CS 110
Computer Architecture

Caches Part 2

Instructor:
Soren Schwertfeger

https://robotics.shanghaitech.edu.cn/courses/ca

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
1

https://robotics.shanghaitech.edu.cn/courses/ca

Adding Cache to Computer

Processor

Enable?
Read/Write

Address

M

- J

Processor-Memory Interface

\ J

|/O-Memory Interfaces
2

Great Idea #3: Principle of Locality /

Memory Hierarchy

SUPER FAST
EEEEEEEEEEEEE
TINY CAPACITY

A

EDO, SD-RAM, DDR-SDRAM, RD-RAM
and More...

T

Note: These names
are a bit dated

PHYSICAL MEMORY

FAST
PRICED REASONABLY
AVERAGE CAPACITY

Big Idea: Locality

 Temporal Locality (locality in time)

— If a memory location is referenced, then it will
tend to be referenced again soon

e Spatial Locality (locality in space)

— |If a memory location is referenced, the locations
with nearby addresses will tend to be referenced
soon

Memory Reference Patterns

w
h

>

w
ro

Tempor;\i
Locality

(0
o

[
o

Memory Address (one dot per access)

Spatial
20r 3 remmmpnmenian igmammna T U Localitve

= tI‘ﬂ“"l?tn’"‘lﬂ”lﬁllnl!ﬂ"ﬁn!lllﬂlﬂll fiyde nean. llll'lﬁ— 1] “ -
+
18J

Donald J. Hatfield, Jeanette Gerald: Progr-gll[me
Restructuring for Virtual Memory. IBM Systems
Journal 10(3): 168-192 (1971)

Anatomy of a
16 Byte Cache,
4 Byte Block

* Operations: 32-bit
Address

1. Cache Hit
2. Cache Miss

3. Refill cache from
memory

Processor

* Cache needs Address
Tags to decide if
Processor Address is a
Cache Hit or Cache Miss

— Compares all 4 tags

Hardware Cost of
Cache Processor

Need to compare every
tag to the Processor
address

Comparators are
expensive Set 04

Optimization: use 2
“sets” =>)5 comparators

1 Address bit selects

32-bit 32-bit
Address Data

Set 11

which set
Compare only tags from 32-bit 32-bit
selected set Address Data

Generalize to more sets

Caching: A Simple First Example

Cache Main Memory
................... | |
oo {0000xx
~ loooixx | Oneword blocks
| ! T B0 oxx Two low order bits (xx)
Index Valid Ta Data BEEOEEOEG define the byte in the
o OOIDXC ek (32b words)
00 S 1 10100%x
01 SRR L 0101xx
10 [i > [0 1 0xx
11 SR SHNNNNH0111xx Q: Where in the cache is
1000 the mem block?
Q: Is the memory block in L1 001X
cache? ik Itoxx Use 2 middle memory
Compare the cache tag to the SLU1011xx address bits — the index
high-order 2 memory address CUUN1100xx - to determine which
bits to tell if the memory 1101k cache block (ie.,
block is in the cache connnni[1110xx - modulo the number of
(provided valid bit is set) Ci1111xx blocks in the cache)
n m

6bit Memory Address 8

Direct-Mapped Cache Example

* One word blocks, cache size = 1K words (or 4KB)

Valid bit Ht

ensures
something

useful in
cache for
this index

Compare
Tag with
upper part
of Address
to see if a
Hit

Tag

3130 ...

1312 11 ... 210

Byte offset

M

20 10
Index

Index Valid Tag

Data

—

~

20

‘% Comparator

Data

Read
data
from
cache
instead
of
memory
if a Hit

What kind of locality are we taking advantage of?

9

Multiword-Block Direct-Mapped Cache

* Four words/block, cache size = 1K words
Byte offset

Hit

Tag

3130 ... 1312 11 ...

43210

M

v

120

Index

~

~ 8

Index Valid Tag

2

Word offset

Data

a2

0

1

2

»
»

253

254

255

-

CJ

|

T~ 20

\ 4

<

N

~N

What kind of locality are we taking advcfl%tage of ?

10

Cache Names for Each Organization

* “Fully Associative”: Line can go anywhere

— First design in lecture
— Note: No Index field, but 1 comparator/ line

* “Direct Mapped”: Line goes one place
— Note: Only 1 comparator
— Number of sets = number blocks

* “N-way Set Associative”: N places for a line
— Number of sets = number of lines/ N
— N comparators
— Fully Associative: N = number of lines
— Direct Mapped: N = 1

11

Range of Set-Associative Caches

* For a fixed-size cache, and a given block size, each
increase by a factor of 2 in associativity doubles the
number of blocks per set (i.e., the number of “ways”)
and halves the number of sets —

* decreases the size of the index by 1 bit and
increases the size of the tag by 1 bit

More Associativity (more ways)

—
Tag ‘ Index

Block offset

12

Total Cash Capacity =

Associativity * # of sets * block_size
Bytes = blocks/set * sets * Bytes/block

C=N*S *B

Tag Index Byte Offset

address_size = tag_size + index_size + offset_size
= tag_size + log2(S) + log2(B)

13

Handling Stores with Write-Through

e Store instructions write to memory, changing
values

* Need to make sure cache and memory have same
values on writes: 2 policies

1) Write-Through Policy: write cache and write
through the cache to memory
— Every write eventually gets to memory

— Too slow, so include Write Buffer to allow processor to
continue once data in Buffer

— Buffer updates memory in parallel to processor

14

Write-Through
Cache Processor

Write both values in
. 32-bit
cache and in memory Addrecs

Write buffer stops CPU T A ke T
from stalling if memory |
cannot keep up

Write buffer may have
multiple entries to
absorb bursts of writes

What if store misses in s St R -
h o 32-bit -
Cache: Address

Handling Stores with Write-Back

2) Write-Back Policy: write only to cache and
then write cache block back to memory when
evict block from cache

— Writes collected in cache, only single write to
memory per block

— Include bit to see if wrote to block or not, and
then only write back if bit is set
e Called “Dirty” bit (writing makes it “dirty”)

16

Write-Back
Cache Processor

Store/cache hit, write datain 3yt
cache only & set dirty bit Address

— Memory has stalevalue T A T TN

Store/cache miss, read data
from memory, then update
and set dirty bit

— “Write-allocate” policy

Load/cache hit, use value
from cache

On any miss, write back =eesspessssssssssssssssnasnfunans
evicted block, only if dirty.
Update cache with new block
and clear dirty bit.

Address

Write-Through vs. Write-Back

* Write-Through: * Write-Back

— Simpler control logic — More complex control logic

— More predictable timing — More variable timing (0,1,2
simplifies processor control memory accesses per
logic cache access)

— Easier to make reliable, since — Usually reduces write
memory always has copy of traffic
data (big idea: Redundancy!) — Harder to make reliable,

sometimes cache has only
copy of data

18

Cache (Performance) Terms

Hit rate: fraction of accesses that hit in the cache
Miss rate: 1 — Hit rate

Miss penalty: time to replace a line/ block from
lower level in memory hierarchy to cache

Hit time: time to access cache memory (including
tag comparison)

Abbreviation: “S” = cache (cash ...)

19

Average Memory Access Time (AMAT)

* Average Memory Access Time (AMAT) is the
average time to access memory considering
both hits and misses in the cache

AMAT = Time for a hit
+ Miss rate x Miss penalty

20

Question
AMAT = Time for a hit + Miss rate x Miss penalty

Given a 200 psec clock, a miss penalty of 50 clock
cycles, a miss rate of 0.02 misses per instruction and
a cache hit time of 1 clock cycle, what is AMAT?

[]

O B: 400 psec

[]

0 Ds 2 800 psec

21

Example: Direct-Mapped Cache
with 4 Single-Word Blocks, Worst-Case Reference String

* Consider the main memory address (words) reference string
of word numbers: 04040404

Start with an empty cache - all blocks
initially marked as not valid

01 0 mbs o 00 01

~8Q_| Mem{Q) BQ_ | Mem(Q) 81 |Mem(%) 8Q_|Mem(B),

4 miss 0 miss 4 miss

4

00 0 miss g 01 4 miss 4 00 0 miss 0 01 4 miss 4

* 8 requests, 8 misses

* Ping-pong effect due to conflict misses - two memory

locations that map into the same cache block .

Alternative Block Placement Schemes

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
Ta Ta Ta

Seacn 1 searon | | s TTTTTTT

* DM placement: mem block 12 in 8 block cache: only one cache
block where mem block 12 can be found—(12 modulo 8) = 4

e SA placement: four sets x 2-ways (8 cache blocks), memory block 12
in set (12 mod 4) = 0; either element of the set

* FA placement: mem block 12 can appear in any cache blocks

23

Example: 2-Way Set Associative S
(4 words = 2 sets x 2 ways per set)

__________________ Main Memory
Cach OO (1)xx One word blocks
ache ftfif:ftfif:fifif:'oo?l XX Two low order bits
Way Set V Tag Data o JOOIOX define the byte in the
S — :f:f:f:f:f:f:f:f:f'OOllXX word (32b words)
o O S 0100xx
! A oo {010Txx
, 0 I | R co o1 1loxx
1 SRR s 10111xx o
o T1odoxx Q: How do we find it?
Q: Is it there? CIIIE1001xx
o 1odoxx Use next 1 low order
Compare all the cache 1011 MEMOrY addrgss bit to
tags in the set to the high o 11g0xx determine Wh'ICh Eache
order 3 memory address 110K set (i.e., modu 0 the
bits to tell if the memory JEHBREIRE 117j0xx ”Umhbemf setsin the
block is in the cache T 1111xx cache)

24

Example: 4-Word 2-Way SA S
Same Reference String

* Consider the main memory address (word) reference string

Start with an empty cache - all blocks 0404042014
initially marked as not valid

0 mMmiss 4 miss 0 hit 4 hit
000 | Mem(0) 000 | Mem(0) 000 | Mem(0) 000 | Mem(0)
010 | Mem(4) 010 | Mem(4) 010 | Mem(4)

* 8 requests, 2 misses

* Solves the ping-pong effect in a direct-mapped cache due to
conflict misses since now two memory locations that map into
the same cache set can co-exist!

25

Four-Way Set-Associative Cache

e 28=256 sets each with four ways (each with one block)

3130 ... 109 ... 210 s Byte offset
M
Set Index
Tag 2 s
Index
vV Tag Data V Tag Data V Tag Data V Tag Data
0 0 0 0
1 \ 1 \ e 1 \ 1 \
2 Waly O 2 ‘N?VJ' 2 WP92 2 ”PVB
B
253 253 253 253
254 254 254 254
255 255 255 255

Ny
Lo,

Hit

l I 332
I
;XA4X1 select /
|| 26
Data

Different Organizations of an Eight-Block Cache

One-way set associative
(direct mapped)

Block Tag Data

0
; Two-way set associative
5 Set Tag Data Tag Data
3 0
. 1
" 2

Total size of S in blocks is equal to 5 3

number of sets x associativity. For

fixed S size and fixed block size, /

increasing associativity decreases
number of sets while increasing

number of elements per set. With | Set Tag Data Tag Data Tag Data Tag Data
eight blocks, an 8-way set- 0
associative S is same as a fully 1
associative S.

Four-way set associative

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

pA

Range of Set-Associative Caches

* For a fixed-size cache and fixed block size, each
increase by a factor of two in associativity doubles the
number of blocks per set (i.e., the number or ways)
and halves the number of sets — decreases the size of
the index by 1 bit and increases the size of the tag by 1

blt Used for tag compare

3

Selects the set

3

Selects the word in the block

3

Tag

Index

Word

offset

Byte

dffset

Decreasing associativity

Direct mapped }‘7

(only one way)
Smaller tags, only a
single comparator

> Increasing associativity

» Fully associative

(only one set)

Tag is all the bits except

block and byte offset

28

Costs of Set-Associative Caches

* N-way set-associative cache costs
— N comparators (delay and area)
— MUX delay (set selection) before data is available

— Data available after set selection (and Hit/Miss decision).

DM S: block is available before the Hit/Miss decision

* In Set-Associative, not possible to just assume a hit and continue
and recover later if it was a miss

 When miss occurs, which way’s block selected for

replacement?

— Least Recently Used (LRU): one that has been unused the

longest (principle of temporal locality)
* Must track when each way’s block was used relative to other
blocks in the set
* For 2-way SA S, one bit per set - set to 1 when a block is
referenced; reset the other way’s bit (i.e., “last used”)

29

Cache Replacement Policies

e Random Replacement

— Hardware randomly selects a cache evict
* Least-Recently Used

— Hardware keeps track of access history

— Replace the entry that has not been used for the longest time

— For 2-way set-associative cache, need one bit for LRU replacement
 Example of a Simple “Pseudo” LRU Implementation

— Assume 64 Fully Associative entries

— Hardware replacement pointer points to one cache entry

— Whenever access is made to the entry the pointer points to:
* Move the pointer to the next entry

— Otherwise: do not move the pointer
— (example of “not-most-recently used” replacement policy)

Entry O

Entry 1

Replacement

n
L

Pointer

Entry 63

30

Benefits of Set-Associative Caches

* Choice of DM S versus SA S depends on the cost of a miss
versus the cost of implementation

15% T—r————re e e e e e e e
12% =
L 9% -
@
/)]
2
= 6% T--
3% -
32K5 . 64KB . _128KB
i—————— -~ -d
O | I | |
One-way Two-way Four-way Eight-way

* Largest gains are in going from direct mapped to 2-way
(20%+ reduction in miss rate)

Understanding Cache Misses:
The 3Cs

 Compulsory (cold start or process migration, 15 reference):

— First access to block impossible to avoid; small effect for long
running programs

— Solution: increase block size (increases miss penalty; very large
blocks could increase miss rate)

* Capacity:
— Cache cannot contain all blocks accessed by the program
— Solution: increase cache size (may increase access time)
* Conflict (collision):
— Multiple memory locations mapped to the same cache location
— Solution 1: increase cache size
— Solution 2: increase associativity (may increase access time)

32

