CS 110
Computer Architecture
Performance and Floating Point Arithmetic

Instructor:
Soren Schwertfeger

https://robotics.shanghaitech.edu.cn/courses/ca

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
1

https://robotics.shanghaitech.edu.cn/courses/ca

New-School Machine Structures
(It's a bit more compllcated')

Software Hardware
Parallel Requests
. Warehouse
Assigned to computer Scale B
e.g., Search “Katz” Computer g

Harness
Parallel Threads Parallelism & How do
Assigned to core Achieve Hig
e.g., Lookup, Ads Performance

Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

Parallel Data

>1 data item @ one time
e.g., Add of 4 pairs of words

Hardware descriptions

All gates @ one time

Programming Languages / . |
Y 2

What is Performance?

e Latency (or response time or execution time)

— Time to complete one task
* Bandwidth (or throughput)

— Tasks completed per unit time

Cloud Performance:
Why Application Latency Matters

Server Delay Increased ime to Queries/ Any clicks/ User satisfac- Revenue/

(ms) next click (ms) user user tion User
50 - - - - -
200 500 -- -0.3% -0.4% -
500 1200 - -1.0% -0.9% -1.2%
1000 1900 -0.7% -1.9% -1.6% -2.8%
2000 3100 -1.8% -4.4% -3.8% -4.3%

Figure 6.10 Negative impact of delays at Bing search server on user behavior [Brutlag
and Schurman 2009].

* Key figure of merit: application responsiveness

— Longer the delay, the fewer the user clicks, the less the
user happiness, and the lower the revenue per user

Defining CPU Performance

What does it mean to say

X is faster than Y? BT
Ferrari vs. School = B
2013 Ferrari599 GTB ===
— 2 passengers, quarter mile in 10 secs

2013 Type D school bus

— 50 passengers, quarter mile in 20 secs

Response Time (Latency): e.g., time to travel % mile
Throughput (Bandwidth): e.g., passenger-mi in 1 hour

5

Defining Relative CPU Performance

Performance, = 1/Program Execution Time,

Performance, > Performance, =>
1/Execution Tlmex> 1/Execut|on Time, =>
Execution Time, > Execution Time,

Computer X is N times faster than Computer Y
Performance, / Performance, = N or
Execution Time, / Execution Time, = N

Bus to Ferrari performance:

— Program: Transfer 1000 passengers for 1 mile
— Bus: 3,200 sec, Ferrari: 40,000 sec

Measuring CPU Performance

Computers use a clock to determine when
events takes place within hardware

Clock cycles: discrete time intervals

— aka clocks, cycles, clock periods, clock ticks

Clock rate or clock frequency: clock cycles per
second (inverse of clock cycle time)

3 GigaHertz clock rate
=> clock cycle time = 1/(3x10°) seconds
clock cycle time = 333 picoseconds (ps)

CPU Performance Factors

* To distinguish between processor time and 1/0,
CPU time is time spent in processor

* CPU Time/Program

= Clock Cycles/Program
x Clock Cycle Time

* Or
CPU Time/Program
= Clock Cycles/Program + Clock Rate

lron Law of Performance

A program executes instructions

CPU Time/Program
= Clock Cycles/Program x Clock Cycle Time

= Instructions/Program
x Average Clock Cycles/Instruction
x Clock Cycle Time

15t term called Instruction Count

2"d term abbreviated CPI for average
Clock Cycles Per Instruction

3rd term is 1 / Clock rate

Restating Performance Equation

* Time = Seconds

Program
Instructions y Clock cyclesx Seconds
Program Instruction Clock Cycle

10

What Affects Each Component?
A)Instruction Count, B)CPI, C)Clock Rate

Algorithm

Programming
Language

Compiler

Instruction Set Architecture

11

What Affects Each Component?
Instruction Count, CPI, Clock Rate

_______ Affects What?

Algorithm Instruction Count,
CPI

Programming Instruction Count,

Language CPI

Compiler Instruction Count,
CPI

Instruction Set Instruction Count,

Architecture Clock Rate, CPI

12

Question

Computer | Clock Clock cycles | #instructions
frequency | per per program
instruction

A 1GHz 1000
B 2GHz 5 800
C 500MHz 1.25 400
D 5GHz 10 2000

* Which computer has the highest performance
for a given program?

13

Question

Computer | Clock Clock cycles | #instructions | Calculation
frequency | per per program
instruction

A 1GHz 1000 1ns * 2 * 1000 = 2ps

B 2GHz 5 800 0.5ns 5 *800 = 2us

C 500MHz 1.25 400 2ns 1.25 * 400 = 1ps

D 5GHz 10 2000 0.2ns * 10 * 2000 = 4us

* Which computer has the highest performance
for a given program?

14

Workload and Benchmark

 Workload: Set of programs run on a computer

— Actual collection of applications run or made from
real programs to approximate such a mix

— Specifies programs, inputs, and relative frequencies
 Benchmark: Program selected for use in
comparing computer performance

— Benchmarks form a workload
— Usually standardized so that many use them

SPEC
(System Performance Evaluation Cooperative)

 Computer Vendor cooperative for
benchmarks, started in 1989

* SPECCPU2006

— 12 Integer Programs
— 17 Floating-Point Programs

e Often turn into number where bigger is faster

* SPECratio: reference execution time on old
reference computer divide by execution time
on new computer to get an effective speed-up

16

SPECrate 2017 | SPECspeed 2017
Integer Integer

500.perlbench_r
502.gcc_r
505.mcf_r
520.omnetpp_r
523.xalancbmk_r
525.X264_r1
531.deepsjeng_r
541.leela_r
548.exchange2_r

557.XZ_T

SPECrate 2017 SPECspeed 2017
Floating Point Floating Point

503.bwaves_r

507.cactuBSSN_r

508.namd_r
510.parest_r
5ll.povray_r
519.]bm_r
521.wrf_r
526.blender_r
527.cam4_r

538.imagick_r
544.nab_r
549.fotonik3d_r
554.roms_r

SPEC CPU 2017

Language[1]
600.perlbench_s C
602.gcc_s c
605.mcf_s c
620.omnetpp_s C++
623.xalancbmk_s C++
625.x264_s C
631.deepsjeng_s C++
641.leela_s C++
648.exchange2_s Fortran
657.XZ_S c
Language[1]
603.bwaves_s Fortran
607.cactuBSSN_s C++, C, Fortran
C++
C++
C++, C
619.]bm_s c
621.wrf_s Fortran, C
C++, C
627.cam4_s Fortran, C
628.pop2_s Fortran, C
638.imagick_s c
644.nab_s C
649.fotonik3d_s Fortran
654.roms_s Fortran

KLOC 2]

362
1,304

134
520
96
10
21

33

KLOC 2]

1
257
8
427
170
1
991
1,577
407
338
259
24
14
210

Application Area

Perl interpreter

GNU C compiler

Route planning

Discrete Event simulation - computer network

XML to HTML conversion via XSLT

Video compression

Artificial Intelligence: alpha-beta tree search (Chess)
Artificial Intelligence: Monte Carlo tree search (Go)
Artificial Intelligence: recursive solution generator (Sudoku)
General data compression

Application Area

Explosion modeling

Physics: relativity

Molecular dynamics

Biomedical imaging: optical tomography with finite elements
Ray tracing

Fluid dynamics

Weather forecasting

3D rendering and animation

Atmosphere modeling

Wide-scale ocean modeling (climate level)
Image manipulation

Molecular dynamics

Computational Electromagnetics
Regional ocean modeling

[1] For multi-language benchmarks, the first one listed determines library and link options (detailsc?)

[2] KLOC = line count (including comments/whitespace) for source files used in a build / 1000

SPECINT2006 on AMD Barcelona

Instruc- Clock | Execu- | Refer- |onc -
Description tion CPI | cycle tion ence " .o
Count (B time (ps)|Time (s)|Time (s

Interpreted string

processing 2,118 0.75 9,770 15.3
Block-sorting compression 2,389 0.85 400 817 9,650 11.8
GNU C compiler 1,050 1.72 400 724 8,050 11.1
Combinatorial

optimization 336 10.0 400 1,345 9,120 6.8
Go game 1,658 1.09 400 721 10,490 14.6
Search gene sequence 2,783 0.80 400 890 9,330 10.5
Chess game 2,176 0.96 400 837 12,100 14.5
Quantum computer

simulation 1,623 1.61 400 1,047 20,720 19.8
Video compression 3,102 0.80 400 993 22,130 22.3
Discrete event simulation

library 587 2.94 400 690 6,250 9.1
Games/path finding 1,082 1.79 400 773 7,020 9.1
XML parsing 1,058 2.70 400 1,143 6,900 ‘6.0

Summarizing Performance ...

System Rate (Task 1) Rate (Task 2)
A 10 20
B 20 10

Clickers: Which system is faster?

(A3 SysEam A
R SysEam B

CSame]perfeimance

D Unenswerelle cuasiion!

19

... Depends Who's Selling

System Rate (Task 1) Rate (Task 2) Average
A 10 20 15
B 20 10 15

Average throughput

System Rate (Task 1) Rate (Task 2) Average
A 0.50 2.00 1.25
B 1.00 1.00 1.00

Throughput relative to B

System Rate (Task 1) Rate (Task 2) Average
A 1.00 1.00 1.00
B 2.00 0.50 1.25

Throughput relative to A

20

Summarizing SPEC Performance

e Varies from 6x to 22x faster than reference
computer

e Geometric mean of ratios: E
N-th root of product p| |] Execution time ratio,
of N ratios Ni=1

— Geometric Mean gives same relative answer no
matter what computer is used as reference

e Geometric Mean for Barcelonais 11.7

21

Review of Numbers

 Computers are made to deal with numbers

 What can we represent in N bits?

— 2N'things, and no more! They could be...

— Unsigned integers:
0 to 2N-1

(for N=32, 2N-1 =4,294,967,295)

— Signed Integers (Two’s Complement)
-2(N-1) to 2(N-1)_1

(for N=32, 2(N-1) =2 147,483,648)

What about other numbers?

1. Verylarge numbers? (seconds/millennium)
=>31,556,926,000,, (3.1556926,, x 10%9)

2. Very small numbers? (Bohr radius)
=> 0.0000000000529177,,m (5.29177,, x 10°11)

3. Numbers with both integer & fractional parts?
=> 1.5

First consider #3.
...our solution will also help with #1 and #2.

Representation of Fractions

“Binary Point” like decimal point signifies
boundary between integer and fractional parts:

Example 6-bit XX.YVVVYY

representation: 21/‘ Vi AR
20 21 2-2 2-3 2

10.1010,,, = 1x21 + 1x21 + 1x23 = 2.625;,,,

If we assume “fixed binary point”, range of 6-bit
representations with this format:
0 to 3.9375 (almost 4)

Fractional Powers of 2

2-i

WO NONULIdBWDNREREDO

N
N = O

e
Ul W

1.0 1

0.5 1/2
0.25 1/4
0.125 1/8
0.0625 1/16
0.03125 1/32
0.015625
0.0078125
0.00390625
0.001953125
0.0009765625
0.00048828125
0.000244140625
0.0001220703125
0.00006103515625
0.000030517578125

Representation of Fractions with Fixed Pt.
What about addition and multiplication?

oL 01.100 1.5,
Addition is + 00.100 0.5,

straightforward: 10.000 2.0.., 01.100 1.5,

00.100 0.5,
00 000

000 00

0110 O
00000

00000

0000110000

Multiplication a bit more complex:

Where’s the answer, 0.11? (need to remember where point is)

Representation of Fractions

So far, in our examples we used a “fixed” binary point.
What we really want is to “float” the binary point. Why?

Floating binary point most effective use of our limited bits
(and thus more accuracy in our number representation):

example: put 0.1640625,., into binary. Represent
with 5-bits choosing where to put the binary point.
... 000000.001010100000...
_Y_l

Store these bits and keep track of the binary
point 2 places to the left of the MSB

Any other solution would lose accuracy!

With floating-point rep., each nhumeral carries an exponent
field recording the whereabouts of its binary point.

The binary point can be outside the stored bits, so very
large and small numbers can be represented.

Scientific Notation (in Decimal)

mantissa __-exponent
T~6.02,., x 102

I

decimal point radix (base)

 Normalized form: no leadings Os
(exactly one digit to left of decimal point)

» Alternatives to representing 1/1,000,000,000
— Normalized: 1.0 x 10
— Not normalized: 0.1 x10%8,10.0x 1010

Scientific Notation (in Binary)

mantissa __-exponent
—~1.01,,, x 2"

“binary point” radix (base)

 Computer arithmetic that supports it called
floating point, because it represents numbers
where the binary point is not fixed, as it is for

Integers

— Declare such variablein Cas £float

e double for double precision.

Floating-Point Representation (1/2)

* Normal format: +1. two 2V Viwo
 Multiple of Word Size (32 bits)
3130 23 22

IS| Exponent Q\
1 bit 8 bits 23 bits

S represents Sign
Xponent represents y’s
represents x’s

* Represent numbers as small as
2.0,., X 21%5 to as large as 2.0, x 2127

«2126 = 8,507059173023462 €37 =~ 1033

Floating-Point Representation (2/2)

 What if result too large?
(>2.0x103%8, < -2.0x1038)

— Overflow! => Exponent larger than represented in 8-bit
Exponent field

e What if result too small?
(>0 & < 2.0x1038, <0 & >-2.0x1038)

— Underflow! => Negative exponent larger than represented
in 8-bit Exponent field

overflow underflow overflow
| ¢« | « L1 e e
| /7 | /7 | | /7 | /7 |
-2x1038 -1 -2x1038 o 2x103%® 1 2x1038

* What would help reduce chances of overflow and/or
underflow?

IEEE 754 Floating-Point Standard (1/3)

Single Precision (Double Precision similar):

3130 23 22 0
IS| Exponent |

1 bit 8 bits 23 bits

* Sign bit: 1 means negative O means positive

in sign-magnitude format (not 2’s complement)

— To pack more bits, leading 1 implicit for normalized numbers
— 1+ 23 bits single, 1 + 52 bits double
— always true: 0 < Significand < 1 (for normalized numbers)

 Note: 0 has noleading 1, so reserve exponent value 0 just for
number O

IEEE 754 Floating Point Standard (2/3)

* |[EEE 754 uses “biased exponent”
representation
— Designers wanted FP numbers to be used even if no

FP hardware; e.g., sort records with FP numbers
using integer compares

— Wanted bigger (integer) exponent field to represent
bigger numbers

— 2’s complement poses a problem (because negative
numbers look bigger)
* Use just magnitude and offset by half the range

IEEE 754 Floating Point Standard (3/3)

» Called Biased Notation, where bias is
number subtracted to get final number

 [IEEE 754 uses bias of 127 for single prec.

- Subtract 127 from Exponent field to get actual
value for exponent

 Summary (single precision):
31 30 23 22
S| Exponent | Significand

1 bit 8 bits 23 bits
*(-1)° x (1 + Significand) x 2(Exponent-127)

* Double precision identical, except with
exponent bias of 1023 (half, quad similar)

Question

* Guess this Floating Point number:
1 1000 0000 1000 0000 0000 0000 0000 000

A: -1x 2128
B: +1x 2128
C:-1x 2!

D: +1.5x 21
E:-1.5x 21

Representation for + oo

*In FP, divide by 0 should produce + oo, not
overflow.
* Why?

— OK to do further computations with oo
E.g., X/O > Y may be a valid comparison

* |EEE 754 represents * oo
— Most positive exponent reserved for oo
— Significands all zeroes

Representation for O

* Represent 0?
— exponent all zeroes
— significand all zeroes

— What about sign? Both cases valid
+0: 0 00000000 O00O0O0O0O0OOOOOOOOOOOOOOOOOO
-0: 1 00000000 0000000000000000O0O00O0O00QO

Special Numbers

* What have we defined so far?
(Single Precision)

Exponent Significand Object

0 0 0

0 nonzero ?2?7?

1-254 anything +/- fl. pt. #
255 0 +/- o0

255 nonzero ?2?7?

e Clever idea:
- Use exp=0,255 & Sig!=0

Representation for Not a Number

* What do | get if | calculate
sqrt(-4.0)or0/07?

— If oo not an error, these shouldn’t be either

— Called Not a Number (NaN)

— Exponent = 255, Significand nonzero
 Why is this useful?

— Hope NaNs help with debugging?

— They contaminate: op(NaN, X) = NaN

— Can use the significand to identify which!

Representation for Denorms (1/2)

* Problem: There’s a gap among representable FP
numbers around O

— Smallest representable pos num:
e a=1.0...2*2-126 =2-126

— Second smallest representable pos num:
e b=1.000......1 2 * 2-126

= (1+0.00...12) * 2-126 Normalization
= (1 +2-23) * 2-126 and implicit 1
=2-126 + 2-149 Is to blame!
— a-0=2-126
Gaps!
— b-a=2-149 P

-oohw@@gw—» o0
p +

d

Representation for Denorms (2/2)

e Solution:

- We still haven’t used Exponent = 0,
Significand nonzero

- DEnormalized number: no (implied)
leading 1, implicit exponent = -126.

- Smallest representable pos num:
a= 2-149

- Second smallest representable pos num:
b = 2-148

= OO0 ———++HHHHHH++—— 4 00

0

Special Numbers Summary

* Reserve exponents, significands:

Exponent
0

0

1-254
255

255

Significand Obiject

0 0
nonzero Denorm
anything +/- fl. pt. #
0 +/- 00
nonzero NaN

Conclusion

* Floating Point lets us:

- Represent numbers containing both integer and fractional
parts; makes efficient use of available bits.

- Store approximate values for very large and very small #s.

* IEEE 754 Floating-Point Standard is most widely
accepted attempt to standardize interpretation of such
numbers (Ever desktop or server computer sold
since ~1997 follows these conventions)

 Summary (single precision):
3130 23 22

S| Exponent | Significand

1 bit 8 bits 23 bits
*(-1)° x (1 + Significand) x 2(Exponent-127)

* Double precision identical, except with
exponent bias of 1023 (half, quad similar)

And In Conclusion, ...

* Time (seconds/program) is measure of performance
Instructions o Clock cycles o Seconds

Program Instruction Clock Cycle
* Floating-point representations hold approximations
of real numbers in a finite number of bits

44

