.,
modulo the number of
blocks in the cache)

Tag Data

Q: Is the memory block in
cache?
Compare the cache tag to the
high-order 2 memory address
bits to tell if the memory
block is in the cache
(provided valid bit is set)

Valid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

One word blocks
Two low order bits (xx)
define the byte in the
block (32b words)

Index

86bit Memory Address

• One word blocks, cache size = 1K words (or 4KB)

Direct-Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

9

Valid bit
ensures

something
useful in

cache for
this index

Compare
Tag with

upper part
of Address
to see if a

Hit

Read
data
from
cache
instead
of
memory
if a Hit

Comparator

• Four words/block, cache size = 1K words

Multiword-Block Direct-Mapped Cache

8
Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte offset

20

20Tag

Hit

What kind of locality are we taking advantage of?
10

2

Data

32

Word offset

Cache Names for Each Organization
• “Fully Associative”: Line can go anywhere
– First design in lecture
– Note: No Index field, but 1 comparator/ line

• “Direct Mapped”: Line goes one place
– Note: Only 1 comparator
– Number of sets = number blocks

• “N-way Set Associative”: N places for a line
– Number of sets = number of lines/ N
– N comparators
– Fully Associative: N = number of lines
– Direct Mapped: N = 1

11

Range of Set-Associative Caches
• For a fixed-size cache, and a given block size, each

increase by a factor of 2 in associativity doubles the
number of blocks per set (i.e., the number of “ways”)
and halves the number of sets –
• decreases the size of the index by 1 bit and

increases the size of the tag by 1 bit

12

Block offsetIndexTag

More Associativity (more ways)

Total Cash Capacity =

13

Associativity * # of sets * block_size
Bytes = blocks/set * sets * Bytes/block

Byte OffsetTag Index

C = N * S * B

address_size = tag_size + index_size + offset_size
= tag_size + log2(S) + log2(B)

Handling Stores with Write-Through

• Store instructions write to memory, changing
values

• Need to make sure cache and memory have same
values on writes: 2 policies

1) Write-Through Policy: write cache and write
through the cache to memory
– Every write eventually gets to memory
– Too slow, so include Write Buffer to allow processor to

continue once data in Buffer
– Buffer updates memory in parallel to processor

14

Write-Through
Cache

• Write both values in
cache and in memory

• Write buffer stops CPU
from stalling if memory
cannot keep up

• Write buffer may have
multiple entries to
absorb bursts of writes

• What if store misses in
cache?

15

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

7
20

12

131
2041 Addr Data

Write
Buffer

Handling Stores with Write-Back

2) Write-Back Policy: write only to cache and
then write cache block back to memory when
evict block from cache
– Writes collected in cache, only single write to

memory per block
– Include bit to see if wrote to block or not, and

then only write back if bit is set
• Called “Dirty” bit (writing makes it “dirty”)

16

Write-Back
Cache

• Store/cache hit, write data in
cache only & set dirty bit
– Memory has stale value

• Store/cache miss, read data
from memory, then update
and set dirty bit
– “Write-allocate” policy

• Load/cache hit, use value
from cache

• On any miss, write back
evicted block, only if dirty.
Update cache with new block
and clear dirty bit.

17

Processor

32-bit
Address

32-bit
Data

32-bit
Address

32-bit
Data

Memory

1022 99
252

7
20

12

131
2041

D
D
D
D

Dirty
Bits

Cache

Write-Through vs. Write-Back

• Write-Through:
– Simpler control logic
– More predictable timing

simplifies processor control
logic

– Easier to make reliable, since
memory always has copy of
data (big idea: Redundancy!)

• Write-Back
– More complex control logic
– More variable timing (0,1,2

memory accesses per
cache access)

– Usually reduces write
traffic

– Harder to make reliable,
sometimes cache has only
copy of data

18

Cache (Performance) Terms

• Hit rate: fraction of accesses that hit in the cache
• Miss rate: 1 – Hit rate
• Miss penalty: time to replace a line/ block from

lower level in memory hierarchy to cache
• Hit time: time to access cache memory (including

tag comparison)

• Abbreviation: “$” = cache (cash …)

19

Average Memory Access Time (AMAT)
• Average Memory Access Time (AMAT) is the

average time to access memory considering
both hits and misses in the cache

AMAT = Time for a hit
+ Miss rate × Miss penalty

20

B: 400 psec

C: 600 psec

A: ≤200 psec�

�

�

�

21

Question
AMAT = Time for a hit + Miss rate x Miss penalty

Given a 200 psec clock, a miss penalty of 50 clock
cycles, a miss rate of 0.02 misses per instruction and
a cache hit time of 1 clock cycle, what is AMAT?

0 4 0 4

0 4 0 4

miss miss miss miss

miss miss miss miss

00 Mem(0) 00 Mem(0)
01 4

01 Mem(4)
000

00 Mem(0)
01 4

00 Mem(0)
01 4

00 Mem(0)
01 4

01 Mem(4)
000

01 Mem(4)
000

• Ping-pong effect due to conflict misses - two memory
locations that map into the same cache block

• 8 requests, 8 misses

22

Example: Direct-Mapped Cache
with 4 Single-Word Blocks, Worst-Case Reference String
• Consider the main memory address (words) reference string

of word numbers: 0 4 0 4 0 4 0 4
Start with an empty cache - all blocks
initially marked as not valid

01 4

Alternative Block Placement Schemes

• DM placement: mem block 12 in 8 block cache: only one cache

block where mem block 12 can be found—(12 modulo 8) = 4

• SA placement: four sets x 2-ways (8 cache blocks), memory block 12

in set (12 mod 4) = 0; either element of the set

• FA placement: mem block 12 can appear in any cache blocks

23

Example: 2-Way Set Associative $
(4 words = 2 sets x 2 ways per set)

0

Cache

Main Memory

Q: How do we find it?

Use next 1 low order

memory address bit to

determine which cache

set (i.e., modulo the

number of sets in the

cache)

Tag Data

Q: Is it there?

Compare all the cache

tags in the set to the high

order 3 memory address

bits to tell if the memory

block is in the cache

V

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Set

1

0

1

Way

0

1

One word blocks

Two low order bits

define the byte in the

word (32b words)

24

Example: 4-Word 2-Way SA $
Same Reference String

0 4 0 4

• Consider the main memory address (word) reference string
0 4 0 4 0 4 0 4

miss miss hit hit

000 Mem(0) 000 Mem(0)

Start with an empty cache - all blocks
initially marked as not valid

010 Mem(4) 010 Mem(4)

000 Mem(0) 000 Mem(0)

010 Mem(4)

• Solves the ping-pong effect in a direct-mapped cache due to
conflict misses since now two memory locations that map into
the same cache set can co-exist!

• 8 requests, 2 misses

25

Four-Way Set-Associative Cache
• 28 = 256 sets each with four ways (each with one block)

31 30 . . . 10 9 . . . 2 1 0 Byte offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Set Index

DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1 select

Way 0 Way 1 Way 2 Way 3

26

Different Organizations of an Eight-Block Cache

Total size of $ in blocks is equal to
number of sets × associativity. For
fixed $ size and fixed block size,
increasing associativity decreases
number of sets while increasing
number of elements per set. With
eight blocks, an 8-way set-
associative $ is same as a fully
associative $.

27

Range of Set-Associative Caches
• For a fixed-size cache and fixed block size, each

increase by a factor of two in associativity doubles the
number of blocks per set (i.e., the number or ways)
and halves the number of sets – decreases the size of
the index by 1 bit and increases the size of the tag by 1
bit

Word offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags, only a
single comparator

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block

28

Costs of Set-Associative Caches
• N-way set-associative cache costs
– N comparators (delay and area)
– MUX delay (set selection) before data is available
– Data available after set selection (and Hit/Miss decision).

DM $: block is available before the Hit/Miss decision
• In Set-Associative, not possible to just assume a hit and continue

and recover later if it was a miss
• When miss occurs, which way’s block selected for

replacement?
– Least Recently Used (LRU): one that has been unused the

longest (principle of temporal locality)
• Must track when each way’s block was used relative to other

blocks in the set
• For 2-way SA $, one bit per set → set to 1 when a block is

referenced; reset the other way’s bit (i.e., “last used”)

29

Cache Replacement Policies
• Random Replacement

– Hardware randomly selects a cache evict
• Least-Recently Used

– Hardware keeps track of access history
– Replace the entry that has not been used for the longest time
– For 2-way set-associative cache, need one bit for LRU replacement

• Example of a Simple “Pseudo” LRU Implementation
– Assume 64 Fully Associative entries
– Hardware replacement pointer points to one cache entry
– Whenever access is made to the entry the pointer points to:

• Move the pointer to the next entry
– Otherwise: do not move the pointer
– (example of “not-most-recently used” replacement policy)

:

Entry 0
Entry 1

Entry 63

Replacement
Pointer

30

Benefits of Set-Associative Caches
• Choice of DM $ versus SA $ depends on the cost of a miss

versus the cost of implementation

• Largest gains are in going from direct mapped to 2-way
(20%+ reduction in miss rate)

31

Understanding Cache Misses:
The 3Cs

• Compulsory (cold start or process migration, 1st reference):
– First access to block impossible to avoid; small effect for long

running programs
– Solution: increase block size (increases miss penalty; very large

blocks could increase miss rate)
• Capacity:

– Cache cannot contain all blocks accessed by the program
– Solution: increase cache size (may increase access time)

• Conflict (collision):
– Multiple memory locations mapped to the same cache location
– Solution 1: increase cache size
– Solution 2: increase associativity (may increase access time)

32

