CS 110 Computer Architecture

Amdahl's Law, Data-level Parallelism

Instructor:

Sören Schwertfeger

https://robotics.shanghaitech.edu.cn/courses/ca

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C

Admin

- Midterm II
 - May 10 (This Friday!)
 - Topics: SDS, RISC-V Pipelining, Superscalar, Caches, Floating Point
- Same rules as Midterm I except:
 - 2 cheat A4 sheets are allowed (both handwritten in English by you)
 - RISC-V green sheet will be provided again

New-School Machine Structures (It's a bit more complicated!)

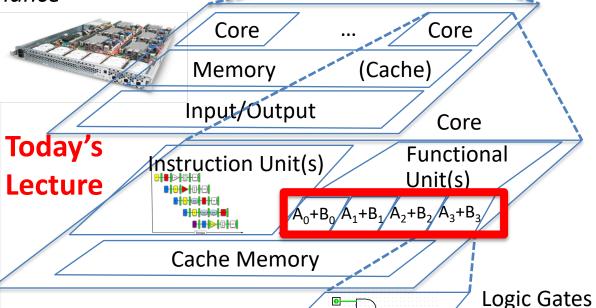
Software

- Parallel Requests
 Assigned to computer
 e.g., Search "Katz"
- Parallel Threads
 Assigned to core
 e.g., Lookup, Ads
- Parallel Instructions
 >1 instruction @ one time
 e.g., 5 pipelined instructions
- Parallel Data
 >1 data item @ one time
 e.g., Add of 4 pairs of words
- Hardware descriptions
 All gates @ one time
- Programming Languages

Warehouse Scale Computer

Harness
Parallelism &
Achieve High
Performance

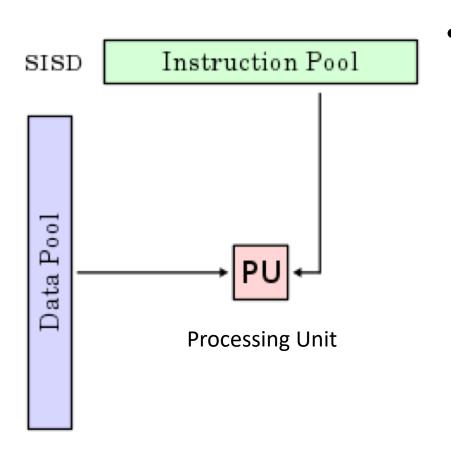
Smart Phone



Using Parallelism for Performance

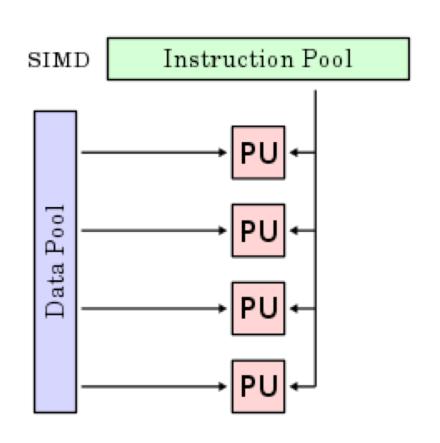
- Two basic ways:
 - Multiprogramming
 - run multiple independent programs in parallel
 - "Easy"
 - Parallel computing
 - run one program faster
 - "Hard"
- We'll focus on parallel computing for next few lectures

Single-Instruction/Single-Data Stream (SISD)



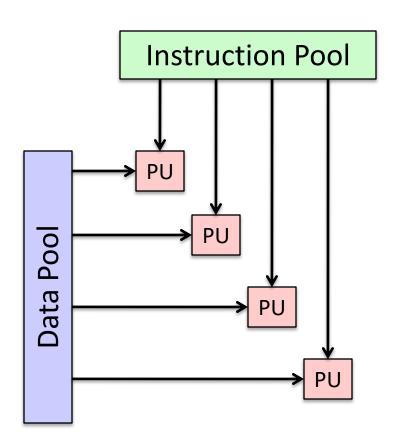
that exploits no parallelism in either the instruction or data streams. Examples of SISD architecture are traditional uniprocessor machines

Single-Instruction/Multiple-Data Stream (SIMD or "sim-dee")



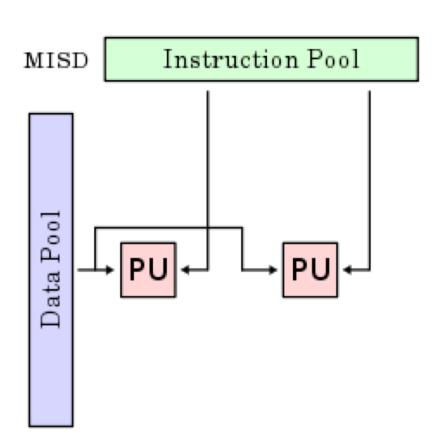
 SIMD computer exploits multiple data streams against a single instruction stream to operations that may be naturally parallelized, e.g., Intel SIMD instruction extensions or NVIDIA Graphics Processing Unit (GPU)

Multiple-Instruction/Multiple-Data Streams (MIMD or "mim-dee")



- Multiple autonomous processors simultaneously executing different instructions on different data.
 - MIMD architectures
 include multicore and
 Warehouse-Scale
 Computers

Multiple-Instruction/Single-Data Stream (MISD)



- Multiple-Instruction,
 Single-Data stream
 computer that exploits
 multiple instruction
 streams against a single
 data stream.
 - Rare, mainly of historical interest only

Flynn* Taxonomy, 1966

		Data Streams		
		Single	Multiple	
Instruction Streams	Single	SISD: Intel Pentium 4	SIMD: SSE instructions of x86	
	Multiple	MISD: No examples today	MIMD: Intel Xeon e5345 (Clovertown)	

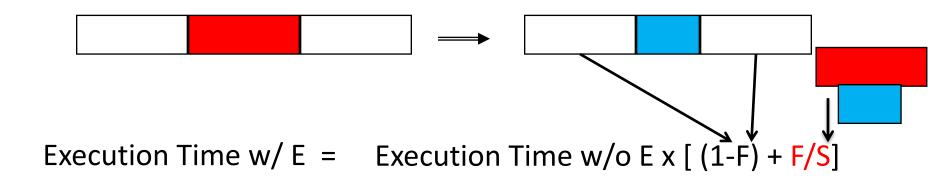
- Since about 2013, SIMD and MIMD most common parallelism in architectures – usually both in same system!
- Most common parallel processing programming style: Single Program Multiple Data ("SPMD")
 - Single program that runs on all processors of a MIMD
 - Cross-processor execution coordination using synchronization primitives
- SIMD (aka hw-level *data parallelism*): specialized function units, for handling lock-step calculations involving arrays
 - Scientific computing, signal processing, multimedia (audio/video processing)

*Prof. Michael Flynn, Stanford

Big Idea: Amdahl's (Heartbreaking) Law

Speedup due to enhancement E is

Suppose that enhancement E accelerates a fraction F (F < 1)
 of the task by a factor S (S>1) and the remainder of the task is
 unaffected



Speedup w/ E = 1/[(1-F) + F/S]

Big Idea: Amdahl's Law

Speedup =
$$\frac{1}{(1-F) + \frac{F}{S}}$$

Non-speed-up part

Example: the execution time of half of the program can be accelerated by a factor of 2.

What is the program speed-up overall?

$$\frac{1}{0.5 + 0.5} = \frac{1}{0.5 + 0.25} = 1.33$$

Example #1: Amdahl's Law

Speedup w/
$$E = 1/[(1-F) + F/S]$$

 Consider an enhancement which runs 20 times faster but which is only usable 25% of the time

Speedup w/
$$E = 1/(.75 + .25/20) = 1.31$$

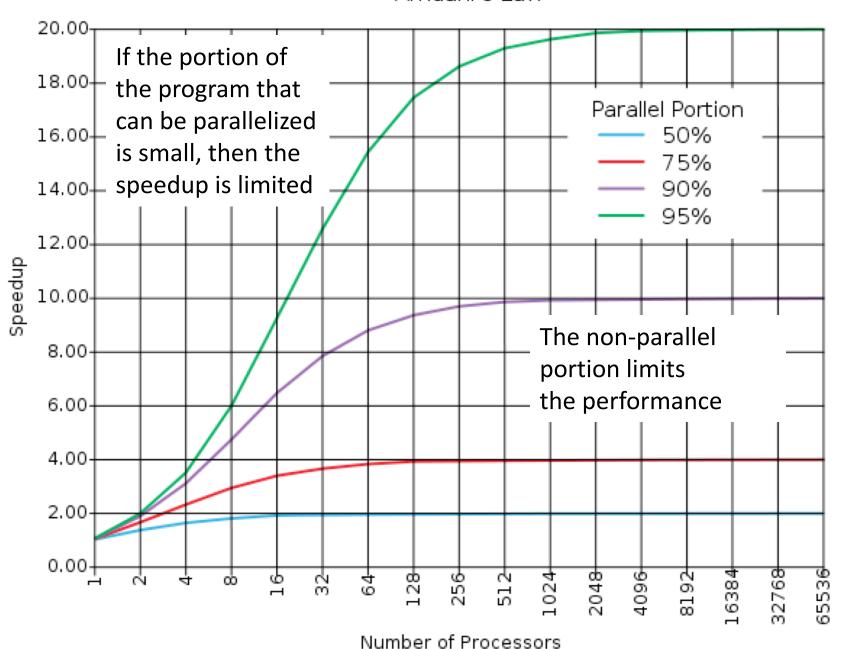
What if its usable only 15% of the time?

Speedup w/ E =
$$1/(.85 + .15/20) = 1.17$$

- Amdahl's Law tells us that to achieve linear speedup with 100 processors, none of the original computation can be scalar!
- To get a speedup of 90 from 100 processors, the percentage of the original program that could be scalar would have to be 0.1% or less

Speedup w/ E =
$$1/(.001 + .999/100) = 90.99$$

Amdahl's Law



Strong and Weak Scaling

- To get good speedup on a parallel processor while keeping the problem size fixed is harder than getting good speedup by increasing the size of the problem.
 - Strong scaling: when speedup can be achieved on a parallel processor without increasing the size of the problem
 - Weak scaling: when speedup is achieved on a parallel processor by increasing the size of the problem proportionally to the increase in the number of processors
- Load balancing is another important factor: every processor doing same amount of work
 - Just one unit with twice the load of others cuts speedup almost in half

Question

Suppose a program spends 80% of its time in a square root routine. How much must you speedup square root to make the program run 5 times faster?

Speedup w/
$$E = 1 / [(1-F) + F/S]$$

A: 5

B: 16

C: 20

D: 100

E: None of the above

SIMD Architectures

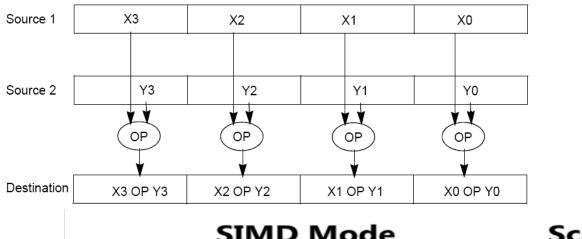
- Data parallelism: executing same operation on multiple data streams
- Example to provide context:
 - Multiplying a coefficient vector by a data vector (e.g., in filtering)

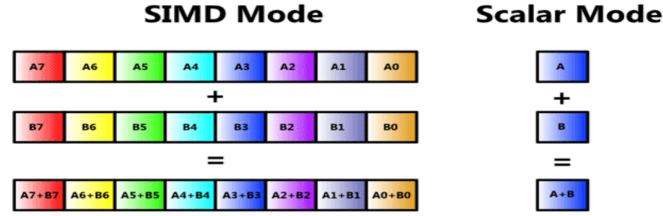
$$y[i] := c[i] \times x[i], 0 \le i < n$$

- Sources of performance improvement:
 - One instruction is fetched & decoded for entire operation
 - Multiplications are known to be independent
 - Pipelining/concurrency in memory access as well

Intel "Advanced Digital Media Boost"

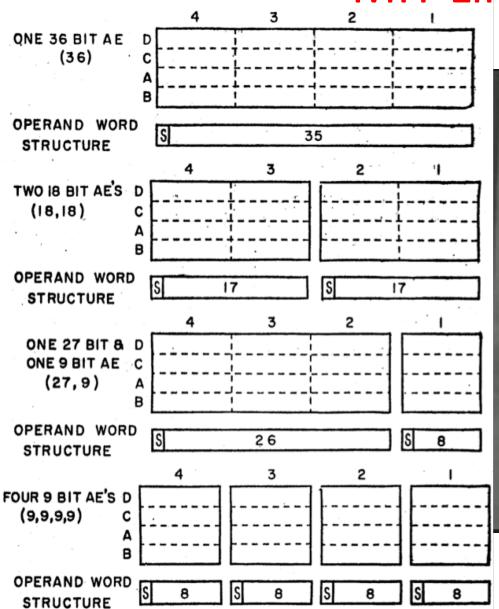
- To improve performance, Intel's SIMD instructions
 - Fetch one instruction, do the work of multiple instructions





First SIMD Extensions:

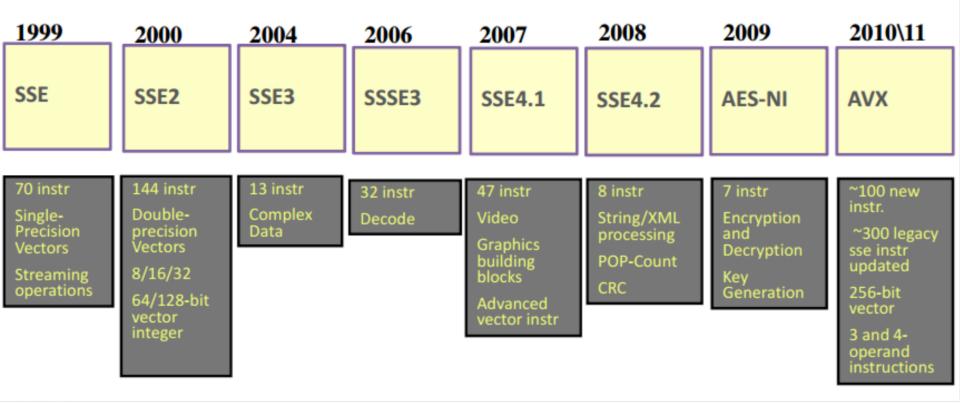
MIT Lincoln Labs TX-2, 1957



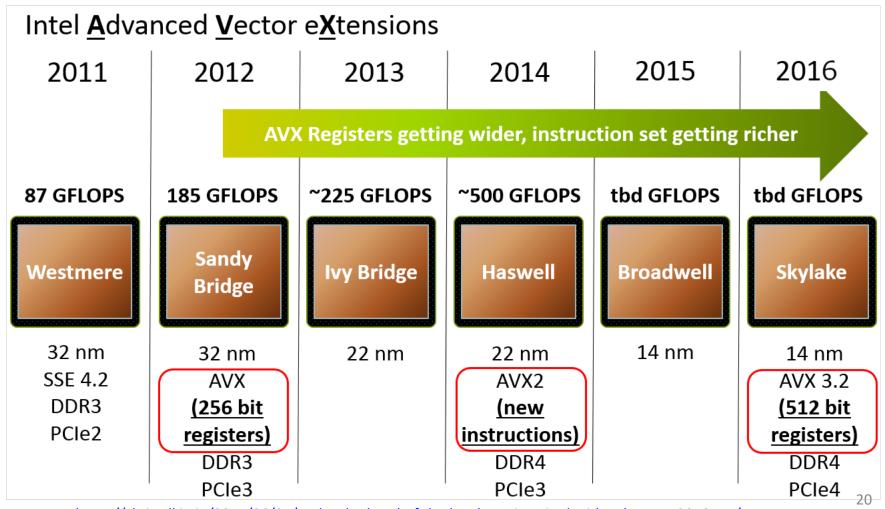
Intel SIMD Extensions

 MMX 64-bit registers, reusing floating-point registers [1992]

MMX 1997



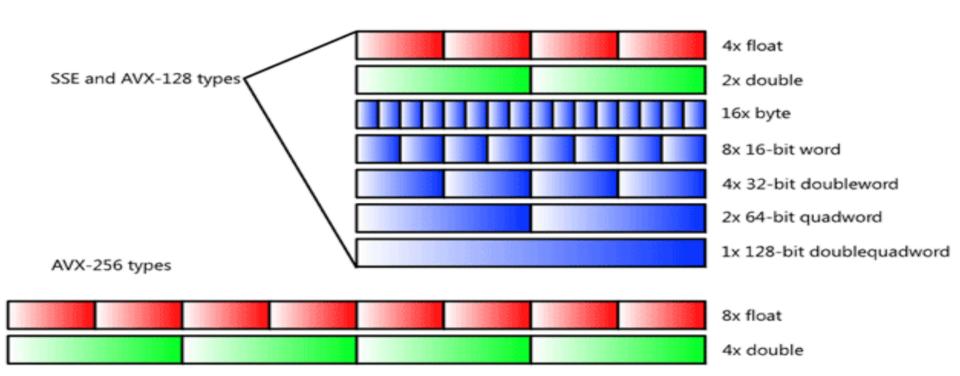
Intel Advanced Vector eXtensions AVX



https://chrisadkin.io/2015/06/04/under-the-hood-of-the-batch-engine-simd-with-sql-server-2016-ctp/

Intel Architecture SSE SIMD Data Types

- Note: in Intel Architecture (unlike RISC-V) a word is 16 bits
 - Single-precision FP: Double word (32 bits)
 - Double-precision FP: Quad word (64 bits)
 - AVX-512 available 16x float and 8x double)



SSE/SSE2 Floating Point Instructions

Move does both load and store

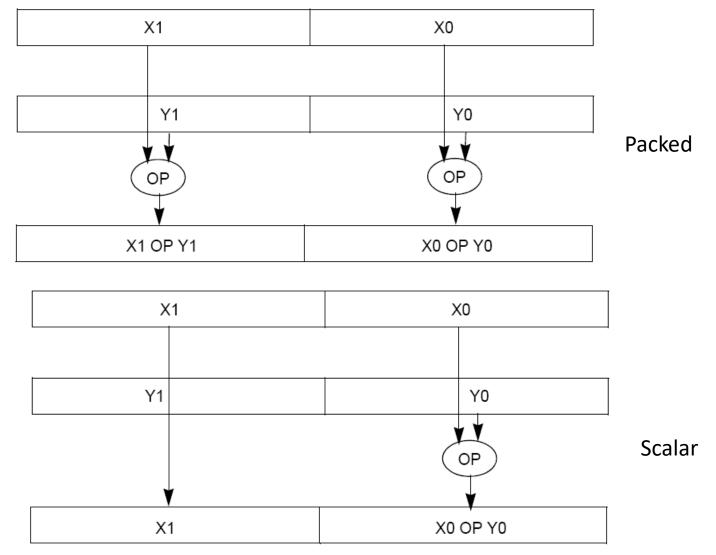
Data transfer	Arithmetic	Compare
MOV{A/U}{SS/PS/SD/ PD} xmm, mem/xmm	ADD{SS/PS/SD/PD} xmm, mem/xmm	<pre>CMP{SS/PS/SD/ PD}</pre>
	<pre>SUB{SS/PS/SD/PD} xmm, mem/xmm</pre>	
MOV {H/L} {PS/PD} xmm, mem/xmm	<pre>MUL{SS/PS/SD/PD} xmm, mem/xmm</pre>	
	<pre>DIV{SS/PS/SD/PD} xmm, mem/xmm</pre>	
	SQRT{SS/PS/SD/PD} mem/xmm	
	MAX {SS/PS/SD/PD} mem/xmm	
	MIN{SS/PS/SD/PD} mem/xmm	

xmm: one operand is a 128-bit SSE2 register

mem/xmm: other operand is in memory or an SSE2 register

- {SS} Scalar Single precision FP: one 32-bit operand in a 128-bit register
- {PS} Packed Single precision FP: four 32-bit operands in a 128-bit register
- {SD} Scalar Double precision FP: one 64-bit operand in a 128-bit register
- {PD} Packed Double precision FP, or two 64-bit operands in a 128-bit register
- {A} 128-bit operand is aligned in memory
- {U} means the 128-bit operand is unaligned in memory
- {H} means move the high half of the 128-bit operand
- {L} means move the low half of the 128-bit operand

Packed and Scalar Double-Precision Floating-Point Operations



X86 SIMD Intrinsics

Technologies

- \square MMX
- ☐ SSE
- ☐ SSE2
- ☐ SSE3
- ☐ SSSE3
- SSE4.1
- SSE4.2
- AVX
- □ AVX2
- ☐ FMA
- □ AVX-512
- \Box KNC
- SVML
- Other

Categories

- Application-Targeted
- Arithmetic
- Bit Manipulation
- □ Cast
- Compare

mul pd

```
m256d _mm256_mul_pd (__m256d a, __m256d b)
```

Synopsis

```
Intrinsic
__m256d _mm256_mul_pd (__m256d a, __m256d b)
```

#include "immintrin.h" assembly instruction Instruction: vmulpd ymm, ymm, ymm CPUID Flags: AVX

Description

Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst.

Operation

4 parallel multiplies

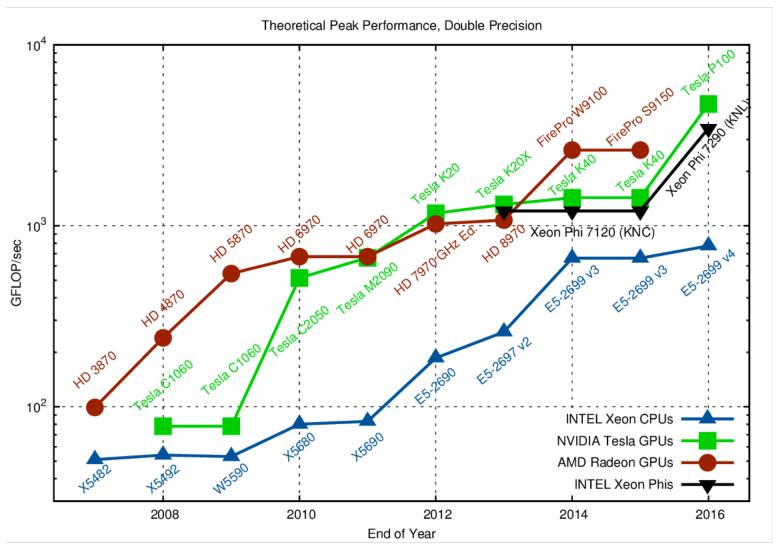
```
FOR i := 0 \text{ to } 3
       dst[i+63:i] := a[i+63:i] * b[i+63:i]
ENDFOR
dst[MAX:256] := 0
```

Performance

Architecture	Latency	Throughput
Haswell	5	0.5
Ivy Bridge	5	1
Sandy Bridge	5	1

2 instructions per clock cycle (CPI = 0.5)

Raw Double-Precision Throughput



Example: SIMD Array Processing

```
for each f in array
    f = sqrt(f)
for each f in array
    load f to the floating-point register
   calculate the square root
   write the result from the register to memory
for each 4 members in array
    load 4 members to the SSE register
   calculate 4 square roots in one operation
   store the 4 results from the register to memory
                   SIMD style
```

Data-Level Parallelism and SIMD

- SIMD wants adjacent values in memory that can be operated in parallel
- Usually specified in programs as loops

```
for(i=1000; i>0; i=i-1)
x[i] = x[i] + s;
```

- How can reveal more data-level parallelism than available in a single iteration of a loop?
- Unroll loop and adjust iteration rate

Looping in MIPS

Assumptions:

- \$t1 is initially the address of the element in the array with the highest address
- \$f0 contains the scalar value s
- 8(\$t2) is the address of the last element to operate on

CODE:

```
Loop: 1. l.d $f2,0($t1) ; $f2=array element

2. add.d $f10,$f2,$f0 ; add s to $f2

3. s.d $f10,0($t1) ; store result

4. addiu $t1,$t1,#-8 ; decrement pointer 8 byte

5. bne $t1,$t2,Loop ; repeat loop if $t1 != $t2
```

Loop Unrolled

```
Loop: I.d
               $f2,0($t1)
       add.d
               $f10,$f2,$f0
               $f10,0($t1)
       s.d
       I.d
               $f4,-8($t1)
       add.d
              $f12,$f4,$f0
       s.d
               $f12,-8($t1)
       I.d
               $f6,-16($t1)
              $f14,$f6,$f0
       add.d
               $f14,-16($t1)
       s.d
       I.d
               $f8,-24($t1)
       add.d $f16,$f8,$f0
               $f16,-24($t1)
       s.d
              $t1,$t1,#-32
       addiu
               $t1,$t2,Loop
       bne
```

NOTE:

- 1. Only 1 Loop Overhead every 4 iterations
- 2. This unrolling works if

$$loop_limit(mod 4) = 0$$

3. Using different registers for each iteration eliminates data hazards in pipeline

Loop Unrolled Scheduled

```
Loop:I.d
             $f2,0($t1)
     I.d
            $f4,-8($t1)
                              4 Loads side-by-side: Could replace with 4-wide SIMD
     I.d
            $f6,-16($t1)
                              Load
            $f8,-24($t1)
     I.d
     add.d $f10,$f2,$f0
     add.d $f12,$f4,$f0
                               4 Adds side-by-side: Could replace with 4-wide SIMD Add
     add.d $f14,$f6,$f0
     add.d $f16,$f8,$f0
            $f10,0($t1)
     s.d
            $f12,-8($t1)
     s.d
                             4 Stores side-by-side: Could replace with 4-wide SIMD Store
            $f14,-16($t1)
     s.d
            $f16,-24($t1)
     s.d
            $t1,$t1,#-32
     addiu
             $t1,$t2,Loop
     bne
```

Loop Unrolling in C

 Instead of compiler doing loop unrolling, could do it yourself in C

```
for(i=1000; i>0; i=i-1)
   x[i] = x[i] + s;
```

Could be rewritten
 What is downside of doing it in C?

```
for(i=1000; i>0; i=i-4) {
  x[i] = x[i] + s;
  x[i-1] = x[i-1] + s;
  x[i-2] = x[i-2] + s;
  x[i-3] = x[i-3] + s;
```

Generalizing Loop Unrolling

- A loop of n iterations
- k copies of the body of the loop
- Assuming (n mod k) ≠ 0

Then we will run the loop with 1 copy of the body (n mod k) times and with k copies of the body floor(n/k) times

Example: Add Two Single-Precision Floating-Point Vectors

Computation to be performed:

```
vec_res.x = v1.x + v2.x;
vec_res.y = v1.y + v2.y;
vec_res.z = v1.z + v2.z;
vec_res.w = v1.w + v2.w;
```

mov a ps: **mov**e from mem to XMM register, memory **a**ligned, **p**acked **s**ingle precision

add ps: add from mem to XMM register, packed single precision

mov a ps: **mov**e from XMM register to mem, memory **a**ligned, **p**acked **s**ingle precision

SSE Instruction Sequence:

(Note: Destination on the right in x86 assembly)

Intel SSE Intrinsics

- Intrinsics are C functions and procedures for inserting assembly language into C code, including SSE instructions
 - With intrinsics, can program using these instructions indirectly
 - One-to-one correspondence between SSE instructions and intrinsics

Example SSE Intrinsics

Intrinsics:

Corresponding SSE instructions:

• Vector data type:

Load and store operations:

_mm_load_pd _mm_store_pd _mm_loadu_pd

_mm_storeu_pd

MOVAPD/aligned, packed double

MOVAPD/aligned, packed double

MOVUPD/unaligned, packed double

MOVUPD/unaligned, packed double

Load and broadcast across vector

_mm_load1_pd

MOVSD + shuffling/duplicating

• Arithmetic:

_mm_add_pd

_mm_mul_pd

ADDPD/add, packed double

MULPD/multiple, packed double

Example: 2 x 2 Matrix Multiply

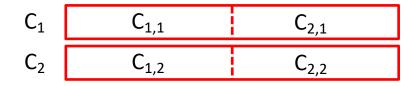
Definition of Matrix Multiply:

$$C_{i,j} = (A \times B)_{i,j} = \sum_{k=1}^{2} A_{i,k} \times B_{k,j}$$

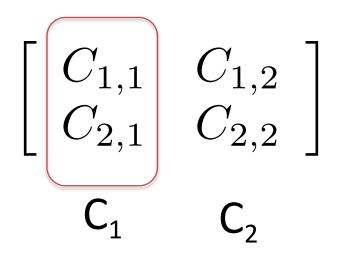
$$\begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \times \begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{bmatrix} = \begin{bmatrix} C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} C_{1,1} = 1*1 + 0*2 = 1 & C_{1,2} = 1*3 + 0*4 = 3 \\ C_{2,1} = 0*1 + 1*2 = 2 & C_{2,2} = 0*3 + 1*4 = 4 \end{bmatrix}$$

- Using the XMM registers
 - 64-bit/double precision/two doubles per XMM reg



Stored in memory in Column order



Initialization

$$\begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \times \begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{bmatrix} = \begin{bmatrix} C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{bmatrix}$$

Initialization

• | = 1

_mm_load_pd: Load 2 doubles into XMM
reg, Stored in memory in Column order

$$B_1$$
 $B_{1,1}$ $B_{1,1}$ $B_{1,2}$ $B_{1,2}$

_mm_load1_pd: SSE instruction that loads a double word and stores it in the high and low double words of the XMM register (duplicates value in both halves of XMM)

$$\begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \times \begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{bmatrix} = \begin{bmatrix} C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{bmatrix}$$

First iteration intermediate result

c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));
c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers

_mm_load_pd: Stored in memory in Column order

$$B_1$$
 $B_{1,1}$ $B_{1,1}$ $B_{1,2}$ $B_{1,2}$

_mm_load1_pd: SSE instruction that loads a double word and stores it in the high and low double words of the XMM register (duplicates value in both halves of XMM)

$$\begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \times \begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{bmatrix} = \begin{bmatrix} C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{bmatrix}$$

First iteration intermediate result

c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));
c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers

_mm_load_pd: Stored in memory in Column order

$$B_1$$
 $B_{2,1}$ $B_{2,1}$ $B_{2,2}$ $B_{2,2}$

_mm_load1_pd: SSE instruction that loads a double word and stores it in the high and low double words of the XMM register (duplicates value in both halves of XMM)

Second iteration intermediate result

c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));
c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers

_mm_load_pd: Stored in memory in Column order

_mm_load1_pd: SSE instruction that loads a double word and stores it in the high and low double words of the XMM register (duplicates value in both halves of XMM)

Example: 2 x 2 Matrix Multiply (Part 1 of 2)

```
#include <stdio.h>
// header file for SSE compiler intrinsics
#include <emmintrin.h>
// NOTE: vector registers will be represented in
    // comments as v1 = [a | b]
// where v1 is a variable of type m128d and
    // a, b are doubles
int main(void) {
  // allocate A,B,C aligned on 16-byte boundaries
  double A[4] attribute__ ((aligned (16)));
  double B[4] attribute ((aligned (16)));
  double C[4] attribute ((aligned (16)));
  int Ida = 2;
  int i = 0;
  // declare several 128-bit vector variables
  m128d c1,c2,a,b1,b2;
```

```
// Initialize A, B, C for example
/* A =
                      (note column order!)
    10
    01
  A[0] = 1.0; A[1] = 0.0; A[2] = 0.0; A[3] = 1.0;
/* B =
                       (note column order!)
    13
    24
   */
  B[0] = 1.0; B[1] = 2.0; B[2] = 3.0; B[3] = 4.0;
/* C =
                      (note column order!)
    00
    00
   */
  C[0] = 0.0; C[1] = 0.0; C[2] = 0.0; C[3] = 0.0;
```

Example: 2 x 2 Matrix Multiply (Part 2 of 2)

```
// used aligned loads to set
  //c1 = [c 11 | c 21]
  c1 = _mm_load_pd(C+0*lda);
  //c2 = [c 12 | c 22]
  c2 = mm load pd(C+1*lda);
  for (i = 0; i < 2; i++) {
    /* a =
     i = 0: [a 11 | a 21]
     i = 1: [a_12 | a 22]
     a = mm load pd(A+i*lda);
    /* b1 =
     i = 0: [b 11 | b 11]
     i = 1: [b 21 | b 21]
     */
    b1 = mm load1 pd(B+i+0*lda);
    /* b2 =
     i = 0: [b 12 | b 12]
     i = 1: [b_22 | b 22]
    b2 = mm load1 pd(B+i+1*lda);
```

```
/* c1 =
   i = 0: [c 11 + a 11*b 11 | c 21 + a 21*b 11]
   i = 1: [c 11 + a 21*b 21 | c 21 + a 22*b 21]
  */
  c1 = mm add pd(c1, mm mul pd(a,b1));
  /* c2 =
   i = 0: [c 12 + a 11*b 12 | c 22 + a 21*b 12]
   i = 1: [c 12 + a_21*b_22 | c_22 + a_22*b_22]
  c2 = mm add pd(c2, mm mul pd(a,b2));
// store c1,c2 back into C for completion
mm store pd(C+0*lda,c1);
_mm_store_pd(C+1*lda,c2);
// print C
printf("%g,%g\n%g,%g\n",C[0],C[2],C[1],C[3]);
return 0;
```

DGEMM Speed Comparison

- Double precision general matrix matrix multiply: DGEMM
- Intel Core i7-5557U CPU @ 3.10 GHz
 - Instructions per clock (mul_pd) 2; Parallel multiplies per instruction 4
 - $\Rightarrow 24.8 \text{ GFLOPS}$
- Python:

```
def dgemm(N, a, b, c):
    for i in range(N):
        for j in range(N):
        c[i+j*N] = 0
        for k in range(N):
        c[i+j*N] += a[i+k*N] * b[k+j*N]
```

N	Python [Mflops]
32	5.4
160	5.5
480	5.4
960	5.3

- 1 MFLOP = 1 Million floatingpoint operations per second (fadd, fmul)
- dgemm(N ...) takes 2*N³ flops

C versus Python

```
• c = a * b
```

a, b, c are N x N matrices

N	C [GFLOPS]	Python [GFLOPS]
32	1.30	0.0054
160	1.30	0.0055
480	1.32	0.0054
960	0.91	0.0053

Vectorized dgemm

N	Gflops		
	scalar	avx	
32	1.30	4.56	
160	1.30	5.47	
480	1.32	5.27	
960	0.91	3.64	

- 4x faster
- Still << theoretical 25 GFLOPS

Loop Unrolling

```
// Loop unrolling; P&H p. 352
const int UNROLL = 4;
void dgemm unroll(int n, double *A, double *B, double *C) {
    for (int i=0; i<n; i+= UNROLL*4) {</pre>
        for (int x=0; x<UNROLL; x++)</pre>
                c[x] = _mm256_load_pd(C+i+x*4+j*n);
            for (int k=0; k<n; k++) {
                m256d b = mm256 broadcast sd(B+k+j*n);
                for (int x=0; x<UNROLL; x++) Compiler does the unrolling
                    c[x] = mm256 \text{ add } pd(c[x],
                           _{mm256}_mul_pd(_{mm256}_load_pd(_{h+n*k+x*4+i}), b));
            for (int x=0; x<UNROLL; x++)</pre>
                mm256 store pd(C+i+x*4+j*n, c[x]);
                                             GFlops
            N
                            scalar
                                                              unroll
                                              avx
            32
                            1.30
                                             4.56
                                                              12.95
            160
                            1.30
                                             5.47
```

5.27

3.64

6.91

1.32

0.91

480

960

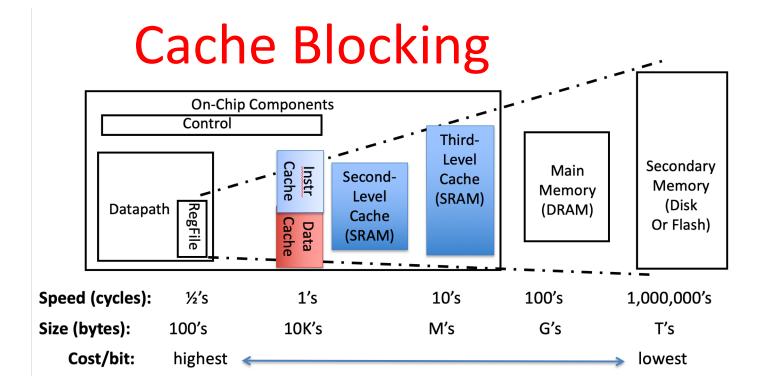
FPU versus Memory Access

- How many floating-point operations does matrix multiply take?
 - $F = 2 \times N^3$ (N³ multiplies, N³ adds)
- How many memory load/stores?
 - $M = 3 \times N^2 \text{ (for A, B, C)}$
- Many more floating-point operations than memory accesses
 - q = F/M = 2/3 * N
 - Good, since arithmetic is faster than memory access
 - Let's check the code ...

But memory is accessed repeatedly

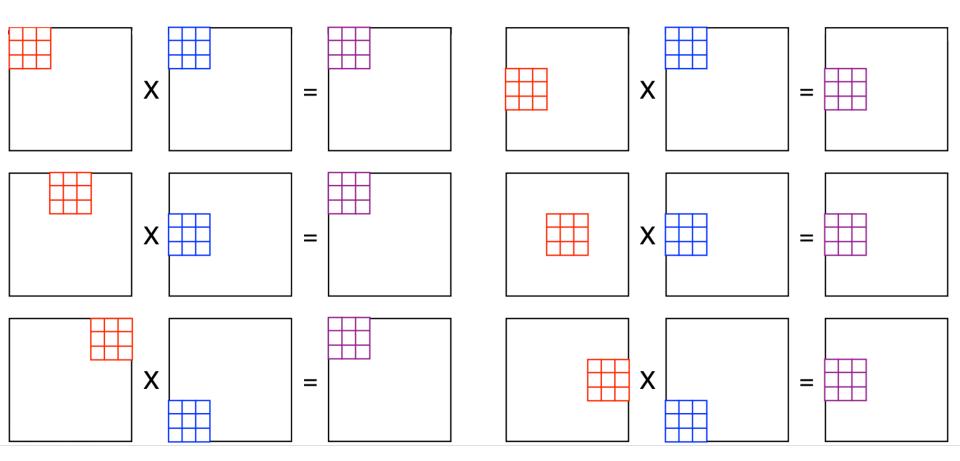
q = F/M = 1.6! (1.25 loads and 2 floating-point operations)

Inner loop:



- Where are the operands (A, B, C) stored?
- What happens as N increases?
- Idea: arrange that most accesses are to fast cache!
- Rearrange code to use values loaded in cache many times
- Only "few" accesses to slow main memory (DRAM) per floating point operation
 P&H, RISC-V edition p. 465
 - -> throughput limited by FP hardware and cache, not slow DRAM

Blocking Matrix Multiply (divide and conquer: sub-matrix multiplication)



Memory Access Blocking

```
// Cache blocking; P&H p. 556
const int BLOCKSIZE = 32;
void do_block(int n, int si, int sj, int sk, double *A, double *B, double *C) {
   for (int i=si; i<si+BLOCKSIZE; i+=UNROLL*4)</pre>
        for (int j=sj; j<sj+BLOCKSIZE; j++) {</pre>
              m256d c[4]:
            for (int x=0; x<UNROLL; x++)</pre>
                c[x] = _mm256_load_pd(C+i+x*4+j*n);
            for (int k=sk; k<sk+BLOCKSIZE; k++) {</pre>
                 _{m256d} b = _{mm256}broadcast_{sd(B+k+j*n)};
                for (int x=0; x<UNROLL; x++)</pre>
                     c[x] = _mm256_add_pd(c[x],
                            _{mm256\_mul\_pd(\_mm256\_load\_pd(A+n*k+x*4+i), b));}
            for (int x=0; x<UNROLL; x++)</pre>
                mm256 store pd(C+i+x*4+j*n, c[x]);
void dgemm_block(int n, double* A, double* B, double* C) {
   for(int sj=0; sj<n; sj+=BLOCKSIZE)</pre>
        for(int si=0; si<n; si+=BLOCKSIZE)</pre>
            for (int sk=0; sk<n; sk += BLOCKSIZE)</pre>
                do block(n, si, si, sk, A, B, C);
                                                                               54
```

Performance

- Intel i7-5557U theoretical limit (AVX2): 24.8 GFLOPS
- Cache:
 - L3: 4 MB 16-way set associative shared cache
 - L2: 2 x 256 KB 8-way set associative caches
 - L1 Cache: 2 x 32KB 8-way set associative caches (2x: D & I)
- Maximum memory bandwidth (GB/s): 29.9

N	Size	GFlops			
		scalar	avx	unroll	blocking
32	3x 8KB	1.30	4.56	12.95	13.80
160	3x 205KB	1.30	5.47	19.70	21.79
480	3x 1.8MB	1.32	5.27	14.50	20.17
960	3x 7.3MB	0.91	3.64	6.91	15.82

And in Conclusion, ...

- Amdahl's Law: Serial sections limit speedup
- Flynn Taxonomy
- Intel SSE SIMD Instructions
 - Exploit data-level parallelism in loops
 - One instruction fetch that operates on multiple operands simultaneously
 - 128-bit XMM registers
- SSE Instructions in C
 - Embed the SSE machine instructions directly into C programs through use of intrinsics
 - Achieve efficiency beyond that of optimizing compiler